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Treewidth

Treewidth: a notion of “treelike” graphs.
Some combinatorial properties.
Algorithmic results.

Algorithms on graphs of bounded treewidth.
Applications for other problems.
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The Party Problem
Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.
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Input: A tree with
weights on the vertices.
Task: Find an
independent set of
maximum weight.
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Solving the Party Problem

Dynamic programming paradigm:
We solve a large number of subproblems that depend on each
other. The answer is a single subproblem.

Subproblems:
Tv : the subtree rooted at v .

A[v ]: max. weight of an independent set in Tv

B[v ]: max. weight of an independent set in Tv

that does not contain v

Goal: determine A[r ] for the root r .
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Solving the Party Problem

Subproblems:
Tv : the subtree rooted at v .

A[v ]: max. weight of an independent set in Tv

B[v ]: max. weight of an independent set in Tv

that does not contain v

Recurrence:
Assume v1, . . . , vk are the children of v . Use the recurrence
relations

B[v ] =
∑k

i=1 A[vi ]

A[v ] = max{B[v ] , w(v) +
∑k

i=1 B[vi ]}

The values A[v ] and B[v ] can be calculated in a bottom-up order
(the leaves are trivial).
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Generalizing trees
How could we define that a graph is “treelike”?

1 Number of cycles is bounded.

good bad bad bad
2 Removing a bounded number of vertices makes it acyclic.

good good bad bad
3 Bounded-size parts connected in a tree-like way.

bad bad good good
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Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f
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Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.
Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.
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A subtree communicates with the outside world
only via the root of the subtree.
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Treewidth

Fact: treewidth = 1 ⇐⇒ graph is a forest

aa

b

d

c

f ge

h

aa

b

d

c

f ge

h

a,b a,c

b,d b,e c,g

e,h

⇒
c,f

Exercise: A cycle cannot have a tree decomposition of width 1.
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Treewidth — outline

1 Basic algorithms
2 Combinatorial properties
3 Applications
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Finding tree decompositions

Hardness:

Theorem [Arnborg, Corneil, Proskurowski 1987]

It is NP-hard to determine the treewidth of a graph (given a graph
G and an integer w , decide if the treewidth of G is at most w).

Fixed-parameter tractability:

Theorem [Bodlaender 1996]

There is a 2O(w3) · n time algorithm that finds a tree decomposition
of width w (if exists).

Consequence:
If we want an FPT algorithm parameterized by treewidth w of the
input graph, then we can assume that a tree decomposition of
width w is available.
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Finding tree decompositions — approximately

Sometimes we can get better dependence on treewidth using
approximation.

FPT approximation:

Theorem [Robertson and Seymour]

There is a O(33w · w · n2) time algorithm that finds a tree
decomposition of width 4w + 1, if the treewidth of the graph is at
most w .

Polynomial-time approximation:

Theorem [Feige, Hajiaghayi, Lee 2008]

There is a polynomial-time algorithm that finds a tree
decomposition of width O(w

√
logw), if the treewidth of the graph

is at most w .
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Weighted Max Independent Set and treewidth
Theorem
Given a tree decomposition of width w , Weighted Max
Independent Set can be solved in time O(2w · wO(1) · n).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

Generalizing our solution for trees:

Instead of computing 2 values A[v ], B[v ]
for each vertex of the graph, we compute
2|Bx | ≤ 2w+1 values for each bag Bx .

M[x , S ]:
the max. weight of an independent set
I ⊆ Vx with I ∩ Bx = S .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

∅ =? bc =?
b =? cf =?
c =? bf =?
f =? bcf =?

How to determine M[x , S ] if all the values are known for
the children of x?
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Nice tree decompositions

Definition
A rooted tree decomposition is nice if every node x is one of the
following 4 types:

Leaf: no children, |Bx | = 1
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v

Forget: 1 child y with Bx = By \ {v} for some vertex v

Join: 2 children y1, y2 with Bx = By1 = By2

Forget JoinIntroduceLeaf

u, v ,w

u,w u, v ,w

u,wv u, v ,w

u, v ,wu, v ,w
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Nice tree decompositions

Definition
A rooted tree decomposition is nice if every node x is one of the
following 4 types:

Leaf: no children, |Bx | = 1
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v

Forget: 1 child y with Bx = By \ {v} for some vertex v

Join: 2 children y1, y2 with Bx = By1 = By2

Theorem
A tree decomposition of width w and n nodes can be turned into a
nice tree decomposition of width w and O(wn) nodes in time
O(w2n).

12



Weighted Max Independent Set
and nice tree decompositions

Leaf: no children, |Bx | = 1
Trivial!
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v

m[x ,S ] =


m[y ,S ] if v 6∈ S ,

m[y ,S \ {v}] + w(v) if v ∈ S but v has no
neighbor in S ,

−∞ if S contains v and its neighbor.

Forget JoinIntroduceLeaf

u, v ,w

u,w u, v ,w

u,wv u, v ,w

u, v ,wu, v ,w
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Weighted Max Independent Set
and nice tree decompositions

Forget: 1 child y with Bx = By \ {v} for some vertex v

m[x ,S ] = max{m[y ,S ],m[y ,S ∪ {v}]}
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m[x ,S ] = m[y1,S ] +m[y2, S ]− w(S)

Forget JoinIntroduceLeaf

u, v ,w

u,w u, v ,w

u,wv u, v ,w

u, v ,wu, v ,w

13



Weighted Max Independent Set
and nice tree decompositions

Forget: 1 child y with Bx = By \ {v} for some vertex v

m[x ,S ] = max{m[y ,S ],m[y ,S ∪ {v}]}

Join: 2 children y1, y2 with Bx = By1 = By2

m[x ,S ] = m[y1,S ] +m[y2, S ]− w(S)

There are at most 2w+1 · n subproblems m[x ,S ] and each
subproblem can be solved in wO(1) time

(assuming the children are already solved).
⇓

Running time is O(2w · wO(1) · n).
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3-Coloring and tree decompositions
Theorem
Given a tree decomposition of width w , 3-Coloring can be
solved in O(3w · wO(1) · n).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

For every node x and coloring c : Bx →
{1, 2, 3}, we compute the Boolean value
E [x , c], which is true if and only if c can
be extended to a proper 3-coloring of Vx .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

bcf=T bcf=F
bcf=T bcf=F
. . . . . .

How to determine E [x , c] if all the values are known for
the children of x?
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3-Coloring and nice tree decompositions
Leaf: no children, |Bx | = 1
Trivial!
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v
If c(v) 6= c(u) for every neighbor u of v , then
E [x , c] = E [y , c ′], where c ′ is c restricted to By .
Forget: 1 child y with Bx = By \ {v} for some vertex v
E [x , c] is true if E [y , c ′] is true for one of the 3 extensions of c
to By .
Join: 2 children y1, y2 with Bx = By1 = By2

E [x , c] = E [y1, c] ∧ E [y2, c]

Forget JoinIntroduceLeaf
u, v ,w

u,w u, v ,w

u,wv u, v ,w

u, v ,wu, v ,w
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3-Coloring and nice tree decompositions
Leaf: no children, |Bx | = 1
Trivial!
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v
If c(v) 6= c(u) for every neighbor u of v , then
E [x , c] = E [y , c ′], where c ′ is c restricted to By .
Forget: 1 child y with Bx = By \ {v} for some vertex v
E [x , c] is true if E [y , c ′] is true for one of the 3 extensions of c
to By .
Join: 2 children y1, y2 with Bx = By1 = By2

E [x , c] = E [y1, c] ∧ E [y2, c]

There are at most 3w+1 · n subproblems E [x , c] and each subprob-
lem can be solved in wO(1) time (assuming the children are already
solved).

⇒ Running time is O(3w · wO(1) · n).

⇒ 3-Coloring is FPT parameterized by treewidth.
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Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:
Logical connectives ∧, ∨, →, ¬, =, 6=
quantifiers ∀, ∃ over vertex/edge variables
predicate adj(u, v): vertices u and v are adjacent
predicate inc(e, v): edge e is incident to vertex v

quantifiers ∀, ∃ over vertex/edge set variables
∈, ⊆ for vertex/edge sets

Example:
The formula

∃C ⊆ V∃v0 ∈ C∀v ∈ C ∃u1, u2 ∈ C(u1 6= u2 ∧ adj(u1, v) ∧ adj(u2, v))

is true on graph G if and only if . . .
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Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:
Logical connectives ∧, ∨, →, ¬, =, 6=
quantifiers ∀, ∃ over vertex/edge variables
predicate adj(u, v): vertices u and v are adjacent
predicate inc(e, v): edge e is incident to vertex v

quantifiers ∀, ∃ over vertex/edge set variables
∈, ⊆ for vertex/edge sets

Example:
The formula

∃C ⊆ V∃v0 ∈ C∀v ∈ C ∃u1, u2 ∈ C(u1 6= u2 ∧ adj(u1, v) ∧ adj(u2, v))

is true on graph G if and only if G has a cycle.
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Courcelle’s Theorem

Courcelle’s Theorem
If a graph property can be expressed in EMSO, then for every fixed
w ≥ 1, there is a linear-time algorithm for testing this property on
graphs having treewidth at most w .

Note: The constant depending on w can be very large (double,
triple exponential etc.), therefore a direct dynamic programming
algorithm can be more efficient.

If we can express a property in EMSO, then we immediately get
that testing this property is FPT parameterized by the treewidth w
of the input graph.

Can we express 3-Coloring and Hamiltonian Cycle in
EMSO?
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Using Courcelle’s Theorem

3-Coloring
∃C1,C2,C3 ⊆ V

(
∀v ∈ V (v ∈ C1 ∨ v ∈ C2 ∨ v ∈ C3)

)
∧
(
∀u, v ∈

V adj(u, v)→ (¬(u ∈ C1 ∧ v ∈ C1) ∧ ¬(u ∈ C2 ∧ v ∈ C2) ∧ ¬(u ∈
C3 ∧ v ∈ C3))

)

Hamiltonian Cycle
∃H ⊆ E

(
spanning(H) ∧ (∀v ∈ V degree2(H, v))

)
degree0(H, v) := ¬∃e ∈ H inc(e, v)
degree1(H, v) := ¬degree0(H, v) ∧

(
¬∃e1, e2 ∈ H (e1 6=

e2 ∧ inc(e1, v) ∧ inc(e2, v))
)

degree2(H, v) := ¬degree0(H, v) ∧ ¬degree1(H, v) ∧
(
¬∃e1, e2, e3 ∈

H (e1 6= e2 ∧ e2 6= e3 ∧ e1 6= e3 ∧ inc(e1, v) ∧ inc(e2, v) ∧ inc(e3, v)))
)

spanning(H) := ∀u, v ∈ V ∃P ⊆ H ∀x ∈ V
(
((x = u ∨ x =

v) ∧ degree1(P, x)) ∨ (x 6= u ∧ x 6= v ∧ (degree0(P, x) ∨ degree2(P, x)))
)
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Minor

An operation similar to taking subgraphs:

Definition
Graph H is a minor of G (H ≤ G ) if H can be obtained from G by
deleting edges, deleting vertices, and contracting edges.

deleting uv

vu w

u v
contracting uv
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Properties of treewidth

Fact: Treewidth does not increase if we delete edges, delete
vertices, or contract edges.

⇒ If F is a minor of G , then the treewidth of F is at most the
treewidth of G .

Fact: For every clique K , there is a bag B with K ⊆ B .

Fact: The treewidth of the k-clique is k − 1.

Fact: For every k ≥ 2, the treewidth of
the k × k grid is exactly k .
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Excluded Grid Theorem

Excluded Grid Theorem [Diestel et al. 1999]

If the treewidth of G is at least k4k2(k+2), then G has a k × k grid
minor.

(A kO(1) bound was achieved recently [Chekuri and Chuznoy 2014]!)
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Excluded Grid Theorem

Excluded Grid Theorem [Diestel et al. 1999]

If the treewidth of G is at least k4k2(k+2), then G has a k × k grid
minor.

Observation: Every planar graph is the minor of a sufficiently large
grid.

Consequence
If H is planar, then every H-minor free graph has treewidth at most
f (H).
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Excluded Grid Theorem

Excluded Grid Theorem [Diestel et al. 1999]

If the treewidth of G is at least k4k2(k+2), then G has a k × k grid
minor.

A large grid minor is a “witness” that treewidth is large, but the
relation is approximate:

No k × k grid minor =⇒ tree decomposition
of width < f (k)

tree decomposition
of width < f (k)

=⇒ no f (k)× f (k) grid
minor
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Planar Excluded Grid Theorem

For planar graphs, we get linear instead of exponential dependence:

Theorem [Robertson, Seymour, Thomas 1994]

Every planar graph with treewidth at least 5k has a k × k grid
minor.
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Bidimensionality
A powerful framework for efficient algorithms on planar graphs.

Setup:

Let x(G ) be some graph invariant (i.e., an integer associated
with each graph).
Given G and k , we want to decide if x(G ) ≤ k (or x(G ) ≥ k).
Typical examples:

Maximum independent set size.
Minimum vertex cover size.
Length of the longest path.
Minimum dominating set size.
Minimum feedback vertex set size.

Bidimensionality [Demaine, Fomin, Hajiaghayi, Thilikos 2005]

For many natural invariants, we can do this in time 2O(
√
k) · nO(1)

on planar graphs.
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Bidimensionality for Vertex Cover
Observation: If the treewidth of a planar graph G is at least 5

√
2k

⇒ It has a
√
2k ×

√
2k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a matching of size k
⇒ Vertex cover size is at least k in the grid.
⇒ Vertex cover size is at least k in G .

We use this observation to solve Vertex Cover on planar graphs:
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Bidimensionality for Vertex Cover
Observation: If the treewidth of a planar graph G is at least 5

√
2k

⇒ It has a
√
2k ×

√
2k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a matching of size k
⇒ Vertex cover size is at least k in the grid.
⇒ Vertex cover size is at least k in G .

We use this observation to solve Vertex Cover on planar graphs:

Set w := 5
√
2k .

Find a 4-approximate tree
decomposition.

If treewidth is at least w : we
answer “vertex cover is ≥ k .”
If we get a tree decomposition of
width 4w , then we can solve the
problem in time
2O(w) · nO(1) = 2O(

√
k) · nO(1).
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Bidimensionality
Definition
A graph invariant x(G ) is minor-bidimensional if

x(G ′) ≤ x(G ) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Examples: minimum vertex cover, length of the longest path,
feedback vertex set are minor-bidimensional.
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Bidimensionality (cont.)

We can answer “x(G ) ≥ k?” for a minor-bidimensional invariant
the following way:

Set w := c
√
k for an appropriate constant c .

Use the 4-approximation tree decomposition algorithm.
If treewidth is at least w : x(G ) is at least k .
If we get a tree decomposition of width 4w , then we can solve
the problem using dynamic programming on the tree
decomposition.

Running time:
If we can solve the problem on tree decomposition of width w

in time 2O(w) · nO(1), then the running time is 2O(
√
k) · nO(1).

If we can solve the problem on tree decomposition of width w
in time wO(w) · nO(1), then the running time is
2O(

√
k log k) · nO(1).
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Treewidth
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.
Width of the decomposition: largest bag size −1.

treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f
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