
Treewidth

Dániel Marx

Recent Advances in Parameterized Complexity
Tel Aviv, Israel, December 3-7, 2017

1

Treewidth

Treewidth: a notion of “treelike” graphs.
Some combinatorial properties.
Algorithmic results.

Algorithms on graphs of bounded treewidth.
Applications for other problems.

2

The Party Problem
Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.

6

644

5

2

Input: A tree with
weights on the vertices.
Task: Find an
independent set of
maximum weight.

3

The Party Problem
Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.
Do not invite a colleague and
his direct boss at the same time!

6

644

5

2

Input: A tree with
weights on the vertices.
Task: Find an
independent set of
maximum weight.

3

The Party Problem
Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.
Do not invite a colleague and
his direct boss at the same time!

6

644

5

2

Input: A tree with
weights on the vertices.
Task: Find an
independent set of
maximum weight.

3

The Party Problem
Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.
Do not invite a colleague and
his direct boss at the same time!

2

5

4 4 6

6
Input: A tree with
weights on the vertices.
Task: Find an
independent set of
maximum weight.

3

Solving the Party Problem

Dynamic programming paradigm:
We solve a large number of subproblems that depend on each
other. The answer is a single subproblem.

Subproblems:
Tv : the subtree rooted at v .

A[v]: max. weight of an independent set in Tv

B[v]: max. weight of an independent set in Tv

that does not contain v

Goal: determine A[r] for the root r .

4

Solving the Party Problem

Subproblems:
Tv : the subtree rooted at v .

A[v]: max. weight of an independent set in Tv

B[v]: max. weight of an independent set in Tv

that does not contain v

Recurrence:
Assume v1, . . . , vk are the children of v . Use the recurrence
relations

B[v] =
∑k

i=1 A[vi]

A[v] = max{B[v] , w(v) +
∑k

i=1 B[vi]}

The values A[v] and B[v] can be calculated in a bottom-up order
(the leaves are trivial).

4

Generalizing trees
How could we define that a graph is “treelike”?

1 Number of cycles is bounded.

good bad bad bad
2 Removing a bounded number of vertices makes it acyclic.

good good bad bad
3 Bounded-size parts connected in a tree-like way.

bad bad good good

5

Generalizing trees
How could we define that a graph is “treelike”?

1 Number of cycles is bounded.

good bad bad bad

2 Removing a bounded number of vertices makes it acyclic.

good good bad bad
3 Bounded-size parts connected in a tree-like way.

bad bad good good

5

Generalizing trees
How could we define that a graph is “treelike”?

1 Number of cycles is bounded.

good bad bad bad
2 Removing a bounded number of vertices makes it acyclic.

good good bad bad

3 Bounded-size parts connected in a tree-like way.

bad bad good good

5

Generalizing trees
How could we define that a graph is “treelike”?

1 Number of cycles is bounded.

good bad bad bad
2 Removing a bounded number of vertices makes it acyclic.

good good bad bad
3 Bounded-size parts connected in a tree-like way.

bad bad good good
5

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

6

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

b, e, f

b, c, f

a, b, c

c, d , f

d , f , g

g , h

6

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , ha, b, c

b, c, f

c, d , f

d , f , g

b, e, f

6

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.
Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , ha, b, c

b, c, f

c, d , f

d , f , g

b, e, f

6

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.
Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

Each bag is a separator.

6

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.
Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

hgfe

a

b c d

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

A subtree communicates with the outside world
only via the root of the subtree.

6

Treewidth

Fact: treewidth = 1 ⇐⇒ graph is a forest

aa

b

d

c

f ge

h

aa

b

d

c

f ge

h

a,b a,c

b,d b,e c,g

e,h

⇒
c,f

Exercise: A cycle cannot have a tree decomposition of width 1.

7

Treewidth — outline

1 Basic algorithms
2 Combinatorial properties
3 Applications

8

Finding tree decompositions

Hardness:

Theorem [Arnborg, Corneil, Proskurowski 1987]

It is NP-hard to determine the treewidth of a graph (given a graph
G and an integer w , decide if the treewidth of G is at most w).

Fixed-parameter tractability:

Theorem [Bodlaender 1996]

There is a 2O(w3) · n time algorithm that finds a tree decomposition
of width w (if exists).

Consequence:
If we want an FPT algorithm parameterized by treewidth w of the
input graph, then we can assume that a tree decomposition of
width w is available.

9

Finding tree decompositions — approximately

Sometimes we can get better dependence on treewidth using
approximation.

FPT approximation:

Theorem [Robertson and Seymour]

There is a O(33w · w · n2) time algorithm that finds a tree
decomposition of width 4w + 1, if the treewidth of the graph is at
most w .

Polynomial-time approximation:

Theorem [Feige, Hajiaghayi, Lee 2008]

There is a polynomial-time algorithm that finds a tree
decomposition of width O(w

√
logw), if the treewidth of the graph

is at most w .

10

Weighted Max Independent Set and treewidth
Theorem
Given a tree decomposition of width w , Weighted Max
Independent Set can be solved in time O(2w · wO(1) · n).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

Generalizing our solution for trees:

Instead of computing 2 values A[v], B[v]
for each vertex of the graph, we compute
2|Bx | ≤ 2w+1 values for each bag Bx .

M[x , S]:
the max. weight of an independent set
I ⊆ Vx with I ∩ Bx = S .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

∅ =? bc =?
b =? cf =?
c =? bf =?
f =? bcf =?

How to determine M[x , S] if all the values are known for
the children of x?

11

Weighted Max Independent Set and treewidth
Theorem
Given a tree decomposition of width w , Weighted Max
Independent Set can be solved in time O(2w · wO(1) · n).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

Generalizing our solution for trees:

Instead of computing 2 values A[v], B[v]
for each vertex of the graph, we compute
2|Bx | ≤ 2w+1 values for each bag Bx .

M[x , S]:
the max. weight of an independent set
I ⊆ Vx with I ∩ Bx = S .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

∅ =? bc =?
b =? cf =?
c =? bf =?
f =? bcf =?

How to determine M[x , S] if all the values are known for
the children of x? 11

Nice tree decompositions

Definition
A rooted tree decomposition is nice if every node x is one of the
following 4 types:

Leaf: no children, |Bx | = 1
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v

Forget: 1 child y with Bx = By \ {v} for some vertex v

Join: 2 children y1, y2 with Bx = By1 = By2

Forget JoinIntroduceLeaf

u, v ,w

u,w u, v ,w

u,wv u, v ,w

u, v ,wu, v ,w

12

Nice tree decompositions

Definition
A rooted tree decomposition is nice if every node x is one of the
following 4 types:

Leaf: no children, |Bx | = 1
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v

Forget: 1 child y with Bx = By \ {v} for some vertex v

Join: 2 children y1, y2 with Bx = By1 = By2

Theorem
A tree decomposition of width w and n nodes can be turned into a
nice tree decomposition of width w and O(wn) nodes in time
O(w2n).

12

Weighted Max Independent Set
and nice tree decompositions

Leaf: no children, |Bx | = 1
Trivial!
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v

m[x ,S] =


m[y ,S] if v 6∈ S ,

m[y ,S \ {v}] + w(v) if v ∈ S but v has no
neighbor in S ,

−∞ if S contains v and its neighbor.

Forget JoinIntroduceLeaf

u, v ,w

u,w u, v ,w

u,wv u, v ,w

u, v ,wu, v ,w

13

Weighted Max Independent Set
and nice tree decompositions

Forget: 1 child y with Bx = By \ {v} for some vertex v

m[x ,S] = max{m[y ,S],m[y ,S ∪ {v}]}

Join: 2 children y1, y2 with Bx = By1 = By2

m[x ,S] = m[y1,S] +m[y2, S]− w(S)

Forget JoinIntroduceLeaf

u, v ,w

u,w u, v ,w

u,wv u, v ,w

u, v ,wu, v ,w

13

Weighted Max Independent Set
and nice tree decompositions

Forget: 1 child y with Bx = By \ {v} for some vertex v

m[x ,S] = max{m[y ,S],m[y ,S ∪ {v}]}

Join: 2 children y1, y2 with Bx = By1 = By2

m[x ,S] = m[y1,S] +m[y2, S]− w(S)

There are at most 2w+1 · n subproblems m[x ,S] and each
subproblem can be solved in wO(1) time

(assuming the children are already solved).
⇓

Running time is O(2w · wO(1) · n).

13

3-Coloring and tree decompositions
Theorem
Given a tree decomposition of width w , 3-Coloring can be
solved in O(3w · wO(1) · n).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

For every node x and coloring c : Bx →
{1, 2, 3}, we compute the Boolean value
E [x , c], which is true if and only if c can
be extended to a proper 3-coloring of Vx .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

bcf=T bcf=F
bcf=T bcf=F
.

How to determine E [x , c] if all the values are known for
the children of x?

14

3-Coloring and tree decompositions
Theorem
Given a tree decomposition of width w , 3-Coloring can be
solved in O(3w · wO(1) · n).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

For every node x and coloring c : Bx →
{1, 2, 3}, we compute the Boolean value
E [x , c], which is true if and only if c can
be extended to a proper 3-coloring of Vx .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

bcf=T bcf=F
bcf=T bcf=F
.

How to determine E [x , c] if all the values are known for
the children of x?

14

3-Coloring and nice tree decompositions
Leaf: no children, |Bx | = 1
Trivial!
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v
If c(v) 6= c(u) for every neighbor u of v , then
E [x , c] = E [y , c ′], where c ′ is c restricted to By .
Forget: 1 child y with Bx = By \ {v} for some vertex v
E [x , c] is true if E [y , c ′] is true for one of the 3 extensions of c
to By .
Join: 2 children y1, y2 with Bx = By1 = By2

E [x , c] = E [y1, c] ∧ E [y2, c]

Forget JoinIntroduceLeaf
u, v ,w

u,w u, v ,w

u,wv u, v ,w

u, v ,wu, v ,w

15

3-Coloring and nice tree decompositions
Leaf: no children, |Bx | = 1
Trivial!
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v
If c(v) 6= c(u) for every neighbor u of v , then
E [x , c] = E [y , c ′], where c ′ is c restricted to By .
Forget: 1 child y with Bx = By \ {v} for some vertex v
E [x , c] is true if E [y , c ′] is true for one of the 3 extensions of c
to By .
Join: 2 children y1, y2 with Bx = By1 = By2

E [x , c] = E [y1, c] ∧ E [y2, c]

There are at most 3w+1 · n subproblems E [x , c] and each subprob-
lem can be solved in wO(1) time (assuming the children are already
solved).

⇒ Running time is O(3w · wO(1) · n).

⇒ 3-Coloring is FPT parameterized by treewidth.

15

Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:
Logical connectives ∧, ∨, →, ¬, =, 6=
quantifiers ∀, ∃ over vertex/edge variables
predicate adj(u, v): vertices u and v are adjacent
predicate inc(e, v): edge e is incident to vertex v

quantifiers ∀, ∃ over vertex/edge set variables
∈, ⊆ for vertex/edge sets

Example:
The formula

∃C ⊆ V∃v0 ∈ C∀v ∈ C ∃u1, u2 ∈ C(u1 6= u2 ∧ adj(u1, v) ∧ adj(u2, v))

is true on graph G if and only if . . .

16

Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:
Logical connectives ∧, ∨, →, ¬, =, 6=
quantifiers ∀, ∃ over vertex/edge variables
predicate adj(u, v): vertices u and v are adjacent
predicate inc(e, v): edge e is incident to vertex v

quantifiers ∀, ∃ over vertex/edge set variables
∈, ⊆ for vertex/edge sets

Example:
The formula

∃C ⊆ V∃v0 ∈ C∀v ∈ C ∃u1, u2 ∈ C(u1 6= u2 ∧ adj(u1, v) ∧ adj(u2, v))

is true on graph G if and only if G has a cycle.

16

Courcelle’s Theorem

Courcelle’s Theorem
If a graph property can be expressed in EMSO, then for every fixed
w ≥ 1, there is a linear-time algorithm for testing this property on
graphs having treewidth at most w .

Note: The constant depending on w can be very large (double,
triple exponential etc.), therefore a direct dynamic programming
algorithm can be more efficient.

If we can express a property in EMSO, then we immediately get
that testing this property is FPT parameterized by the treewidth w
of the input graph.

Can we express 3-Coloring and Hamiltonian Cycle in
EMSO?

17

Courcelle’s Theorem

Courcelle’s Theorem
If a graph property can be expressed in EMSO, then for every fixed
w ≥ 1, there is a linear-time algorithm for testing this property on
graphs having treewidth at most w .

Note: The constant depending on w can be very large (double,
triple exponential etc.), therefore a direct dynamic programming
algorithm can be more efficient.

If we can express a property in EMSO, then we immediately get
that testing this property is FPT parameterized by the treewidth w
of the input graph.

Can we express 3-Coloring and Hamiltonian Cycle in
EMSO?

17

Using Courcelle’s Theorem

3-Coloring
∃C1,C2,C3 ⊆ V

(
∀v ∈ V (v ∈ C1 ∨ v ∈ C2 ∨ v ∈ C3)

)
∧
(
∀u, v ∈

V adj(u, v)→ (¬(u ∈ C1 ∧ v ∈ C1) ∧ ¬(u ∈ C2 ∧ v ∈ C2) ∧ ¬(u ∈
C3 ∧ v ∈ C3))

)

Hamiltonian Cycle
∃H ⊆ E

(
spanning(H) ∧ (∀v ∈ V degree2(H, v))

)
degree0(H, v) := ¬∃e ∈ H inc(e, v)
degree1(H, v) := ¬degree0(H, v) ∧

(
¬∃e1, e2 ∈ H (e1 6=

e2 ∧ inc(e1, v) ∧ inc(e2, v))
)

degree2(H, v) := ¬degree0(H, v) ∧ ¬degree1(H, v) ∧
(
¬∃e1, e2, e3 ∈

H (e1 6= e2 ∧ e2 6= e3 ∧ e1 6= e3 ∧ inc(e1, v) ∧ inc(e2, v) ∧ inc(e3, v)))
)

spanning(H) := ∀u, v ∈ V ∃P ⊆ H ∀x ∈ V
(
((x = u ∨ x =

v) ∧ degree1(P, x)) ∨ (x 6= u ∧ x 6= v ∧ (degree0(P, x) ∨ degree2(P, x)))
)

18

Using Courcelle’s Theorem

3-Coloring
∃C1,C2,C3 ⊆ V

(
∀v ∈ V (v ∈ C1 ∨ v ∈ C2 ∨ v ∈ C3)

)
∧
(
∀u, v ∈

V adj(u, v)→ (¬(u ∈ C1 ∧ v ∈ C1) ∧ ¬(u ∈ C2 ∧ v ∈ C2) ∧ ¬(u ∈
C3 ∧ v ∈ C3))

)
Hamiltonian Cycle
∃H ⊆ E

(
spanning(H) ∧ (∀v ∈ V degree2(H, v))

)
degree0(H, v) := ¬∃e ∈ H inc(e, v)
degree1(H, v) := ¬degree0(H, v) ∧

(
¬∃e1, e2 ∈ H (e1 6=

e2 ∧ inc(e1, v) ∧ inc(e2, v))
)

degree2(H, v) := ¬degree0(H, v) ∧ ¬degree1(H, v) ∧
(
¬∃e1, e2, e3 ∈

H (e1 6= e2 ∧ e2 6= e3 ∧ e1 6= e3 ∧ inc(e1, v) ∧ inc(e2, v) ∧ inc(e3, v)))
)

spanning(H) := ∀u, v ∈ V ∃P ⊆ H ∀x ∈ V
(
((x = u ∨ x =

v) ∧ degree1(P, x)) ∨ (x 6= u ∧ x 6= v ∧ (degree0(P, x) ∨ degree2(P, x)))
)

18

Minor

An operation similar to taking subgraphs:

Definition
Graph H is a minor of G (H ≤ G) if H can be obtained from G by
deleting edges, deleting vertices, and contracting edges.

deleting uv

vu w

u v
contracting uv

19

Properties of treewidth

Fact: Treewidth does not increase if we delete edges, delete
vertices, or contract edges.

⇒ If F is a minor of G , then the treewidth of F is at most the
treewidth of G .

Fact: For every clique K , there is a bag B with K ⊆ B .

Fact: The treewidth of the k-clique is k − 1.

Fact: For every k ≥ 2, the treewidth of
the k × k grid is exactly k .

20

Properties of treewidth

Fact: Treewidth does not increase if we delete edges, delete
vertices, or contract edges.

⇒ If F is a minor of G , then the treewidth of F is at most the
treewidth of G .

Fact: For every clique K , there is a bag B with K ⊆ B .

Fact: The treewidth of the k-clique is k − 1.

Fact: For every k ≥ 2, the treewidth of
the k × k grid is exactly k .

20

Properties of treewidth

Fact: Treewidth does not increase if we delete edges, delete
vertices, or contract edges.

⇒ If F is a minor of G , then the treewidth of F is at most the
treewidth of G .

Fact: For every clique K , there is a bag B with K ⊆ B .

Fact: The treewidth of the k-clique is k − 1.

Fact: For every k ≥ 2, the treewidth of
the k × k grid is exactly k .

20

Excluded Grid Theorem

Excluded Grid Theorem [Diestel et al. 1999]

If the treewidth of G is at least k4k2(k+2), then G has a k × k grid
minor.

(A kO(1) bound was achieved recently [Chekuri and Chuznoy 2014]!)

21

Excluded Grid Theorem

Excluded Grid Theorem [Diestel et al. 1999]

If the treewidth of G is at least k4k2(k+2), then G has a k × k grid
minor.

Observation: Every planar graph is the minor of a sufficiently large
grid.

Consequence
If H is planar, then every H-minor free graph has treewidth at most
f (H).

21

Excluded Grid Theorem

Excluded Grid Theorem [Diestel et al. 1999]

If the treewidth of G is at least k4k2(k+2), then G has a k × k grid
minor.

A large grid minor is a “witness” that treewidth is large, but the
relation is approximate:

No k × k grid minor =⇒ tree decomposition
of width < f (k)

tree decomposition
of width < f (k)

=⇒ no f (k)× f (k) grid
minor

21

Planar Excluded Grid Theorem

For planar graphs, we get linear instead of exponential dependence:

Theorem [Robertson, Seymour, Thomas 1994]

Every planar graph with treewidth at least 5k has a k × k grid
minor.

22

Bidimensionality
A powerful framework for efficient algorithms on planar graphs.

Setup:

Let x(G) be some graph invariant (i.e., an integer associated
with each graph).
Given G and k , we want to decide if x(G) ≤ k (or x(G) ≥ k).
Typical examples:

Maximum independent set size.
Minimum vertex cover size.
Length of the longest path.
Minimum dominating set size.
Minimum feedback vertex set size.

Bidimensionality [Demaine, Fomin, Hajiaghayi, Thilikos 2005]

For many natural invariants, we can do this in time 2O(
√
k) · nO(1)

on planar graphs.

23

Bidimensionality for Vertex Cover
Observation: If the treewidth of a planar graph G is at least 5

√
2k

⇒ It has a
√
2k ×

√
2k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a matching of size k
⇒ Vertex cover size is at least k in the grid.
⇒ Vertex cover size is at least k in G .

We use this observation to solve Vertex Cover on planar graphs:

24

Bidimensionality for Vertex Cover
Observation: If the treewidth of a planar graph G is at least 5

√
2k

⇒ It has a
√
2k ×

√
2k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a matching of size k
⇒ Vertex cover size is at least k in the grid.
⇒ Vertex cover size is at least k in G .

We use this observation to solve Vertex Cover on planar graphs:

Set w := 5
√
2k .

Find a 4-approximate tree
decomposition.

If treewidth is at least w : we
answer “vertex cover is ≥ k .”
If we get a tree decomposition of
width 4w , then we can solve the
problem in time
2O(w) · nO(1) = 2O(

√
k) · nO(1).

24

Bidimensionality
Definition
A graph invariant x(G) is minor-bidimensional if

x(G ′) ≤ x(G) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Examples: minimum vertex cover, length of the longest path,
feedback vertex set are minor-bidimensional.

25

Bidimensionality
Definition
A graph invariant x(G) is minor-bidimensional if

x(G ′) ≤ x(G) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Examples: minimum vertex cover, length of the longest path,
feedback vertex set are minor-bidimensional.

25

Bidimensionality
Definition
A graph invariant x(G) is minor-bidimensional if

x(G ′) ≤ x(G) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Examples: minimum vertex cover, length of the longest path,
feedback vertex set are minor-bidimensional.

25

Bidimensionality (cont.)

We can answer “x(G) ≥ k?” for a minor-bidimensional invariant
the following way:

Set w := c
√
k for an appropriate constant c .

Use the 4-approximation tree decomposition algorithm.
If treewidth is at least w : x(G) is at least k .
If we get a tree decomposition of width 4w , then we can solve
the problem using dynamic programming on the tree
decomposition.

Running time:
If we can solve the problem on tree decomposition of width w

in time 2O(w) · nO(1), then the running time is 2O(
√
k) · nO(1).

If we can solve the problem on tree decomposition of width w
in time wO(w) · nO(1), then the running time is
2O(

√
k log k) · nO(1).

26

Treewidth
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.
Width of the decomposition: largest bag size −1.

treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

27

	Treewidth
	The Party Problem
	The Party Problem
	The Party Problem
	The Party Problem
	Solving the Party Problem
	Solving the Party Problem
	Generalizing trees
	Generalizing trees
	Generalizing trees
	Generalizing trees
	Treewidth — a measure of ``tree-likeness''
	Treewidth — a measure of ``tree-likeness''
	Treewidth — a measure of ``tree-likeness''
	Treewidth — a measure of ``tree-likeness''
	Treewidth — a measure of ``tree-likeness''
	Treewidth — a measure of ``tree-likeness''
	Treewidth
	Treewidth — outline
	Finding tree decompositions
	Finding tree decompositions — approximately
	Weighted Max Independent Set and treewidth
	Weighted Max Independent Set and treewidth
	Nice tree decompositions
	Nice tree decompositions
	Weighted Max Independent Set and nice tree decompositions
	Weighted Max Independent Set and nice tree decompositions
	Weighted Max Independent Set and nice tree decompositions
	3-Coloring and tree decompositions
	3-Coloring and tree decompositions
	3-Coloring and nice tree decompositions
	3-Coloring and nice tree decompositions
	Monadic Second Order Logic
	Monadic Second Order Logic
	Courcelle's Theorem
	Courcelle's Theorem
	Using Courcelle's Theorem
	Using Courcelle's Theorem
	Minor
	Properties of treewidth
	Properties of treewidth
	Properties of treewidth
	Excluded Grid Theorem
	Excluded Grid Theorem
	Excluded Grid Theorem
	Planar Excluded Grid Theorem
	Bidimensionality
	Bidimensionality for Vertex Cover
	Bidimensionality for Vertex Cover
	Bidimensionality
	Bidimensionality
	Bidimensionality
	Bidimensionality (cont.)
	Treewidth

