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Counting problems

Counting is harder than decision:
Counting version of easy problems:
not clear if they remain easy.
Counting version of hard problems:
not clear if we can keep the same running time.

Working on counting problems is fun:
You can revisit fundamental, “well-understood” problems.
Requires a new set of lower bound techniques.
Requires new algorithmic techniques.
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FPT techniques

Treewidth

Color coding

Iterative compression

Kernelization

Algebraic techniques

Bounded-depth search trees
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Counting complexity

W[1]-hardness: “as hard as find a k-clique”
#W[1]-hardness: “as hard as counting k-cliques”

Questions about counting versions of W[1]-hard problems:
Theoretical question:
Is the the counting version of a W[1]-hard problem
#W[1]-hard?
More fine-grained question:
Can we get the same running time (e.g., nO(

√
k)) also for the

counting version?
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Counting complexity

What can happen to the counting versions of an FPT or P
problem?

1 The same algorithmic technique shows that the counting
problem is FPT.

2 New algorithmic techniques are needed to show that the
counting version is FPT.

3 New lower bound technique are needed to show that the
counting version is #W[1]-hard.
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Counting patterns
Main question
Which type of subgraph patterns are easy to count?

biclique clique complete multipartite graph matching

star subdivided star windmillpath

Before that: counting homomorphisms!
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Homomorphisms
A homomorphism from H to G is a mapping f : V (H)→ V (G )
such that if ab is an edge of H, then f (a)f (b) is an edge of G .

43

2 1

1 2

34

Which pattern graphs H are easy for counting homomorphisms?

Theorem (trivial)
For every fixed H, the problem #Hom(H) (count homomorphisms
from H to the given graph G ) is polynomial-time solvable.

. . . because we can try all |V (G )||V (H)| possible mappings
f : V (H)→ V (G ).
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Counting homomorphisms

Better question:

#Hom(H)
Input: graph H ∈ H and an arbitrary graph G .
Task: count the number of homomorphisms from H to G .

Goal: characterize the classes H for which #Hom(H) is
polynomial-time solvable.

We have reasons to believe that there is no P vs. NP-complete
dichotomy for #Hom(H). Instead of NP-completeness, we will use
paramterized complexity for giving negative evidence.

We parameterize by k = |V (H)|, i.e., our goal is an
f (|V (H)|) · nO(1) time algorithm.
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Counting homomorphisms

Theorem [Dalmau and Jonsson 2004]

Assuming FPT 6= W[1], for every recursively enumerable class H of
graphs, the following are equivalent:

1 #Hom(H) is polynomial-time solvable.
2 #Hom(H) is FPT parameterized by |V (H)|.
3 H has bounded treewidth.
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Counting homomorphisms

Theorem [Dalmau and Jonsson 2004]

Assuming FPT 6= W[1], for every recursively enumerable class H of
graphs, the following are equivalent:

1 #Hom(H) is polynomial-time solvable.
2 #Hom(H) is FPT parameterized by |V (H)|.
3 H has bounded treewidth.

Proof of the positive result:
Show that the problem can be solved in time O(nc+1) if H has
treewidth c (standard dynamic programing).
[Díaz et al. 2002]
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Counting homomorphisms

Theorem [Dalmau and Jonsson 2004]

Assuming FPT 6= W[1], for every recursively enumerable class H of
graphs, the following are equivalent:

1 #Hom(H) is polynomial-time solvable.
2 #Hom(H) is FPT parameterized by |V (H)|.
3 H has bounded treewidth.

Excluded Grid Theorem [Robertson and Seymour]

There is a function f such that every graph with treewidth f (k)
contains a k × k grid minor.
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Counting homomorphisms

Theorem [Dalmau and Jonsson 2004]

Assuming FPT 6= W[1], for every recursively enumerable class H of
graphs, the following are equivalent:

1 #Hom(H) is polynomial-time solvable.
2 #Hom(H) is FPT parameterized by |V (H)|.
3 H has bounded treewidth.

Proof of the negative result:

1 Show that #Hom(H) is W[1]-hard if H is the class of grids.
2 Show that if H contains �k×k as minor, then #Hom(�k×k)

can be reduced to #Hom(H).
3 Use the Excluded Grid Theorem to show that this implies

W[1]-hardness for every class H with unbounded treewidth.
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Counting subgraphs

Two highlights of classical complexity:

Finding a perfect matching is polynomial-time solvable.
[Edmonds 1965]

Counting perfect matchings is #P-hard.
[Valiant 1979]

[Flum and Grohe 2002] started the study of parameterized counting
problems.

Theorem
Counting k-paths is #W[1]-hard.

Question: What about counting k-matchings?
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Counting k-matchings

Colorful history:

Weighted version is #W[1]-hard
[Bläser and Curticapean 2012]

Unweighted version is #W[1]-hard
[Curticapean 2013] — complicated proof.
Unweighted version is #W[1]-hard
[Curticapean and M 2014] — simpler proof.
Unweighted version is #W[1]-hard
[Curticapean and M, unpublished] — even simpler proof.
Unweighted version is #W[1]-hard
[Curticapean, Dell, and M 2017] — tells the real story.
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Counting subgraphs
#Sub(H)
Input: a graph H ∈ H and an arbitrary graph G .
Task: calculate the number of copies of H in G .

If H is the class of all stars, then #Sub(H) is easy: for each
placement of the center of the star, calculate the number of
possible different assignments of the leaves.

H G

Theorem [Vassilevska Williams and Williams][Kowalik et al.]

If every graph in H has vertex cover number at most c , then
#Sub(H) is polynomial-time solvable.
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Counting subgraphs

Theorem [Curticapean and M. 2014][Curticapean, Dell, and M. 2017]

Let H be a recursively enumerable class of graphs. If H has
unbounded vertex cover number, then #Sub(H) is #W[1]-hard.

(ν(G) ≤ τ(G) ≤ 2ν(G), hence “unbounded vertex cover number” and
“unbounded matching number” are the same.)

Dichotomy theorem:

Theorem
Assuming FPT 6= W[1], for every recursively enumerable class H of
graphs, the following are equivalent:

1 #Sub(H) is polynomial-time solvable.
2 #Sub(H) is FPT parameterized by |V (H)|.
3 H has bounded vertex cover number.
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Subgraphs ⇔ homomorphisms
Easy to check:

hom( ,G ) = 8sub( ,G ) + 4sub( ,G ) + 2sub( ,G )

43

2 1

1 2

34

Not completely obvious:

The formula can be reversed by inclusion-exclusion.

sub( ,G ) =
1
8
hom( ,G )− 1

4
hom( ,G ) +

1
8
hom( ,G )
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General statements

Definition
surj(H,G ): number of surjective homomorphisms from H to G
(every vertex and edge of G appears in the image).

Homomorphisms can be counted by classifying according to the
image F :

hom( ,G ) = 8sub( ,G ) + 4sub( ,G ) + 2sub( ,G )
⇓

hom(H,G ) =
∑

F surj(H,F )sub(F ,G )

Which of the terms can be nonzero?

15



Spasm

Part0(H): set of partitions of V (H) where each class is an
independent set.
For Π ∈ Part0(H), H|Π is obtained by contracting the classes
of Π.

Spasm = {H|Π | Π ∈ Part0(H)}

Spasm( ) =
{

, , , , , , ,
}
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Subgraphs ⇔ homomorphisms

From subgraphs to homomorphisms:

hom(H,G ) =
∑
F

surj(H,F )sub(F ,G )

where surj(H,F ) 6= 0 if and only if F ∈ Spasm(H).

. . . useless.

From homomorphisms to subgraphs: [Lovász 1967]

sub(H,G ) =
∑
F

βF hom(F ,G )

where βF 6= 0 if and only if F ∈ Spasm(H).

Extremely useful for applications in algorithms and complexity!
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Algorithmic applications

sub(H,G ) =
∑

F∈Spasm(H)

βF hom(F ,G )

The maximum treewidth in Spasm(H) gives an upper bound on
complexity:

Corollary
If every graph in Spasm(H) has treewidth at most c , then
sub(H,G ) can be computed in time O(nc+1).

18



Algorithmic applications

Corollary
If every graph in Spasm(H) has treewidth at most c , then
sub(H,G ) can be computed in time O(nc+1).

Observe: If H has k edges, then every graph in Spasm(H) has at
most k edges.

Theorem [Scott and Sorkin 2007]

Every graph with ≤ k edges has treewidth at most 0.174k + O(1).

Corollary
If H has k edges, then sub(H,G ) can be computed in time
n0.174k+O(1).
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Counting k-paths

Corollary
If H has k edges, then sub(H,G ) can be computed in time
n0.174k+O(1).

Example: Counting k-paths

Brute force: O(nk).
Meet in the middle [Björklund et al. 2009],[Koutis and Williams
2016]: O(n0.5k).
[Björklund et al. 2014]: n0.455k+O(1).
New! counting homomorphisms in the spasm: n0.174k+O(1).

20



Count small cycles

Theorem [Alon, Yuster, and Zwick 1997]

For k ≤ 7, we can compute sub(Ck ,G ) in time nω (where
ω < 2.373 is the matrix-multiplication exponent).

We can recover this result:
Check: if k ≤ 7, then every graph in Spasm(Ck ,G ) has
treewidth at most 2.
For treewidth 2, the O(n2+1) homomorphism algorithm can be
improved to O(nω) with fast matrix multiplication.
⇒ O(nω) algorithm for sub(Ck ,G ) if k ≤ 7.
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Vertex cover

Theorem
If H has vertex cover number c , then hom(H,G ) can be computed
in time O(nc+1).

Proof: For F ∈ Spasm(H), we have tw(F ) ≤ vc(F ) ≤ vc(H) ≤ c .

Corollary
If H is a class of graphs with bounded vertex cover number, then
#Sub(H) is FPT parameterized by |V (H)|.

(Can be improved to polynomial time.)

22



Complexity applications

sub(H,G ) =
∑

F∈Spasm(H)

βF hom(F ,G )

Note: Every βF is nonzero.

Reductions:

Obvious:
if we can compute hom(F ,G ) for any F ∈ Spasm(H)
⇒ we can compute sub(H,G ).
Highly nontrivial:
if we can compute sub(H,G )
⇒ we can compute hom(F ,G ) for any F ∈ Spasm(H).

Complexity of hom(F ,G ) for any F ∈ Spasm(H) is a lower bound
on the complexity of sub(H,G ).
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Matrices
Fix an enumeration of graphs with ≤ k edges with nondecreasing
number of edges.

Hom matrix: row i , column j is hom(Hi ,Hj).
Sub matrix: row i , column j is sub(Hi ,Hj).
Surj matrix: row i , column j is surj(Hi ,Hj).

hom(H,G ) =
∑

F surj(H,F )sub(F ,G )
⇓

Hom = Surj · Sub

The Hom matrix is invertible!
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Categorial product

One of the standard graph products:

Definition
G1 × G2 has vertex set V (G1)× V (G2) and (v1, v2) and (v ′1, v

′
2)

adjacent in G1 × G2 ⇐⇒ v1v
′
1 ∈ E (G1) and v2v

′
2 ∈ E (G2).

[missing figure]

Exercise:

hom(H,G1 × G2) = hom(H,G1) · hom(H,G2)

25



Extracting a term
Lemma
Given an algorithm for sub(H,G ) =

∑
F∈Spasm(H) βF hom(F ,G )

(with βF 6= 0), we can compute hom(F ,G ) for any F ∈ Spasm(H).

Use the algorithm on Z × G for every Z with ≤ k = |E (H)| edges.∑
F∈Spasm(H)

βF · hom(F ,Z × G ) = bZ

HomT · =

bZ1βF1 · hom(F1,G )

βFt · hom(Ft ,G ) bZt

...
...

The Hom matrix is invertible, so we can solve this system of equations!
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Hardness results

Theorem
Counting k-matchings is W[1]-hard.

Proof: As Kk ∈ Spasm(M(k2)
), counting k-cliques can be reduced

to counting
(k
2

)
-matchings.

With standard techniques, we can show that there is no
f (k)no(k/ log k) time algorithm, assuming ETH.
For other counting problems, hardness boils down to finding a
graph of large treewidth in the spasm.
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Hardness results

Theorem
If H is a class of graphs with unbounded vertex cover number, then
#Sub(H) is W[1]-hard.

Proof:
Let H′ =

⋃
H∈H Spasm(H).

Lemma: If H has vertex cover numer k , then Spasm(H)
contains a graph with treewidth Ω(k).
As H has unbounded vertex cover number, H′ has unbounded
treewidth.
Thus #Hom(H′) is W[1]-hard [Dalmau and Jonsson 2004].
We can reduce #Hom(H′) to #Sub(H).
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Dichotomy result
Theorem
Assuming FPT 6= W[1], for every recursively enumerable class H of
graphs, the following are equivalent:

1 #Sub(H) is polynomial-time solvable.
2 #Sub(H) is FPT parameterized by |V (H)|.
3 H has bounded vertex cover number.

Ingredients:
Formula sub(H,G ) =

∑
F∈Spasm(H) βF ,H hom(F ,G ).

Complexity of hom(F ,G ) is well understood from earlier work:
treewidth determines it.
Algorithmic result: bounded vc-number implies that
treewidth is bounded in the spasm.
Hardness result:

1 For F ∈ Spasm(H), hom(F ,G ) can be reduced to hom(H,G ).
2 If vc-number is unbounded, then the spasm contains graphs of

large treewidth.
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Outlook

Similar approach for counting induced subgraphs.
Graph motif parameters: those that can be computed from
counting induced subgraphs of bounded size.
Linear combination of homomorphisms seems to be the most
fundamental form of description.
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