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Abstract: Itis well-known that constraint satisfaction problems (CSP) over an unbounded
domain can be solved in tinrf®X if the treewidth of the primal graph of the instance is at
mostk andn is the size of the input. We show that no algorithm can be significantly better
than this treewidth-based algorithm, even if we restrict the problem to some special class
of primal graphs. Formally, I§ be a recursively enumerable class of graphs and assume
that there is an algorithm solving binary CSP (i. e., CSP where every constraint involves
two variables) for instances whose primal graph i§ifWe prove that if the running time

of A is f(G)n°/109K) 'wherek is the treewidth of the primal graph and f is an arbitrary
function, then the Exponential Time Hypothesis (ETH) fails. We prove the result also in
the more general framework of the homomorphism problem for bounded-arity relational
structures. For this problem, the treewidth of the core of the left-hand side structure plays
the same role as the treewidth of the primal graph above. Finally, we use the results to
obtain corollaries on the complexity of (Colored) Subgraph Isomorphism.

1 Introduction

Constraint Satisfaction Problems. Constraint satisfaction is a general framework that includes many
standard algorithmic problems such as satisfiability, graph coloring, database queries, etc. A constraint

*A preliminary version of the paper appeared in the Proceedings of the 48th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2007), pages 169-179.

TResearch partially supported by the Magyary @olfel$oktatsi Kozalaptvany, Hungarian National Research Fund
(OTKA 67651), and ERC Advanced Grant DMMCA.
ACM Classification: F.2.2, G.2.2
AMS Classification: 68Q17, 68R10

Key words and phrases:constraint satisfaction, treewidth, homomorphism

© Daniel Marx
@ Licensed under a Creative Commons Attribution License


http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/

DANIEL MARX

satisfaction problem (CSP) consists of a\éelf variables, a domaib, and a se€ of constraints, where

each constraint is a relation on a subset of the variables. The task is to assign a val@et&r@ach

variable in such a way that every constraint is satisfied (see Defifitidior the formal definition). For
example, 3SAT can be interpreted as a CSP instance where the dorfi@ififisand the constraints in

C correspond to the clauses (thus the arity of each constraint is 3). Another example is vertex coloring,
which can be interpreted as a CSP instance where the variables correspond to the vertices, the domain
corresponds to the set of colors, and there is a binary disequality constraint corresponding to each edge.
Notice that the domain size can be arbitrarily large in the CSP instances arising from vertex coloring (as
the coloring problem might involve any number of colors). In the present paper, we think of the domain
as a set whose size is not a fixed constant, but can be be arbitrarily large. This viewpoint is natural in the
context of various database query and artificial intelligence applications, where in fact that domain size
is usually much larger than the number of variabl&s fi1].

Due to its generality, solving constraint satisfaction problems is NP-hard if we do not impose any
additional restrictions on the possible instances. Therefore, the main goal of the research on CSP is to
identify tractable classes and special cases of the general problem. The theoretical literature on CSP
investigates two main types of restrictions. The first type is to restrictdinstraint languagethat is,
the type of constraints that is allowed. This direction was initiated by the classical work of Schaefer
[42] and was subsequently pursued in e. @, g, 5, 15, 32]. The second type is to restrict tis&ructure
induced by the constraints on the variables. phmal graph(or Gaifman graph of a CSP instance is
defined to be a graph on the variables of the instance such that there is an edge between two variables if
and only if they appear together in some constraint. If the treewidth of the primal grapthen CSP
can be solved in tima®®¥ [21]. (Heren is the size of the input; in the cases we are interested in this
paper, the input size is polynomially bounded by the domain size and the number of variables.) The aim
of this paper is to investigate whether there exists any other structural property of the primal graph that
can be exploited algorithmically to speed up the search for the solution.

Structural complexity of CSP. The first question is to understand which graphs make CSP polynomial-
time solvable. We have to be careful with the formalization of this questiof® if a graph withk
vertices, then any CSP instance with primal gr&@ban be solved in tima®K), Therefore, restricting
CSP toanyfixed graph makes it polynomial-time solvable. The real question is wdiadsef graphs
makes CSP polynomial-time solvable. Formally, for a clasd graphs, let CSP) be the class of all
CSP instances where the primal graph of the instance $s iNote that this definition does not make
any restriction on the constraint relations: it is possible that every constraint has a different constraint
relation. If G has bounded treewidth, then CSIP{s polynomial-time solvable. The converse statement
is also true:

Theorem 1.1 (Grohe, Schwentick, SegoufirBp]; Grohe [27]). If G is a recursively enumerable class
of graphs, then CSBJ is polynomial-time solvable if and only # has bounded treewidth (assuming
FPT+# W[1]).

The results in 30, 27] are actually more general and are stated in terms of the conjunctive query
and homomorphism problems (more on this in SecBprbut it is easy to see that those results im-
ply Theoreml.l The assumption FPE W[1] is a standard hypothesis of parameterized complexity
(cf. [13, 18)]). Let us emphasize that the proof of Theorérhuses in an essential way the fact that the
domain size can be arbitrarily large.
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By Theoreml.1, bounded treewidth is the only property of the primal graph that can make the
problem polynomial-time solvable. However, Theorgérhdoes not rule out the possibility that there is
some structural property that enables us to solve instances significantly faster than the treewidth-based
algorithm of R1]. Conceivably, there can be a clggesf graphs such that CS§Ycan be solved in time
nP(VK or even in timen®(°9%) | if k is the treewidth of the primal graph. The main result of the paper is
that this is not possible; the®® time algorithm is essentially optimal, up to &tlogk) factor in the
exponent. Thus, in our specific setting, there is no other structural information beside treewidth that can
be exploited algorithmically.

We prove our result under the Exponential Time Hypothesis (EBH]} [we assume that there is
no 2(™ time algorithm fom-variable 3SAT. This assumption is stronger than EPW[1]. The formal
statement of the main result of the paper is the following (we denote {{§)tihe treewidth ofG):

Theorem 1.2. If there is a recursively enumerable clagf graphs with unbounded treewidth and a
function f such that binary CSPB) can be solved in time(6)]|1||9W(G)/109W(G)) for instances | with
primal graph Ge G, then ETH fails.

Binary CSPg) is the special case of CSp(where every constraint is binary, i.e., involves two
variables. Note that adding this restriction makes the statement of TheloBestronger. Similarly,
allowing the multiplicative factoif (G) in the running time also makes the result stronger. We do make
any assumption om, for example, we do not require thais computable.

The main technical tool of the proof of Theorelri in [30, 27] is the Excluded Grid Theorem of
Robertson and Seymou(]], which states that there is an unbounded functik) such that every
graph with treewidth at leagtcontains ay(k) x g(k) grid as minor. The basic idea of the proof &V] is
to show that CSH) is not polynomial-time solvable @ contains every grid and then this result is used
to argue that CSBj is not polynomial for anyg with unbounded treewidth, since in this cdseontains
every grid as minor. However, this approach does not work if we want a tighter lower bound, as in
Theoreml.2 The problem is that the functiay(k) is very slowly growing, e. g.o(logk), in the known
proofs of the Excluded Grid Theorertid]. Therefore, if the only property of graphs with treewidth at
leastk that we use is that they hagek) x g(k) grid minors, then we immediately lose a lot: as CSP on
theg(k) x g(k) grid can be solved in timgl | °9%)  no lower bound stronger thah||°1°9™(®) can be
proved with this approach. Thus we need a characterization of treewidth that is tighter than the Excluded
Grid Theorem.

The almost-tight bound of Theorefn2 is made possible by a novel characterization of treewidth
that is tight up to a logarithmic factor. This result might be of independent interest. We generalize
the notion of minors the following way. Aembeddingf H into G is a mappingy from V(H) to
connected subsets Gf such that ifu,v € V(H) are adjacent, then either(u) N y(v) # 0 or there is an
edge connecting a vertex pf(u) and a vertex ofy(v). Thedepthof the embedding is at mogtf every
vertex of G appears in the images of at maptertices ofH. ThusH has an embedding of depth 1 into
Gifand only if H is a minor ofG.

We characterize treewidth by the “embedding power” of the graph in the following senges If
sufficiently large, therH has a embedding of depthinto G. For exampleq = 2|E(H)| is certainly
sufficient (ifH has no isolated vertices). However, we show that if the treewid@ isfat leask, then
there is an embedding with depth= O(|E(H)|logk/K), i.e., the depth is a factdD(k/logk) better
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than in the trivial solution. We prove this result by using the well-known characterizations of treewidth
with separators and @(logk) integrality gap result for the sparsest cut problem. The main idea of the
proof of Theoreni.2is to use the embedding power of a graph with large treewidth to simulate a 3SAT
instance efficiently.

We conjecture that Theorefn2 holds in a tight way: th©(logtw(G)) factor can be removed from
the exponent.

Conjecture 1.3. There is no recursively enumerable cl&ssf graphs with unbounded treewidth and
no functionf such that CSR) can be solved in timé (G)||1||°(™(C)) for instances with primal graph
Ged.

This seemingly minor improvement would be very important for classifying the complexity of other
CSP variants3g]. However, it seems that a much better understanding of treewidth is required before
Theoreml.2can be made tight. At the very least, it should be settled whether there is a polynomial-time
constant-factor approximation algorithm for treewidth.

The homomorphism problem. A large part of the theoretical literature on CSP follows the notation
introduced by Feder and Vardif] and formulates the problem as a homomorphism between relational
structures. This more general framework allows a clean algebraic treatment of many issues. IrbSection
we translate the lower bound of Theordm into this framework (Theorerf.1) to obtain a quantitative
version of the main result o[/]. That is, the left-hand side classes of structures in the homomorphism
problem are not only characterized with respect to polynomial-time solvability, but we prove almost-
tight lower bounds on the exponent of the running time. As a special case, Thedrégmmediately
implies a generalization of Theorein2 from binary CSP to constraints with any fixed finite arity: for
every fixedr > 2, it can be used to give a lower bound on the running timearfy CSP when restricted
to a family ofr-uniform hypergraphs.

As observed in%7], the complexity of the homomorphism problem does not depend directly on the
treewidth of the left-hand side structure, but rather on the treewidth of its core. Thus the treewidth of the
core appears in Theoreml, the analog of Theorermh 2. The reason why the notion of core is irrelevant
in Theorem1.2 is that the way we defined CSP(allows the possibility that every constraint relation
appearing in the instance is different. In such a case, a nontrivial homomorphism of the primal graph
does not provide any apparent shortcut for solving the problem. Similarl®7dp ¢ur result applies
only if the left-hand side structure has bounded arity. In the unbounded-arity case, issues related to
the representation of the structures arise, which change the problem considerably. The homomorphism
problem with unbounded arity is far from understood: recently, new classes of tractable structures were
identified P8, 36, 37].

Subgraph problems. Obtaining tight lower bounds in the exponent under assuming ETH has been
done previously in the framework of parameterized complexity. A basic result in this direction is the
following:

Theorem 1.4 (B, 10)). There is no fk) - n°® time algorithm for k-Clique, unless ETH fails.

For a number of problems parameterized by clique width, tight bounds on the exponent of the run-
ning time were given by0]. The Closest Substring problem was studied3i[and it was shown that
in two specific settings, there are no algorithms waittogk) ando(loglogk) in the exponent of the run-
ning time (unless ETH fails), and there are algorithms matching these lower bounds. The class M[1] was
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introduced as a tool that uses ETH to provide an alternative way of proving hardness in parameterized
complexity [L4, 19].

Theoreml.4can be interpreted as a lower bound for the Subgraph Isomorphism problem (given two
graphsG andH, decide ifG is a subgraph off). Using the color coding technique d][ it is possible
to solve Subgraph Isomorphism in tinfiglV (G)|) - n"®W(®) Theoremi.4 and the fact that the treewith
of thek-clique isk— 1 shows that it is not possible to improve the dependence (@)t the exponent
to o(tw(G)), since in particular this would imply af(k) - n°® time algorithm for thek-Clique problem.
However, this observation does not rule out the possibility that there is a special class of graphs (say,
bounded degree graphs or planar graphs) where it possible to improve the expoo@w(®)). In
Section6, we discuss lower bounds for Subgraph Isomorphism (and its colored version) that follows
from our CSP results.

Another important aspect of Theoret is that it can be used to obtain lower bounds for other
parameterized problems. W[1]-hardness proofs are typically done by parameterized reductidas from
Clique. Itis easy to observe that a parameterized reduction implies a lower bound similar to Thebrem
for the target problem, with the exact form of the lower bound depending on the way the reduction
changes the parameter. Many of the more involved reductions use edge selection gadgets (see e.g.,
[17]). As thek-clique has9(k?) edges, this means that the reduction increases the paramé&gdcio
and we can conclude that there is h(k) - n°v¥ time algorithm for the target problem (unless ETH
fails). If we want to obtain stronger bounds on the exponent, then we have to avoid the quadratic
blow up of the parameter and do the reduction from a different problem. One possibility is to reduce
from Subgraph Isomorphism, parameterized by the number of edges. In a reduction from Subgraph
Isomorphism, we neefE(G)| edge selection gadgets, which usually implies that the new parameter
is ©(|E(G)|). Therefore, the reduction and the following corollary obtained in Sedialiows us to
conclude that there is nik) - n°/1°9%) time algorithm for the target problem:

Corollary 1.5. If Subgraph Isomorphism can be solved in tirmi&)fick/1°9k) where f is an arbitrary
function and k= |E(G)| is the number oédgef the smaller graph G, then ETH fails.

Organization. Section2 summarizes the notation we use. Sectiopresents the new character-
ization of treewidth. Sectiod treats binary CSP and proves Theoréri. Section5 overviews the
homomorphism problem and presents the main result in this context. Séafmnins hardness results
for subgraph problems as corollaries of the main result.

2 Preliminaries

Constraint satisfaction problems. We briefly recall the most important notions related to CSP. For
more background, see e. 26[ 15].

Definition 2.1. An instance of a&onstraint satisfaction probleis a triple(V,D,C), where:
¢ V is a set of variables,

e D is adomain of values,
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e Cis aset of constraintgcy,Cy, ..., Cq}. Each constraint; € Cis a pair(s,R;), where:

— s is atuple of variables of lengtim, called theconstraint scopeand
— R is anmy-ary relation oveD, called theconstraint relation.

For each constrainis, R)) the tuples oR; indicate the allowed combinations of simultaneous values
for the variables irs. The lengthm; of the tuples is called thearity of the constraint. Asolutionto a
constraint satisfaction problem instance is a funcfidrom the set of variableg to the domain of values
D such that for each constraif&,R) with 5 = (vi;, Vi, ..., Vi,,), the tuple(f (vi,), f(Vi,),..., f(v,,)) is
a member oR,. We say that an instancelnary if each constraint relation is binary, i. ey = 2 for
every constrairit In this paper, we consider only binary instances. It can be assumed that the instance
does not contain two constraints, R)), (sj,R;) with s = sj, since in this case the two constraints can
be replaced with the constraifg, R NR;).

In the input, the relation in a constraint is represented by listing all the tuples of the constraint.
We denote by||l|| the size of the representation of the instahee (V,D,C). For binary constraint
satisfaction problems, we can assume thgt= O(V2D?): by the argument in the previous paragraph,
we can assume that there &/2) constraints and each constraint has a representation of leB#).
Furthermore, it can be assumed tHat < ||1||: elements oD that do not appear in any relation can be
removed.

Letl = (V,D,C) be a CSP instance and Mt C V be a nonempty subset of variables. The instance
inducedby V' is the CSP instandéV'] = (V’,D,C’), whereC’ C C is the set of constraints whose scope
is contained in/’. Clearly, if f is a solution ofl, thenf restricted td/’ is a solution ofl [V’].

Theprimal graphof a CSP instance= (V,D,C) is a graphG with vertex se¥, wherex,y € V form
an edge if and only if there is a constraist R) € C with x,y € 5. For a clas$ of graphs, we denote
by CSR9) the problem restricted to instances where the primal graphgs in

Graphs. We denote by (G) andE(G) the set of vertices and the set of edges of the g@ph
respectively. Given a grap®, theline graph L(G) has one vertex for each edge®fand two vertices
of L(G) are connected if and only if the corresponding edgeS share an endpoint. The line graph
L(Kk) of the complete grapKy will appear repeatedly in the paper. Usually we denote the vertices of
L(Kx) with vi jy (1 <i < j <K), wherevy;, .y andvy, j,, are adjacentif and only ffiy, j1} N {iz, j2} # 0.

A tree decompositionf a graphG is a tuple(T, (Bt)iev(t)), WhereT is a tree andBy)iey(r) IS @
family of subsets oV (G) such that for eack € E(G) there is a nodé € V(T) such thate C By, and
for eachv € V(G) the set{t € V(T) | v € B} is connected inT. The setsB; are called thébagsof
the decomposition. Theidth of a tree-decompositiofiT, (B )iev (t)) is max{|B| [t e V(t)} —1. The
treewidthtw(G) of a graphG is the minimum of the widths of all tree decompositiong®fA classS
of graphs is obounded treewidtif there is a constart such that tWG) < c for everyG € §. For more
background on treewidth and its applications, the reader is referrdd38, [3].

Minors and embeddingsA graphH is aminor of G if H can be obtained fror® by a sequence
of vertex deletions, edge deletions, and edge contractions. The following alternative definition will be
more relevant to our purposes. A&mbeddingf H into G is a mappingy from V(H) to connected
subsets ofG such that ifu,v € V(H) are adjacent, then either(u) N y(v) # 0 or there is an edge

Lit is unfortunate that some communities use the notion “binary CSP” in the sense that each constraint is binary (as this
paper), while other communities use it in the sense that the variables are 0-1, i. e., the domain size is 2.
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connecting a vertex of/(u) and a vertex ofy(v). Thedepthof a vertexv of G is the size of the set
{ueV(H)|ve y(u)} and the depth of the embedding is the maximum of the depths of the vertices.
It is easy to see that is a minor ofG if and only if H has an embedding of depth 1 in® i.e., the
images are disjoint.

In an equivalent way, we can use minors to define embeddings of a certain depth. Given &@ graph
and an integeq, we denote byz(¥ the graph obtained by replacing every vertex with a clique ofgize
and replacing every edge with a complete bipartite grapp-oq vertices. It is easy to see thdthas an
embedding of depth into G if and only if H is a minor ofG(¥. The mappingp that maps each vertex
of G to the corresponding clique &® will be called theblow-upmapping fromG to G(¥,

3 Embedding in a graph with large treewidth

If H is a graph witm vertices, then obviousli has an embedding of deptlinto any (nonemptyd. If

G has a clique of sizk, then there is an embedding with depth at my$&t Furthermore, even & does

not have &-clique subgraph, but it does havé&lique minor, then there is such an embedding with
depth at mosh/k. Thus ak-cligue minor increases the “embedding power” of a graph by a factkr of

The main result of the section is that large treewidth implies a similar increase in embedding power. The
following lemma states this formally:

Theorem 3.1. There are computable functiong(®), f»(G), and a universal constant ¢ such that for
every k> 1, if G is a graph withtw(G) > k and H is a graph withE(H)| = m > f1(G) and no isolated
vertices, then H has an embedding into G with depth at mostogk/k]. Furthermore, such an
embedding can be found in timg(@&)m°W.

Using the equivalent characterization by minors, the conclusion of Thedremeans thaH is a
minor of G for g = [cmlogk/k]. In the rest of the paper, we mostly use this notation.

The valuecmlogk/k is optimal up to @(logk) factor, i.e., it cannot be improved tdm/k). To
see this, observe first that G@) = O(q- tw(G)) (cf. [29]). We use the fact that the treewidth of a
graphH with medges can b@(m) (e. g., bounded-degree expanders). Therefore,(iBw= k, then the
treewidth ofG@ for g = o(m/k) is o(m), making it impossible that is a minor ofG(@. Furthermore,
Theorem3.1does not remain true ihis the number of vertices &1 (instead of the number of edges).
Let H be a clique orm vertices, and leG be a bounded-degree graph ©tk) vertices with treewidth
k. Itis easy to see thaB(@ hasO(q?k) edges, henckl can be a minor o6(@ only if g’k = Q(n?),
that is,g = Q(m/+v/k). Note that it makes no sense to state in this form an analog of Thebfenhere
m is the number of vertices dil: the worst case happenshHif is anm-clique, and the theorem would
become a statement about embedding cliques. The requiremerii(G) is a technical detail: some of
the arguments in the embedding technique requirés be large.

The graphL(Ky), i.e., the line graph of the complete graph plays a central role in the proof of
Theorem3.1 The proof consists of two parts. In the first part (Secfial), we show that if tWG) > Kk,
then a blow-up olL(K) is a minor of an appropriate blow-up &. This part of the proof is based
on the characterization of treewidth by balanced separators and uses a result of FeigedpbaltHe
linear programming formulation of separation problems. Similar ideas were usg€]irs¢me of the
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arguments are reproduced here for the convenience of the reader. In the second part S2ctien
show that every graph is a minor of an appropriate blow-ulp(&).

3.1 EmbeddingL(Ky) in G

Given a nonempty s&V of vertices, we say that a sBbf vertices is ealanced separatofwith respect
toW) if WNC| < |W|/2 for every connected compondhibf G\ S. A k-separator is a separatdwith
|S| < k. The treewidth of a graph is closely connected with the existence of balanced separators:

Lemma 3.2 ([39], [18, Section 11.2]).

1. If graph G has treewidth greater thask, then there is a set W V(G) of size2k+ 1 having no
balanced k-separator.

2. If graph G has treewidth at most k, then everyWW (G) has a balancedk + 1)-separator.

A separatioris a partition of the vertices into three clas$asB, S) (S# 0) such that there is no edge
betweenA andB. Note that it is possible tha& = 0 or B = 0. Thesparsityof the separatiofA, B, S)
(with respect taV) is defined as

w S

T (ABS = 1R Tg AW | (BUS W]
We denote byx"V(G) the minimum ofaV (A, B, S) taken over every separati¢A, B, S). It is easy to see
that for everyG and nonemptyV, 1/|W|? < aW(G) < 1/|W/| (the second inequality follows from the
fact that the separatiqiv (G) \ W, 0,W) has sparsity exactly/IW|). For our applications, we need a set
W such thatxV (G) is close to the maximum possible, i. 2(1/|W|). The following lemma shows that
the non-existence of a balanced separator can guarantee the existence of sWgh arsetonnection
between balanced separators and sparse separations is well known, see for ex&nfdetjon 6].
However, in our parameter setting a simpler argument is sufficient.

Lemma 3.3.1f |W| = 2k-+1and W has no balanced k-separator in a graph G, th#f{G) > 1/(4k+1).

Proof. Let (A,B,S) be a separation of sparsity’(G); without loss generality, we can assume that
IANW| > [BNW]|, henceBNW/| < k. If |§ >k, thena™W (A, B,S) > (k+1)/(2k+1)? > 1/(4k +

1). If |S > [(BUS NW|, thenaV (A B,S) > 1/|(AUS)NW| > 1/(2k+1). Assume therefore that
[(BUS)NW| > |9 +1. LetS be a set ok— |S| > 0 arbitrary vertices oV \ (SUB). We claim that
SU S is a balancedt-separator o¥V. Suppose that there is a compon€rdf G\ (SU S) that contains
more thark vertices ofW. ComponentC is either a subset ok or B. However, it cannot be a subset
of B, since|BNW/| < k. On the other hand(A\ S)NW]| is at most R+1— |[(BUS NW|—[S]| <
2k+1—(]9+1)—(k—1|9) <k O

Remark 3.4. Lemma3.3does not remain true in this form for largét. For example, leK be a clique
of size X+ 1, let us attaclk degree one vertices to a distinguished verte{ K, and let us attach a
degree one vertex to every other vertexikof Let W be the set of thesekddegree one vertices. It is
not difficult to see thatv has no balanceki-separator. On the other harfsl= {x} is a separator with
sparsity ¥ (k- 3k), henceaxV (G) = O(1/k?).
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LetW = {wi,...,w; } be a set of vertices. Boncurrent vertex flow of valueis a collection ofW/|?
flows such that for every ordered pdir,v) € W x W, there is a flow of value betweeru andv, and
the total amount of flow going through each vertex is at most flo betweeru andv is a weighted
collection ofu— v paths. Au— v path contributes to the load of vertaxof vertexv, and of every vertex
betweeru andv on the path. In the degenerate case whenv, vertexu = v is the only vertex where
the flow betweem andv goes through, that is, the flow contributes to the load of only this vertex.

The maximum concurrent vertex flow can be expressed as a linear program the following way. For
u,veW, let Py, be the set of all — v paths inG, and for eaclp € P, let variablep”’ > 0 denote the
amount of flow that is sent fromto v along p. Consider the following linear program:

maximizee
s. t.
pvv>e vu,veWw
pETuv
pv¥<i YweV (LP1)
(u,v)EW XW pePy:wep
pv>0 vu,veW,pe Py
The dual of this linear program can be written with variallég }uvew and{s, }vev the following way:
minimize § s,
%
s. t.
Sw > luy Yu,ve W, p e Pyy (%)
wWEp
o> 1 () (LP2)
(u,v)EWxW
lyw=>0 Yu,veWw
sy >0 YweV

We show that, in some sense, (LP2) is the linear programming relaxation of finding a separator with
minimum sparsity. If there is a separatiph B, S) with sparsitya'V (A, B,S), then (LP2) has a solution
with value at mosx'V(A,B,S). Sets, = aV(A,B,9)/|S if ve Sands, = 0 otherwise; the value of
such a solution is clearlgV (A B,S). For everyu,vc W, setfy,, = MiNpep,, Y wepSw t0 ensure that
inequalities (*) hold. To see that (**) holds, notice first tiat > oV (A, B,S)/|S if uc AUS ve BUS,
as everyu— v path has to go through at least one vertexsofurthermore, ifu,v € Sandu # v, then
fw > 2™ (A B,S)/|S since in this case a— v paths meetSin at least two vertices. The expression
[((AUS) NW]| - |(BUS)NW)| counts the number of ordered paits V) satisfyingu € (AUS)NW and
v e (BUS)NW, such that pairs witli,v € SNW, u # v are counted twice. Therefore,

W
Loy > (|(AUS)NW| - [(BUS) NW) - o (ABS _ 1,
(u,v)EW W ’S|
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which means that inequality (**) is satisfied.

The other direction is not true: a solution of (LP2) with valm&oes not imply that there is a sepa-
ration with sparsity at most. However, Feige et al1f] proved that it is possible to find a separation
whose sparsity is greater than that by at mo8{ kg |W|) factor (this result appears implicitly already
in [34)):

Theorem 3.5 (Feige et al. 16], Leighton and Rao [34]). If (LP2) has a solution with valuer, then
there is a separation with sparsity(@log|W/).

We use (the contrapositive of) Theorénhd to obtain a concurrent vertex flow in a graph with large
treewidth. This concurrent vertex flow can be used to find.@€x) minor in the blow-up of the graph
in a natural way: the flow paths correspond to the edgés of

Lemma 3.6. Let G be a graph withw(G) > 3k. There are universal constantg,c, > 0 such that
L(Ky)([c1loan]) s a minor of G[¢2!09mklogkl) \where n is the number of vertices of G.

Proof. SinceG has treewidth greater thark,30y Lemma3.2, there is a subsétp of size X+ 1 that
has no balancek-separator. By Lemma.3, a"%(G) > 1/(4k+ 1) > 1/(5k). Therefore, Theorer.5
implies that the dual linear program (LP2) has no solution with value less th@gSklog(2k + 1)),
wherecy is the constant hidden by the b@notation in Theoren3.5. By linear programming duality,
there is a concurrent flow of value at least= 1/(co5klog(2k + 1)) connecting the vertices &fp; let
p"' be a corresponding solution of (LP1).

LetW C W be a subset df vertices. For each pair of verticés,v) € W x W, let us randomly and
independently choosgnn] pathsR, v, - .., Ry inn) Of Puy (here In denotes the natural logarithmndf
where pathp is chosen with probability

pUV < &m/
Spern PV T«

That is, we scale the valugs" to obtain a probability distribution. The inequality above is true
because the valugs? satisfy (LP1). The expected number of times a pptha Py, is selected is
[Inn]- (pY/ 3 yenp,, (P)Y) < [Inn] - p*/a. Thus the expected number of paths selected fRypthat
go through a vertexv is at mostfInn| - 5 ,cp -wep P*/a. Considering that we sele¢tnn| paths
for every pair(u,v) € W x W, the expected numbeu, of selected paths containing is at most
[InN] -3 wvjewxw 3 pepuwep PP/ @, which is at mostinn] /e, since the valueg" satisfy (LP1). We
use the following standard Chernoff bound: for every uy, the probability that more tham, +r of the
k?Inn paths contain vertew is at most(uwe/r)". Thus the probability that more thag, +10[Inn] /a <
11[Inn]/a of the paths contaimw is at most(uwe/ (10[Inn] /e))20Mnl/@ < (1/€)10M = 1/n10 (in the
exponent, we usefinn|/a > Inn, since it can be assumed thgt> 1 and Im > 1). Therefore, with
probability at least - 1/n, each vertexw is contained in at mogf := 11]Inn/o] paths. Note that
g < [czlogn-klogk], for an appropriate value @b.

Let ¢ be the blow-up mapping froi to G(%. For each patR,y; in G, we define a patR),,; In G,

u,v,i

LetRyyi = p1p2...pr- The pat L’,Mi we define consists of one vertex@fp; ), followed by one vertex
of ¢(p2), ..., followed by one vertex op (p;). The vertices are selected arbitrarily from these sets, the

only restriction is that we do not select a vertexGf) that was already assigned to some other path
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Ry Since each vertew of G is contained in at mos} paths, theg vertices of¢ (w) are sufficient to
satisfy all the paths going through Therefore, we can ensure that #féInn] pathsP,,; are pairwise
disjoint in G,

The minor mapping fronk (Ki) ("D to G(@ is defined as follows. Lets be the blow-up mapping
from L(Kx) to L(Ki) (™D, and letvyy 5y, Vi1 ..., Vik_1x be the(5) vertices ofL(Ky), wherevy, i,
andvyj, j,) are adjacent if and only ifiz, i} N {j1, j2} # 0. LetW = {wy,...,wi}. The[lnn] vertices
of y(v;,;) are mapped to thénn] pathst’vi’Wjﬁl, P\fw,wj,nnnr Clearly, the images of the vertices are
disjoint and connected. We have to show that this minor mapping maps adjacent vertices to adjacent
sets. Ifx € y(vi, j,) andx’ € y(vj, j,) are connected ib(Ky)("""), then there is &€ {i1,i2} N {j1, j2}-
This means that the paths corresponding tmdx both contain a vertex of the cliquig(w) in G(9,
which implies that there is an edge connecting the two paths. O

Vi

With the help of the following proposition, we can make a small improvement on LeBénghe
assumption t{G) > 3k can be replaced by the assumptiorf®y > k. This will make the result more
convenient to use.

Proposition 3.7. For every k> 3, > 1, L(Kq) is a subgraph of U<k)(2q2)_

Proof. Let ¢ be a mapping from{1,...,qgk} to {1,...,k} such that exactlg elements of 1,...,qk} are
mapped to each element i, ..., k}. Letvy, ;) (1 <iy <iz < gK) be the vertices of (Kqk) andut{im}

(1<iy <ip <k 1<t < 20?) be the vertices df (Ky) %), with the usual convention that two vertices are
adjacent if and only if the lower indices are not disjoint. gt ;,, be the cquuQu‘il‘iz} 1<t <2¢°}.
Let us consider the vertices bfKqk) in some order. 1% (i1) # ¢(i2), then vertexv{'il?iz} is mapped to

a vertex ofUyyi,) 4(,)y that was not already used for a previous vertexp(if) = ¢ (i2), thenv; ;,, is
mapped to a verted i) 4(i;)+1y (Where addition is modulk). It is clear that if two vertices df (Kq)
are adjacent, then the corresponding verticds(&f()(zqz) are adjacent as well. We have to verify that,
for a giveniy, iz, at most 2 vertices ofL(Kq) are mapped to the cliqué, i,;. As [¢~*(i1)| and
|¢—1(i,)| are bothg, there are at mos§? verticesvyj, i,» With ¢(j1) = i1, ¢(j2) = i2. Furthermore,

if i, =1i1+ 1, then there ar¢}) < ¢ additional vertices/g, ;,y with ¢(j1) = ¢(j2) = i1 that are also
mapped tdJ;, j,;- Thus at most & vertices are mapped to each clidug, ;- O

Setk’ := 3k+1 < 4k. Using Prop.3.7 with q = 4, we get that (K )([¢1109"/32) s a subgraph of
L(Ky)([etlogn) | Thus if tw(G) > K/, then we can not only find a blowup bfK), but even a blowup of
L(Ky). By replacingk’ with k, Lemma3.6 can be improved the following way:

Lemma 3.8. Let G be a graph withw(G) > k. There are universal constantg,c; > 0 such that
L(Ky){[e1'°9M) s a minor of Gl¢2!09mklogk]) "where n is the number of vertices of G. O

3.2 EmbeddingH in L(K)

As the second step of the proof of Theor8m, we show that every (sufficiently large) graphis a
minor of L(Ky)(@ for g = O(|E(H)|/K?).
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Lemma 3.9. For every k> 1 there is a constanty= O(k*) such that for every G witfE(G)| > nx and
no isolated vertices, the graph G is a minor @K)(@ for q = [130E(G)|/k?]. Furthermore, a minor
mapping can be found in time polynomial in g and the size of G.

Proof. We can assume thiat> 5: otherwise the result is trivial, since the graphas less thaqg vertices
andL (Ky)@ contains a clique of sizg First we construct a grapghl of maximum degree 3 that contains
G as a minor. This can be achieved by replacing every vertéhG with a path ord(v) vertices (where
d(v) is the degree of in G); now we can ensure that the edges incidentuse distinct copies of from
the path. The new grap® has exactly fE(G)| vertices.

We show thatG', henceG, is a minor ofL(Ky)@. Take an arbitrary partition of (G') into (';)
classed/; j (1 <i < j <k)suchthafV j| < [v|/(5)] for everyi, . Letvg jy (1<i< j<k)bethe
vertices ofL(K), and let¢ be the blow-up mapping from(Ky) to L(Ky)(@.

The minor mappingy from G’ to L(Ky)(@ is defined the following way. First, ifi € Vii jy» then let
y(u) contain a vertexi from ¢ (vy; ;). Observe that if edgeconnects vertices; € Vjj, j,3, Uz € Vi, j,)
and{iy, j1} N{i2, j2} # 0 holds, theru; andu, are adjacent. In order ty be a minor mapping, we
extends the setg(u) to ensure that the endpoints @are mapped to adjacent sets evex(jf ;,, and
Vii,. i,y have disjoint indices.

Fix an arbitrary orientation of each edge®f For every quadruplé, j1,i2, j2) of distinct values
with iy < jg,12 < jo, letE, j, i, j, be the set of edges going from a verteXgf j,, to a vertex o, 1.

Let us partition the s, j, i,,j, iNtok—4 cIasseEﬁ7j17i21j2 (€ e{1,...k}\{i1, j1,i2, J2}) in an arbitrary
way such thatE ; i, .| < [|Ei,j,i.j|/(k—4)]. For each edgéWe E/ ; ; ;. we add a vertex of

¢ (Vii,,0p) to w(u) and a vertex of (vy;, 1) to y(w); these two vertices are neighbors with each other
and they are adjacent toahdw, respectively. This ensures thatu) and y(v) remain connected and
there is an edge betweer(u) and y(w). Repeating this step for every edge ensureshita minor
mapping.

What remains to be shown is that the s¢(s(,,;) are large enough so that we can ensure that no
vertex ofL(Ky)(@ is assigned to more than omgu). Let us count how many vertices ofvixy) are
used when the minor mapping is constructed as described above. First, the image of eaahivertex
Vixy} Uses one verted 6f ¢ (vyy ) ); together these vertices use at mgg [ < [IV(G)|/ (5)1 vertices
from ¢ (vixyy). Furthermore, as described in the previous paragraph, for some quadiyples:, j2)
and integer/, each edge oE{le’iz,j2 requires the use of an additional vertex frartv,,,). More
precisely, this can happen onlydf= x andy € {i, j1,i2, j2} or £ =y andx € {i, j1,i2, j2}. Thus the
total number of vertices used frogvyy, ) is at most

V@ (N S Bt Y B

xe{i1,j1iz,j2} ye{it,jiz,j2}

V@ () + 1+ B/ kAT S Bl 4]

xe{i1, ]z, 2} ye{it,j1,i2,j2}
K
V@I () + S Eunsl/ k-t S (Bl 442
xe{it, 12,2} ye{it,jiz,j2}
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(The term X* generously bounds the rounding errors, since it is greater than the number of terms in the
sums.) The first sum counts only edges incident to some verteéy pfwith x € {i, j} and each edge

is counted at most once. Since each vertex has degree at most 3, the number of such edges is at most
3% xeqi.jy [Vii.jy |- Thus we can bound the first sum bk3- 1)[|V(G')|/(§)1/(k—4) < 12[[V(G)|(5)]

(here we us& > 5). A similar argument applies for the second sum above, hence the number of vertices
used from¢ (v, ) can be bounded as

V(G)|/ (;) +24[V(G)|/ <;>l +2k* <25V (G)|/ (;) +2k*+24< 26V (G)|/ (;)
=52V(G))|/(k(k—1)) < 65V (G)| /K = 130E(G)| /K < q,

what we had to show (in the second inequality, we usedYh@')| = 2|E| > ng is sufficiently large; in
the third inequality, we used thkt> 5 impliesk/(k— 1) < 5/4). O

Putting together Lemma.8 and Lemm&B.9, we can prove the main result of the section:

Proof (of Theoren®.1). Letk:=tw(G), n:= |V(G)|, andf1(G) := ng+k?c; logn, wheren is the con-
stant from Lemm&.9 andc; is the constant from Lemma8. Assume thatE(H)| =m> f1(G). By
Lemma3.9, H is a minor ofL(Ky)@ for q:= [130m/k?] and a minor mappings; can be found in
polynomial time. Letq := [q/[cilogn]]; clearly, H is a minor ofL(Ky)@/c0anD)  Observe tham
is large enough such that 18pk? > 1 andg/[cilogn] > 1 holds, hence < ¢’ -m/(k?-logn) for an
appropriate constaut.

By Lemma3.8, L(Ky)([%'°9"]) is a minor ofG(I¢2!o9mklogkl) and a minor mapping, can be found
in time f,(G) by brute force, for some functiofip(G). Therefore,L(Ky)@[%'°09") is a minor of
G(d[ezlognklogk]) gnd it is straightforward to obtain the corresponding minor mapgiérom .. We
can assumezlogn-klogk > 1, otherwise the theorem automatically holds if wecsstfficiently large.
Sinceq/[czlogn-klogk] < ¢ -m/(k?-logn) - (2czlogn- klogk) < cmlogk/k for an appropriate constant
¢, we have thaH is a minor of GI°M°9k/kl  The corresponding minor mapping is the composition
y3 0 yp. Observe that each step can be done in polynomial time, except the application of l3e&ma
which takesf,(G) time. Thus the total running time can be bounded£G)m°P). O

4 Complexity of binary CSP

In this section, we prove our main result for binary CSP (Theateh The proof relies in an essential
way on the so-called Sparsification Lemma for 3SAT:

Theorem 4.1 (Impagliazzo, Paturi, and Zane $1]). If there is a2°(™ time algorithm for m-clause
3SAT, then there is 2°(" time algorithm for n-variable 3SAT.

The main strategy of the proof of Theordn?2is the following. First we show that a 3SAT formuja
with mclauses can be turned into a binary CSP instamdesizeO(m) (Lemma4.2). By the embedding
result of Theoren8.1, for everyG e G, the primal graph of is a minor ofG(@ for an appropriate.
This implies that we can simulatewith a CSP instanc€ whose primal graph i€ (Lemma4.3 and
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Lemma4.4). Now we can use the assumed algorithm for GBR¢ solve instancé’, and thus decide
the satisfiability of formulap. If the treewidth ofG is sufficiently large, then the assumed algorithm
is much better than the treewidth based algorithm, which translates ift®a®jorithm for the 3SAT
instance. By Theorem. 1, this means that-variable 3SAT can be solved in timé&®, i.e., ETH fails.

Lemma 4.2. Given an instance of 3SAT with n variables and m clauses, it is possible to construct in
polynomial time an equivalent CSP instance with m variables,3m binary constraints, and domain
size3.

Proof. Let ¢ be a 3SAT formula witm variables andn clauses. We construct an instance of CSP as
follows. The CSP instance contains a variablél < i < n) corresponding to thieth variable of¢p and a
variabley; (1 < j <m) corresponding to th¢-th clause ofp. LetD = {1,2,3} be the domain. We try to
describe a satisfying assignmentgoivith thesen+ mvariables. The intended meaning of the variables
is the following. If the value of variablg is 1 (resp., 2), then this represents thatitile variable of

¢ is true (resp., false). If the value of variabjgis ¢, then this represents that theh clause of¢ is
satisfied by itg-th literal. To ensure consistency, we add Gonstraints. Let K j <mand 1</ < 3,

and assume that tifeth literal of thej-th clause is a positive occurrence of tié variable. In this case,
we add the binary constraifi, = 1Vy; # ¢): eitherx; is true or some other literal satisfies the clause.
Similarly, if the ¢-th literal of the j-th clause is a negated occurrence ofittievariable, then we add the
binary constraintx, = 2Vvy; # ¢). Itis easy to verify that i} is satisfiable, then we can assign values
to the variables of the CSP instance such that every constraint is satisfied, and conversely, if the CSP
instance has a solution, theris satisfiable. O

If G1is a minor ofG,, then an instance with primal gra@ can be easily simulated by an instance
with primal graphG,: each variable o634 is simulated by a connected set of variableinthat are
forced to be equal.

Lemma 4.3. Assume that Gis a minor of G. Given a binary CSP instance Wwith primal graph G
and a minor mappingy from G, to G, it is possible to construct in polynomial time an equivalent
instance 3 with primal graph G and the same domain.

Proof. For simplicity, we assume that bo@y andG, are connected; the proof can be easily extended
to the general case. @, is connected, then we can assume tpds onto. For each paifx,y) such
thatxy is and edge 06,, we add a constraint as follows. yf~1(x) = y~1(y), then the new constraint
is ((x,y),{(t,t) |t € D}). If y~1(x) # w~1(y) and there is a constraifity —1(x), w1(y)),R), then the
new constraint ig(x,y), R}). Otherwise, the new constraint(i&,y),D x D}). Clearly, the primal graph
of l» is Go.

Assume that; has a solutiorf; : Vi — D. Then fo(v) = fi(y~%(v)) is a solution ofl,. On the
other hand, il has a solutiorf, : V, — D, then we claim thaf,(x) = fo(y) holds if y~1(x) = y=1(y).
This follows from the way we defined the constraintsipfind from the fact thaty/(x) is connected.
Therefore, we can definf : V3 — D asfi(v) = f2(V), whereV is an arbitrary member af(v). To see
that a constraint; = ((u,v),R) of |1 is satisfied, observe that there is a constréint V'), R;) in I, for
somelu’ € y(u), V € y(v). This means thatf;(u), f1(v)) = (f2(U), f2(V)) € R, hence the constraint is
satisfied. O]
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An instance with primal grap(@ can be simulated by an instance with primal gré&phi we set
the domain to be thg-tuples of the original domain.

Lemma 4.4. Given a binary CSP instance + (Vi,D1,C;) with primal graph G% (where G has no
isolated vertices), it is possible to construct (in time polynomial in the size afutp) an equivalent
instance 3 = (V,, D2,C;) with primal graph G andD,| = |D4|°.

Proof. Let y be the blow-up mapping fror® to G@ and letD, = D?, i.e., Dy is the set ofg-tuples
of D1. For everyv € V,, there is a natural bijection between the elementSpénd the|D1|% possible
assignments : y(v) — D1. For each edge,v, of G, we add a constraim, v, = ((V1,V2), Ry, v,) tol2 as
follows. Let(x1,X2) € D2 x D2. Fori = 1,2, letg; be the assignment af(v;) corresponding ta; € D».
The two assignment together define an assignmemt(v1) U y(v2) — D on the union of their domains.
We define the relatioi®,, v, such that(xi,x2) is a member oR,, , if and only if the corresponding
assignmeng is a solution of the induced instantey(v1) U y(v2)].

Assume that; has a solutiorf; : Vi — Dj. For every € \,, let us definef,z(v) to be the member of
D, corresponding to the assignmehtrestricted toy(v). Itis easy to see thd is a solution ofl,: this
follows from the trivial fact that for every edgev, in G, assignmenf; restricted toy(v1) U y(v2) is a
solution ofly [y (v1) U yw(v2)].

Assume now thalk has a solutiorf, : V, — D,. For every € Vy, there is an assignmefit: y(v) —
D; corresponding td;,(v). These assignments together define an assignfae; — D;. We claim
that f; is a solution ofl;. Letcyy = ((u,v),R) be an arbitrary constraint ¢f. Assume that € y(U')
andv e y(V). If U #V, thenuV is an edge of5, hence there is a corresponding constraing in |».
The waycy v is defined ensures thét restricted toy (U') U y(V) is a solution ofl1 [y (Uu) U yw(V)]. In
particular, this means thayy is satisfied inf;. If U’ =V, then there is an edgéw in G (sinceG has no
isolated vertices), and the corresponding constiintensures thaf; satisfiesc . O

Now we are ready to prove the main result:

Proof (of Theorem..2). Assume that there is an algorithivwith running timef (G) || || W(C)/(logtW(G)-1(tw(G)))
wheret is an unbounded function. We can assume thiatnondecreasing and1) > 1. We present

a reduction from 3SAT to CSB) such that this reduction, together with the assumed algorithior
CSRS), gives an algorithnB that is able to solven-clause 3SAT in time 2™. Lemma4.2, Theo-
rem3.1, and Lemmasgl.3and4.4 show a way solving 3SAT by reducing it to a CSP instance having a
particular primal grapl. A crucial point of the reduction is how to select an appropratieom S.

The higher the treewidth db, the more we gain in the running time. Howewv@rhas to be sufficiently
small such that some additional factors (such as the time spent on fi@jlarg not too large.

Given anm-clause 3SAT formula and a graphG € G, algorithm A can be used to decide the
satisfiability of¢ the following way. By Lemmal.2, ¢ can be turned into a binary CSP instahceiith
O(m) constraints and domain size 3. llétbe the primal graph dfi. For simplicity, we assume th&
has no isolated vertices as they can be handled in a straightforward way. By Tharétns a minor
of G for g = O(mlogk/k) and we can find a minor mapping in time f2(G)m°Y. Therefore, by
Lemma4.3 |I; can be turned into an instantewith primal grath(q>, which, by Lemmat.4, can be
turned into an instandg with primal graphG and domain size®8 Now we can use algorithr to solve
instancds.
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We will call “running algorithmA[¢, G]” this way of solving the 3SAT instanag. Let us determine
running time ofA[¢,G]. The two dominating terms are the time required to find the minor mapping
from H to G(@ and the time required to ruf on I3. Note that||13|| = O(|E(G)|3%9): there ardE(G)|
constraints and each binary constraint contains at nfos293pairs. Letk be the treewidth o5. The
total running time ofA[¢, G] can be bounded by

f2(G)MPD 4 £(G)||I3]|</109k1K) = £,(G)MPW + £(G)|E(G)|K/ogk1(4) . 32ak/(logk(k)
= f(G)mPW . 20(ak/(logk1(K) — f(G)mP(L) . 20(m/1(k))

for an appropriate functiofi(G).

Let us fix a computable enumerati@y, G, ... of the graphs in5. Given anm-clause 3SAT
formula ¢, we first spenan steps to enumerate graphs fr@mlet G, (for somel < m) be the last graph
enumerated (we assume timats sufficiently large that > 1). Next we start simulating the algorithms
Alg,G1], Al9,Gy, ..., Alg,G/] in parallel. When one of the simulations stops and returns an answer,
then we stop all the simulations and return the answer. Itis clear that this algorithm will correctly decide
the satisfiability ofg.

We claim that there is a universal const@xduch that for everg, there is anms such that for every
m > ms, the running time oB is (m- 2”“/3)C on anm-clause formula. Clearly, this means that the running
time of B is 20(M

Let ks be the smallest positive integer such thd) > s (ast is unbounded, this is well defined).
Letis be the smallest positive integer such that®y) > ks (as$ has unbounded treewidth, this is also
well defined). Setn sufficiently large thatms > f(Gis) and the enumeration ¢f reachess;, in less
thenms steps. This means that if we riBhon a 3SAT formulap with m > ms clauses, ther\[¢,G; |
will be one of thel simulations started b. The simulation ofA[¢, G;,] terminates in

f(GiS)mO(l) . 20(M/1(tw(Gis))) — . mP@ . 20(m/s)

steps. Taking into account that we simuldtg m algorithms in parallel and all the simulations are
stopped not later than the terminationoip, G, |, the running time o3 can be bounded polynomially
by the running time ofA[¢,G;,]. Therefore, there is a consta@tsuch that the running time @& is
(m-2"S)C as required. O

5 Complexity of homomorphism

The aim of this section is to extend Theorén? in the framework of the homomorphism problem
for relational structures, which is a standard way of studying CSP in the theoretical literature. As we
shall see, in this formulation the complexity of the problem depends on the treewidth of the core of the
left-hand side. Furthermore, as i&7], we state the result only for bounded-arity relational structures.

Let us recall the standard definitions of the homomorphism problem {8e27]). A vocabularyr
is a finite set of relation symbols of specified arities. Hhni¢y of 7 is the maximum of the arities of all
relational symbols it contains. A-structureA consists of a finite sei called the universe ok and for
each relation symbdR € 7, say, of arityk, ak-ary relationR* C AX. We say that a clas® of structures
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is of bounded arityif there is a constant such that the arity of the vocabulary of every structur€ in
is at mostr. A homomorphisnfrom a t-structureA to a t-structureB is a mappingh : A — B from
the universe oA to the universe oB that preserves all relations, that is, for RIE 7, say, of arityk,
and all tuples(ay, ..., ax) € R" it holds that(h(ay),...,h(a)) € RB. Let||A|| denote the length of the
representation of. We assume thatA|| = O(|z| + |A| + Sre. |RY| - arity(R)) for a z-structureA with
universeA.

A substructureof a relational structurd is a relational structur® over the same vocabulanryas
A whereB C A andRB C R” for all Re 1. If B is a substructure of, butA # B, thenB is aproper
substructureof A.

The notion of treewidth can be defined for relational structures the following wayeeAdecom-
positionof a t-structureA is a pair(T,X), whereT = (I,F) is a tree, anK = (X)i¢| is a family of
subsets of A such that for eaBre 7, say, of arityk, and eaclfay, ..., ay) € R* there is a nodec | such
that{ay,...,a} C X;, and for eacla € A the set{i € | | a€ X} is connected ifT. Thewidth of the
decompositior{T, X) is max{|X;| |i € 1} —1, and thdreewidthof A, denoted by tyA ), is the minimum
of the widths of all tree decompositions Af

Theprimal graphof a structured with vocabularyr is a graph with vertex sé& where two elements
a,a’ € Aare connected if and only if there is a relational symiRal 7, say, of arityk, such thaR has
atuple(ay,...,a) € Rwith @,a’ € {ay,...,a}. It can be shown that the treewidth of the primal graph
of A equals the treewidth @k.

A coreof a relational structurd is a substructurd’ of A such that there is a homomorphism from
A to A’, but there is no homomorphism frofnto a proper substructure &f. We say that a relational
structureA is acoreif it is its own core. It is well-known that the every relational structdrbas a core
and the cores oA are isomorphic with each other. Let us denote by(étihe treewidth of the core of
A.

Given a CSP instande= (V,D,C), one can construct in polynomial time two relational structures
A andB with universeV andD, respectively, such that the solutionslaforrespond to the homomor-
phisms fromA to B. Thus the homomorphism problem of relational structures generalizes constraint
satisfaction. Formally, in the homomorphism problem the input is a(#aiB) of relational structures
and the task is to decide whether there is a homomorphism A&dthe left-hand side structu)eto B
(theright-hand side structupe If A andB are two classes of relational structures, then we denote by
HOM(A, B) the restriction of the homomorphism problem whére A andB € B. We denote by the
symbol— the class of all relational structures. Thus HOM—) restricts the structure of the constraints,
while HOM(—, B) restricts the constraint language.

If ctw(A) <k, then the decision version of the homomorphism problanB) can be solved in time
n®K [27, 11] (wheren s the length of the input, which B(||Al| 4 ||BJ|)). The main result of this section
is that there is no clasé of structures such that HOM., —) can be solved significantly faster:

Theorem 5.1. Let.A be a recursively enumerable class of bounded-arity relational structures such that
the treewidth of the core is unbounded. If HOM —) can be decided in time(A)||B||O(CW(A)/logctw(A))
where f is an arbitrary function, then ETH fails.

Proof. Let A be a class of relational structures of maximum arjfyx. Let G be the class of graphs
containing the primal graph of the core of every structire A. Clearly,§ has unbounded treewidth
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and it is not difficult to show tha§ is recursively enumerable. We use the assumed algorithm for
HOM(A, —) to construct an algorithm for C$®) that contradicts Theoref2.

Since A is recursively enumerable, there is an algorithm that, givéha§, outputs a structure
Ag € A such thaG is the primal graph of the core #f. Letg(G) be the running time of this algorithm
with input G; clearly, ||Ag|| < 9(G). Letl = (V,D,C) be an instance of binary CSP with primal graph
G e §. Let Ag € A be a structure whose cofg) has primal grapls. (From now on, we us¥ both
for the set of variables of instan¢eand for the universe oAg.) Let t be the vocabulary oAg. We
construct ar-structureB as follows. The universB of BisV x D. LetR e 7 be a relation symbol of
arity r and letR*° be the corresponding relation &y. To construct the relatioRE, let us enumerate
ther-tuples ofR*, and for eachvy,...,v) € RAo C V', let us enumerate the solutions of the induced
instancel [{vy,...,%}]. If (vi,...,%) € R* and f is a solution ofl [(vy,...,v}], then let us add the
r-tuple ((vg, f(v1)),..., (v, f(%)) to RB. This completes the description of the relatigh and the
structureB. Observe that the size & is at mostD'™ times the size oR*. Therefore, the size &
is (||Ao|||D])®"m=) and can be constructed in time polynomial in its size.

We show thatAg — B if and only if | has a solution. SincAg is the core ofAg, it follows that
Ag — B if and only if Ap — B. Therefore, the assumed algorithm for HOM —) can decide the
solvability of | in time

g(G)+ f(AG)||BHO(C'[W(Ag)/IOQC'[W(Ag)) _ g(G)—l— f(AG)HA ||0tW )/logtw(G |D]° (tw(G)/logtw(G))
< f(G) 1|/ 1oa e,

for an appropriate functiofi(G) (the last step follows from the fact th&fAg) and||Ao|| are functions
of G, and thaiD| < ||1]|). By Theoreml.2, this implies that ETH fails.

Assume first that has a solutionf : V — D. We claim thatg (v) = (v, f(v)) is a homomorphism
from Ap to B. Indeed, if(vq,...,v;) € R, thenf restricted to{v,...,V;} is obviously a solution of
I[{vs,...,%}], hence((vy, f(v1)),..., (W, f(%))) € RB by the deflnltlon ofRB.

Assume now thad is a homomorphlsm fromo to B. Let y be the projectiony((v,d)) = v from
V x D to V. Observe thaty is a homomorphism fromB to Ag. Therefore,y o ¢ is a homomorphism
from Ag to itself. SinceAq is core,y o ¢ is an isomorphism ofg. Thus we can assume thgto ¢ is
identity: otherwise let us replaage with ¢ o (o ¢)~L. If wo ¢ is the identity, then for every € V,
o(v) = (v, f(v)) for somef(v) € D. We claim that this functiorf : V — D is a solution ofl. Let
¢ = ((u,v),R) be an arbitrary constraint ¢f Sinceuv is an edge of the primal graph, there is an
R € 7 such thatR* has a tuple(vs,..., V) containing bothu andv. Therefore,(¢(v1),...,0 (%)) =
(v, f(v1)),..., (W, T(%))) € RB. By the definition ofR®, this means that restricted to{vy,...,v} is
a solution ofl [{vi, ..., }]. In particular, this means thédtsatisfies;. O

6 Complexity of subgraph problems

Subgraph Isomorphism is a basic graph-theoretic problem: given géapinsiH, we have to decide

if Gis a subgraph oH. That is, we have to find a injective mapping V(G) — V(H) such that ifu

andv are adjacent in the smaller gragh then¢(u) and ¢ (v) are adjacent in the larger graph In

the Colored Subgraph Isomorphism problem, the input contains a (not necessarily proper) coloring of
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the vertices oH, with the set of colors being the same as the set of vertic€ dthe task is to find a
subgraph mapping that satisfies the additional constraint that for eweeyV (G), the color of¢ (v) is
v. In other words, the vertices &f are partitioned intdV (G)| classes, and the image of each V (G)
is restricted to a distinct class of the partition.

It is not hard to observe that Colored Subgraph Isomorphism is essentially the same as binary CSP.
We can reduce an instante- (V,D,C) of binary CSP to Colored Subgraph Isomorphism the following
way. LetG be the primal graph of. We construct a grapH, whose vertex set 8 (G) x D, and the
color of (v,d) € V(G) x D is v. For every constrainf(u,v),R,,) € C and every pai(dy,dy) € Ry, we
add an edge connectirig,d,) and(v,dy,) to H. Note that this construction is very similar to the proof
of Theoremb5. 1

Suppose that : V — D is a satisfying assignment b&ind consider the mappingv) = (v, f(v)) for
everyv e V(G). Itis clear that respects the colors and it is subgraph mappingaifidv are adjacent in
G, then there is a corresponding constrdit v), R,y) € C, and the fact thatf (u), f(v)) € R,y implies
that ¢ (u) and¢(v) are adjacent. On the other hand, suppose ¢hiata subgraph mapping respecting
the colors. This means the first coordinatepo¥) is v; let f(v) be the second coordinate @fv). It is
straightforward to verify thaf is a satisfying assignment: for every constrdint v), Ry) € C, vertices
u andv are adjacent i by the definition of the primal graph, and hence the fact {baf (u)) and
(v, f(v)) are adjacent implies thaf (u), f(v)) € Ry

The reduction from binary CSP to Colored Subgraph Isomorphism implies that any lower bound for
the former problem can be transfered to the latter. Thus The@r2immplies the following result:

Corollary 6.1. If there is a recursively enumerable clag®f graphs with unbounded treewidth and an
arbitrary function f such that Colored Subgraph Isomorphism with the smaller graph G restricted to
being inG can be solved in time(G)n°(W(C)/109W(G)) then ETH fails.

It is known that there are infinite recursively enumerable cla§sekgraphs such that for every
G € G, both the treewidth and the number of edges@(p/ (G)|): for example, explicit constructions
of bounded-degree expanders give such classe<@. [Using this clasgj in Corollary6.1, we get

Corollary 6.2. If Colored Subgraph Isomorphism can be solved in tii@)°/109 where f is an
arbitrary function and k is the number efigesof the smaller graph G, then ETH fails.

Can we prove similar lower bounds for the more natural Subgraph Isomorphism problem (without
colors)? Unfortunately, the situation for Subgraph Isomorphism is much less understood. For example,
it is a major open question of parameterized complexity whethek-Bielique problem (given a graph
H and an integek, decide ifH contains & x complete bipartite subgraph) is fixed-parameter tractable,

i. e., can be solved in timé(k) - n°Y for some functionf depending only of. Without answering this
guestion, we cannot prove the analog of Corollad/for Subgraph Isomorphism.

However, there is a special where we can prove lower bounds. Recall that a@isatcoreif it
has no homomorphism to any of its proper induced subgraphs, that is, if a mappin@s) — V(G)
satisfies that)(u) and ¢ (v) are adjacent for every adjacamtv € V(G), then¢ is bijective. We show
that if G is a core, then the colored and uncolored versions are equivalent (essentially, we use the same
argument as in the proof of Theordiri). Consider an instance of Colored Subgraph Isomorphism with
smaller graptG and larger grapii. We can assume thatufv € V(G) are not adjacent, thef has no
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edge whose endpoints are coloredndyv, as such an edge could not be used in a solution. We claim
that if G is a core and there is a subgraph mapgirfgom G to H, then there is a subgraph mapping that
respects the colors. Lat(v) be the color ofp(v). If u,v e V(G) are adjacent, thef(u)¢(v) is an edge

whose endpoints have coloygu) and y(v), which means by our assumption thatu) and y(v) are
adjacent irH. AsH is a core,y is an isomorphism ofl. Now ¢ (y—(v)) is a subgraph mapping that
respects the colors. Therefore, the lower bounds for Colored Subgraph Isomorphism can be transfered
to the uncolored problem:

Corollary 6.3. Let§G be a recursively enumerable class of graphs with unbounded treewidth such that
every graph irG is a core. If there is an arbitrary function f such that Subgraph Isomorphism with the
smaller graph G restricted to being @ can be solved in time(G)n°(W(G)/109W(G)) then ETH fails.

To prove the analog of Corolla.2for Subgraph Isomorphism, we need a family of graphs that are
cores, sparse, and treewidth is linear in the number of vertices. The following lemma provides such a
family:

Lemma 6.4. There is a recursively enumerable family of grapBuch that every & G is a core, and
both the treewidth and the number of edges of G@&(®/ (G)|).

Proof. Let Gg be a family of bounded-degree expanders, such as the one given by Gabber and Galil
[22]. We will use the known result that the treewidth of such graphs is linear in the number of vertices
(cf. [29]). We can assume that the graphiare bipartite: subdividing every edge does not decrease
treewidth and increases the number of vertices only by a constant factor (as the graph has bounded
degree).

We will need the following auxiliary graphs. The graphhasn+ 2(n— 1) verticesy; (1 <i <n)
andu; 1, U2 (2 <i<n), edgesu; 1U; 2, Vili 1, Vili 2, Vit1Ui 1, Vi41Ui2 every 1<i <n-—1, and the edge
v1Vh. GraphTy, is not 3-colorable: in any 3-coloring, verticgsandyv;, 1 would get the same color, which
is impossible, ag; andv, are adjacent. Furthermore, it is easy to see that deleting any vertex makes
3-colorable. This immediately implies th&{ is a core: a homomorphism from to a proper induced
subgraph ofT, would map a non-3-colorable graph to a 3-colorable graph, which is impossible. Thus
every homomorphism dF, is an isomorphism. Moreover, it can be verified that any such isomorphism
mapsv; to v; for every 1<i <n.

For every (bipartite) grapBo € Go, we construct a grapB as follows. Letwvs, ..., w, be the vertices
of Gg. We attach a copy of the gragh,.1 to Gg by makingw; andv,; adjacent for every ¥i <n. It
is clear that the grap@® obtained this way is sparse and has treewidth linear in the number of vertices.
Thus the only thing we have to verify is th&tis a core. Note that every vertex ©f,,1 appears in a
triangle, and no other vertex & appears in a triangle (since we assumed @&istbipartite). Therefore,
any homomorphisng has to map the vertices db,,1 to vertices ofTo, 1. Therefore,¢ induces a
homomorphism offn, 1, which means thap (v;) = v; for every 1<i < 2n. We claim that (w;) = w;
for every 1<i < n. Letw; be an arbitrary neighbor of;. There is a pathi;jw;wjv,; of length 3 between
Vo andvp;j in G. Applying ¢ on this path gives a walk of length 3 betwegnandv,;. As the distance of
Vo andvy; is greater than 3 ifion, 1, this is only possible if the walk leav@sn, 1, implying ¢ (wi) = w;
andy/(wj) = w;. O
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Putting together Corollarg.3and Lemma6.4 immediately gives Corollany.5 stated in the intro-
duction.

7 Conclusions

We have proved that for binary CSP and for the homomorphism problem of bounded-arity relational
structures, the algorithms based on treewidth are almost optimal, in the sense that at most a logarithmic
factor improvement is possible in the exponent of the running time. This improves the main result of
[27] by making it quantitative: J7] explored only whether there exists a polynomial-time algorithm for

a given a class of problems and no effort was made to determine the best possible super-polynomial
running time. The main technical tool in the paper is converting a 3SAT formula to a CSP instance by
embedding a graph into the blowup of another graph. To obtain this embedding, we use characterizations
of treewidth by separators and a dual characterization of separators. We avoid the use of the Excluded
Grid Theorem (the main combinatorial tool i7), as it is not suitable for obtaining tight results.

The results in the paper suggest two obvious directions for future work. First, one could try to
make Theoremni.2 tight by removing the logarithmic factor from the exponent. We conjecture that
this is actually possible (Conjectute3). An obvious approach for proving Conjecture3 would be to
prove TheorenB.1 without the logarithmic factor in the exponent: inspection of our proof shows that
if Theorem3.1is true without the logarithmic factor, then Theordn is true without the logarithmic
factor. More specifically, if we can get rid of légn Theorem3.1 for everyG € G for some clas$
of graphs, then we can get rid of the logarithmic factor in Theotenfor the problem CSF). For
example, Theorerfi.1is certainly true without lo§ if G is a clique, which implies that Theorein2 is
true without the logarithmic factor ff is the class of all cliques. However, as shown very recentl]in [
Theorem3.1is tight: there are classes of graphs for which the logarithmic factor is needed. This does
not invalidate Conjecturg.3, but it shows that its proof would require substantially different techniques
than the embedding method of this paper. Moreover, probably one should first settle the question of
whether there is a polynomial-time constant-factor approximation algorithm for treewidth.

The second direction would be to generalize the results to constraints with higher arities. Theo-
rem 1.2 is stated for binary CSBJ, but this means that the negative result also holds for the more
general problem where we do not assume that the instance is binary. However, for higher arity CSPs, we
can define the hypergraph of the instance the obvious way, and try to understand the complexity in terms
of this hypergraph instead of the primal graph. If the arities of the constraints are bounded by a constant,
then Theorenb.1 characterizes the tractable hypergraph classes, as a hypergraph can be expressed by
a relational structure (where there is a distinct relation symbol for each hyperedge, to allow every con-
straint relation to be different). The problem changes considerably if the arities of the constraints are
unbounded8, 23, 24, 8, 38, 37] due to issues related to the representation of constraints. The notions
of hypertree width and fractional hypertree width were introduced to obtain tractable classes not covered
by bounded treewidth. However, the situation is still far from understood.
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