
Counting in Parameterized Comlexity

Dániel Marx

Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary

Joint work with Radu Curticapean and Holger Dell

Recent Advances in Parameterized Complexity
Tel Aviv, Israel, December 7, 2017

1

Counting problems

Counting is harder than decision:
Counting version of easy problems:
not clear if they remain easy.
Counting version of hard problems:
not clear if we can keep the same running time.

Working on counting problems is fun:
You can revisit fundamental, “well-understood” problems.
Requires a new set of lower bound techniques.
Requires new algorithmic techniques.

2

Counting problems

Counting is harder than decision:
Counting version of easy problems:
not clear if they remain easy.
Counting version of hard problems:
not clear if we can keep the same running time.

Working on counting problems is fun:
You can revisit fundamental, “well-understood” problems.
Requires a new set of lower bound techniques.
Requires new algorithmic techniques.

2

FPT techniques

Treewidth

Color coding

Iterative compression

Kernelization

Algebraic techniques

Bounded-depth search trees

3

FPT techniques . . . for counting?

Treewidth

Colorc
oding

Iterative compression

Algebraic techniques

Bounded-depth search trees

Kernelization

3

FPT techniques . . . for counting?

Treewidth

Colorc
oding

Iterative compression

Algebraictechniques

Bounded-depth search trees

Kernelization

3

FPT techniques . . . for counting?

Treewidth

Colorc
oding

Iterative compression

Algebraictechniques

Bounded-depth search trees

Kernelization

3

Counting complexity

W[1]-hardness: “as hard as find a k-clique”
#W[1]-hardness: “as hard as counting k-cliques”

Questions about counting versions of W[1]-hard problems:
Theoretical question:
Is the the counting version of a W[1]-hard problem
#W[1]-hard?
More fine-grained question:
Can we get the same running time (e.g., nO(

√
k)) also for the

counting version?

4

Counting complexity

What can happen to the counting versions of an FPT or P
problem?

1 The same algorithmic technique shows that the counting
problem is FPT.

2 New algorithmic techniques are needed to show that the
counting version is FPT.

3 New lower bound technique are needed to show that the
counting version is #W[1]-hard.

5

Counting patterns
Main question
Which type of subgraph patterns are easy to count?

biclique clique complete multipartite graph matching

star subdivided star windmillpath

Before that: counting homomorphisms!

6

Counting patterns
Main question
Which type of subgraph patterns are easy to count?

biclique clique complete multipartite graph matching

star subdivided star windmillpath

Before that: counting homomorphisms!
6

Homomorphisms
A homomorphism from H to G is a mapping f : V (H)→ V (G)
such that if ab is an edge of H, then f (a)f (b) is an edge of G .

43

2 1

1 2

34

Which pattern graphs H are easy for counting homomorphisms?

Theorem (trivial)
For every fixed H, the problem #Hom(H) (count homomorphisms
from H to the given graph G) is polynomial-time solvable.

. . . because we can try all |V (G)||V (H)| possible mappings
f : V (H)→ V (G).

7

Homomorphisms
A homomorphism from H to G is a mapping f : V (H)→ V (G)
such that if ab is an edge of H, then f (a)f (b) is an edge of G .

3

24 1

1 2

34

Which pattern graphs H are easy for counting homomorphisms?

Theorem (trivial)
For every fixed H, the problem #Hom(H) (count homomorphisms
from H to the given graph G) is polynomial-time solvable.

. . . because we can try all |V (G)||V (H)| possible mappings
f : V (H)→ V (G).

7

Homomorphisms
A homomorphism from H to G is a mapping f : V (H)→ V (G)
such that if ab is an edge of H, then f (a)f (b) is an edge of G .

24

1 2

34

13

Which pattern graphs H are easy for counting homomorphisms?

Theorem (trivial)
For every fixed H, the problem #Hom(H) (count homomorphisms
from H to the given graph G) is polynomial-time solvable.

. . . because we can try all |V (G)||V (H)| possible mappings
f : V (H)→ V (G).

7

Homomorphisms
A homomorphism from H to G is a mapping f : V (H)→ V (G)
such that if ab is an edge of H, then f (a)f (b) is an edge of G .

13

1 2

34

24

Which pattern graphs H are easy for counting homomorphisms?

Theorem (trivial)
For every fixed H, the problem #Hom(H) (count homomorphisms
from H to the given graph G) is polynomial-time solvable.

. . . because we can try all |V (G)||V (H)| possible mappings
f : V (H)→ V (G).

7

Homomorphisms
A homomorphism from H to G is a mapping f : V (H)→ V (G)
such that if ab is an edge of H, then f (a)f (b) is an edge of G .

13

1 2

34

24

Which pattern graphs H are easy for counting homomorphisms?

Theorem (trivial)
For every fixed H, the problem #Hom(H) (count homomorphisms
from H to the given graph G) is polynomial-time solvable.

. . . because we can try all |V (G)||V (H)| possible mappings
f : V (H)→ V (G).

7

Homomorphisms
A homomorphism from H to G is a mapping f : V (H)→ V (G)
such that if ab is an edge of H, then f (a)f (b) is an edge of G .

13

1 2

34

24

Which pattern graphs H are easy for counting homomorphisms?

Theorem (trivial)
For every fixed H, the problem #Hom(H) (count homomorphisms
from H to the given graph G) is polynomial-time solvable.

. . . because we can try all |V (G)||V (H)| possible mappings
f : V (H)→ V (G).

7

Counting homomorphisms

Better question:

#Hom(H)
Input: graph H ∈ H and an arbitrary graph G .
Task: count the number of homomorphisms from H to G .

Goal: characterize the classes H for which #Hom(H) is
polynomial-time solvable.

We have reasons to believe that there is no P vs. NP-complete
dichotomy for #Hom(H). Instead of NP-completeness, we will use
paramterized complexity for giving negative evidence.

We parameterize by k = |V (H)|, i.e., our goal is an
f (|V (H)|) · nO(1) time algorithm.

8

Counting homomorphisms

Better question:

#Hom(H)
Input: graph H ∈ H and an arbitrary graph G .
Task: count the number of homomorphisms from H to G .

Goal: characterize the classes H for which #Hom(H) is
polynomial-time solvable.

We have reasons to believe that there is no P vs. NP-complete
dichotomy for #Hom(H). Instead of NP-completeness, we will use
paramterized complexity for giving negative evidence.

We parameterize by k = |V (H)|, i.e., our goal is an
f (|V (H)|) · nO(1) time algorithm.

8

Counting homomorphisms

Theorem [Dalmau and Jonsson 2004]

Assuming FPT 6= W[1], for every recursively enumerable class H of
graphs, the following are equivalent:

1 #Hom(H) is polynomial-time solvable.
2 #Hom(H) is FPT parameterized by |V (H)|.
3 H has bounded treewidth.

9

Counting homomorphisms

Theorem [Dalmau and Jonsson 2004]

Assuming FPT 6= W[1], for every recursively enumerable class H of
graphs, the following are equivalent:

1 #Hom(H) is polynomial-time solvable.
2 #Hom(H) is FPT parameterized by |V (H)|.
3 H has bounded treewidth.

Proof of the positive result:
Show that the problem can be solved in time O(nc+1) if H has
treewidth c (standard dynamic programing).
[Díaz et al. 2002]

9

Counting homomorphisms

Theorem [Dalmau and Jonsson 2004]

Assuming FPT 6= W[1], for every recursively enumerable class H of
graphs, the following are equivalent:

1 #Hom(H) is polynomial-time solvable.
2 #Hom(H) is FPT parameterized by |V (H)|.
3 H has bounded treewidth.

Excluded Grid Theorem [Robertson and Seymour]

There is a function f such that every graph with treewidth f (k)
contains a k × k grid minor.

9

Counting homomorphisms

Theorem [Dalmau and Jonsson 2004]

Assuming FPT 6= W[1], for every recursively enumerable class H of
graphs, the following are equivalent:

1 #Hom(H) is polynomial-time solvable.
2 #Hom(H) is FPT parameterized by |V (H)|.
3 H has bounded treewidth.

Proof of the negative result:

1 Show that #Hom(H) is W[1]-hard if H is the class of grids.
2 Show that if H contains �k×k as minor, then #Hom(�k×k)

can be reduced to #Hom(H).
3 Use the Excluded Grid Theorem to show that this implies

W[1]-hardness for every class H with unbounded treewidth.

9

Counting subgraphs

Two highlights of classical complexity:

Finding a perfect matching is polynomial-time solvable.
[Edmonds 1965]

Counting perfect matchings is #P-hard.
[Valiant 1979]

[Flum and Grohe 2002] started the study of parameterized counting
problems.

Theorem
Counting k-paths is #W[1]-hard.

Question: What about counting k-matchings?

10

Counting subgraphs

Two highlights of classical complexity:

Finding a perfect matching is polynomial-time solvable.
[Edmonds 1965]

Counting perfect matchings is #P-hard.
[Valiant 1979]

[Flum and Grohe 2002] started the study of parameterized counting
problems.

Theorem
Counting k-paths is #W[1]-hard.

Question: What about counting k-matchings?

10

Counting k-matchings

Colorful history:

Weighted version is #W[1]-hard
[Bläser and Curticapean 2012]

Unweighted version is #W[1]-hard
[Curticapean 2013] — complicated proof.
Unweighted version is #W[1]-hard
[Curticapean and M 2014] — simpler proof.
Unweighted version is #W[1]-hard
[Curticapean and M, unpublished] — even simpler proof.
Unweighted version is #W[1]-hard
[Curticapean, Dell, and M 2017] — tells the real story.

11

Counting k-matchings

Colorful history:
Weighted version is #W[1]-hard
[Bläser and Curticapean 2012]

Unweighted version is #W[1]-hard
[Curticapean 2013] — complicated proof.
Unweighted version is #W[1]-hard
[Curticapean and M 2014] — simpler proof.
Unweighted version is #W[1]-hard
[Curticapean and M, unpublished] — even simpler proof.
Unweighted version is #W[1]-hard
[Curticapean, Dell, and M 2017] — tells the real story.

11

Counting k-matchings

Colorful history:
Weighted version is #W[1]-hard
[Bläser and Curticapean 2012]

Unweighted version is #W[1]-hard
[Curticapean 2013] — complicated proof.

Unweighted version is #W[1]-hard
[Curticapean and M 2014] — simpler proof.
Unweighted version is #W[1]-hard
[Curticapean and M, unpublished] — even simpler proof.
Unweighted version is #W[1]-hard
[Curticapean, Dell, and M 2017] — tells the real story.

11

Counting k-matchings

Colorful history:
Weighted version is #W[1]-hard
[Bläser and Curticapean 2012]

Unweighted version is #W[1]-hard
[Curticapean 2013] — complicated proof.
Unweighted version is #W[1]-hard
[Curticapean and M 2014] — simpler proof.

Unweighted version is #W[1]-hard
[Curticapean and M, unpublished] — even simpler proof.
Unweighted version is #W[1]-hard
[Curticapean, Dell, and M 2017] — tells the real story.

11

Counting k-matchings

Colorful history:
Weighted version is #W[1]-hard
[Bläser and Curticapean 2012]

Unweighted version is #W[1]-hard
[Curticapean 2013] — complicated proof.
Unweighted version is #W[1]-hard
[Curticapean and M 2014] — simpler proof.
Unweighted version is #W[1]-hard
[Curticapean and M, unpublished] — even simpler proof.

Unweighted version is #W[1]-hard
[Curticapean, Dell, and M 2017] — tells the real story.

11

Counting k-matchings

Colorful history:
Weighted version is #W[1]-hard
[Bläser and Curticapean 2012]

Unweighted version is #W[1]-hard
[Curticapean 2013] — complicated proof.
Unweighted version is #W[1]-hard
[Curticapean and M 2014] — simpler proof.
Unweighted version is #W[1]-hard
[Curticapean and M, unpublished] — even simpler proof.
Unweighted version is #W[1]-hard
[Curticapean, Dell, and M 2017] — tells the real story.

11

Counting subgraphs
#Sub(H)
Input: a graph H ∈ H and an arbitrary graph G .
Task: calculate the number of copies of H in G .

If H is the class of all stars, then #Sub(H) is easy: for each
placement of the center of the star, calculate the number of
possible different assignments of the leaves.

H G

Theorem [Vassilevska Williams and Williams][Kowalik et al.]

If every graph in H has vertex cover number at most c , then
#Sub(H) is polynomial-time solvable.

12

Counting subgraphs
#Sub(H)
Input: a graph H ∈ H and an arbitrary graph G .
Task: calculate the number of copies of H in G .

If H is the class of all stars, then #Sub(H) is easy: for each
placement of the center of the star, calculate the number of
possible different assignments of the leaves.

H G

Theorem [Vassilevska Williams and Williams][Kowalik et al.]

If every graph in H has vertex cover number at most c , then
#Sub(H) is polynomial-time solvable.

12

Counting subgraphs

Theorem [Curticapean and M. 2014][Curticapean, Dell, and M. 2017]

Let H be a recursively enumerable class of graphs. If H has
unbounded vertex cover number, then #Sub(H) is #W[1]-hard.

(ν(G) ≤ τ(G) ≤ 2ν(G), hence “unbounded vertex cover number” and
“unbounded matching number” are the same.)

Dichotomy theorem:

Theorem
Assuming FPT 6= W[1], for every recursively enumerable class H of
graphs, the following are equivalent:

1 #Sub(H) is polynomial-time solvable.
2 #Sub(H) is FPT parameterized by |V (H)|.
3 H has bounded vertex cover number.

13

Counting subgraphs

Theorem [Curticapean and M. 2014][Curticapean, Dell, and M. 2017]

Let H be a recursively enumerable class of graphs. If H has
unbounded vertex cover number, then #Sub(H) is #W[1]-hard.

(ν(G) ≤ τ(G) ≤ 2ν(G), hence “unbounded vertex cover number” and
“unbounded matching number” are the same.)

Dichotomy theorem:

Theorem
Assuming FPT 6= W[1], for every recursively enumerable class H of
graphs, the following are equivalent:

1 #Sub(H) is polynomial-time solvable.
2 #Sub(H) is FPT parameterized by |V (H)|.
3 H has bounded vertex cover number.

13

Subgraphs ⇔ homomorphisms
Easy to check:

hom(,G) = 8sub(,G) + 4sub(,G) + 2sub(,G)

43

2 1

1 2

34

Not completely obvious:

The formula can be reversed by inclusion-exclusion.

sub(,G) =
1
8
hom(,G)− 1

4
hom(,G) +

1
8
hom(,G)

14

Subgraphs ⇔ homomorphisms
Easy to check:

hom(,G) = 8sub(,G) + 4sub(,G) + 2sub(,G)

3

24 1

1 2

34

Not completely obvious:

The formula can be reversed by inclusion-exclusion.

sub(,G) =
1
8
hom(,G)− 1

4
hom(,G) +

1
8
hom(,G)

14

Subgraphs ⇔ homomorphisms
Easy to check:

hom(,G) = 8sub(,G) + 4sub(,G) + 2sub(,G)

24

1 2

34

13

Not completely obvious:

The formula can be reversed by inclusion-exclusion.

sub(,G) =
1
8
hom(,G)− 1

4
hom(,G) +

1
8
hom(,G)

14

Subgraphs ⇔ homomorphisms
Easy to check:

hom(,G) = 8sub(,G) + 4sub(,G) + 2sub(,G)

24

1 2

34

13

Not completely obvious:

The formula can be reversed by inclusion-exclusion.

sub(,G) =
1
8
hom(,G)− 1

4
hom(,G) +

1
8
hom(,G)

14

General statements

Definition
surj(H,G): number of surjective homomorphisms from H to G
(every vertex and edge of G appears in the image).

Homomorphisms can be counted by classifying according to the
image F :

hom(,G) = 8sub(,G) + 4sub(,G) + 2sub(,G)
⇓

hom(H,G) =
∑

F surj(H,F)sub(F ,G)

Which of the terms can be nonzero?

15

Spasm

Part0(H): set of partitions of V (H) where each class is an
independent set.
For Π ∈ Part0(H), H|Π is obtained by contracting the classes
of Π.

Spasm = {H|Π | Π ∈ Part0(H)}

Spasm() =
{

, , , , , , ,
}

16

Spasm

Part0(H): set of partitions of V (H) where each class is an
independent set.
For Π ∈ Part0(H), H|Π is obtained by contracting the classes
of Π.

Spasm = {H|Π | Π ∈ Part0(H)}

Spasm() =
{

, , , , , , ,
}
16

Subgraphs ⇔ homomorphisms

From subgraphs to homomorphisms:

hom(H,G) =
∑
F

surj(H,F)sub(F ,G)

where surj(H,F) 6= 0 if and only if F ∈ Spasm(H).

. . . useless.

From homomorphisms to subgraphs: [Lovász 1967]

sub(H,G) =
∑
F

βF hom(F ,G)

where βF 6= 0 if and only if F ∈ Spasm(H).

Extremely useful for applications in algorithms and complexity!

17

Subgraphs ⇔ homomorphisms

From subgraphs to homomorphisms:

hom(H,G) =
∑
F

surj(H,F)sub(F ,G)

where surj(H,F) 6= 0 if and only if F ∈ Spasm(H).

. . . useless.

From homomorphisms to subgraphs: [Lovász 1967]

sub(H,G) =
∑
F

βF hom(F ,G)

where βF 6= 0 if and only if F ∈ Spasm(H).

Extremely useful for applications in algorithms and complexity!

17

Subgraphs ⇔ homomorphisms

From subgraphs to homomorphisms:

hom(H,G) =
∑
F

surj(H,F)sub(F ,G)

where surj(H,F) 6= 0 if and only if F ∈ Spasm(H).

. . . useless.

From homomorphisms to subgraphs: [Lovász 1967]

sub(H,G) =
∑
F

βF hom(F ,G)

where βF 6= 0 if and only if F ∈ Spasm(H).

Extremely useful for applications in algorithms and complexity!

17

Algorithmic applications

sub(H,G) =
∑

F∈Spasm(H)

βF hom(F ,G)

The maximum treewidth in Spasm(H) gives an upper bound on
complexity:

Corollary
If every graph in Spasm(H) has treewidth at most c , then
sub(H,G) can be computed in time O(nc+1).

18

Algorithmic applications

Corollary
If every graph in Spasm(H) has treewidth at most c , then
sub(H,G) can be computed in time O(nc+1).

Observe: If H has k edges, then every graph in Spasm(H) has at
most k edges.

Theorem [Scott and Sorkin 2007]

Every graph with ≤ k edges has treewidth at most 0.174k + O(1).

Corollary
If H has k edges, then sub(H,G) can be computed in time
n0.174k+O(1).

19

Algorithmic applications

Corollary
If every graph in Spasm(H) has treewidth at most c , then
sub(H,G) can be computed in time O(nc+1).

Observe: If H has k edges, then every graph in Spasm(H) has at
most k edges.

Theorem [Scott and Sorkin 2007]

Every graph with ≤ k edges has treewidth at most 0.174k + O(1).

Corollary
If H has k edges, then sub(H,G) can be computed in time
n0.174k+O(1).

19

Counting k-paths

Corollary
If H has k edges, then sub(H,G) can be computed in time
n0.174k+O(1).

Example: Counting k-paths

Brute force: O(nk).
Meet in the middle [Björklund et al. 2009],[Koutis and Williams
2016]: O(n0.5k).
[Björklund et al. 2014]: n0.455k+O(1).
New! counting homomorphisms in the spasm: n0.174k+O(1).

20

Count small cycles

Theorem [Alon, Yuster, and Zwick 1997]

For k ≤ 7, we can compute sub(Ck ,G) in time nω (where
ω < 2.373 is the matrix-multiplication exponent).

We can recover this result:
Check: if k ≤ 7, then every graph in Spasm(Ck ,G) has
treewidth at most 2.
For treewidth 2, the O(n2+1) homomorphism algorithm can be
improved to O(nω) with fast matrix multiplication.
⇒ O(nω) algorithm for sub(Ck ,G) if k ≤ 7.

21

Count small cycles

Theorem [Alon, Yuster, and Zwick 1997]

For k ≤ 7, we can compute sub(Ck ,G) in time nω (where
ω < 2.373 is the matrix-multiplication exponent).

We can recover this result:
Check: if k ≤ 7, then every graph in Spasm(Ck ,G) has
treewidth at most 2.
For treewidth 2, the O(n2+1) homomorphism algorithm can be
improved to O(nω) with fast matrix multiplication.
⇒ O(nω) algorithm for sub(Ck ,G) if k ≤ 7.

21

Vertex cover

Theorem
If H has vertex cover number c , then hom(H,G) can be computed
in time O(nc+1).

Proof: For F ∈ Spasm(H), we have tw(F) ≤ vc(F) ≤ vc(H) ≤ c .

Corollary
If H is a class of graphs with bounded vertex cover number, then
#Sub(H) is FPT parameterized by |V (H)|.

(Can be improved to polynomial time.)

22

Complexity applications

sub(H,G) =
∑

F∈Spasm(H)

βF hom(F ,G)

Note: Every βF is nonzero.

Reductions:

Obvious:
if we can compute hom(F ,G) for any F ∈ Spasm(H)
⇒ we can compute sub(H,G).
Highly nontrivial:
if we can compute sub(H,G)
⇒ we can compute hom(F ,G) for any F ∈ Spasm(H).

Complexity of hom(F ,G) for any F ∈ Spasm(H) is a lower bound
on the complexity of sub(H,G).

23

Complexity applications

sub(H,G) =
∑

F∈Spasm(H)

βF hom(F ,G)

Note: Every βF is nonzero.

Reductions:
Obvious:
if we can compute hom(F ,G) for any F ∈ Spasm(H)
⇒ we can compute sub(H,G).

Highly nontrivial:
if we can compute sub(H,G)
⇒ we can compute hom(F ,G) for any F ∈ Spasm(H).

Complexity of hom(F ,G) for any F ∈ Spasm(H) is a lower bound
on the complexity of sub(H,G).

23

Complexity applications

sub(H,G) =
∑

F∈Spasm(H)

βF hom(F ,G)

Note: Every βF is nonzero.

Reductions:
Obvious:
if we can compute hom(F ,G) for any F ∈ Spasm(H)
⇒ we can compute sub(H,G).
Highly nontrivial:
if we can compute sub(H,G)
⇒ we can compute hom(F ,G) for any F ∈ Spasm(H).

Complexity of hom(F ,G) for any F ∈ Spasm(H) is a lower bound
on the complexity of sub(H,G).

23

Complexity applications

sub(H,G) =
∑

F∈Spasm(H)

βF hom(F ,G)

Note: Every βF is nonzero.

Reductions:
Obvious:
if we can compute hom(F ,G) for any F ∈ Spasm(H)
⇒ we can compute sub(H,G).
Highly nontrivial:
if we can compute sub(H,G)
⇒ we can compute hom(F ,G) for any F ∈ Spasm(H).

Complexity of hom(F ,G) for any F ∈ Spasm(H) is a lower bound
on the complexity of sub(H,G).

23

Matrices
Fix an enumeration of graphs with ≤ k edges with nondecreasing
number of edges.

Hom matrix: row i , column j is hom(Hi ,Hj).
Sub matrix: row i , column j is sub(Hi ,Hj).
Surj matrix: row i , column j is surj(Hi ,Hj).

hom(H,G) =
∑

F surj(H,F)sub(F ,G)
⇓

Hom = Surj · Sub

The Hom matrix is invertible!

24

Matrices
Fix an enumeration of graphs with ≤ k edges with nondecreasing
number of edges.

Hom matrix: row i , column j is hom(Hi ,Hj).
Sub matrix: row i , column j is sub(Hi ,Hj).
Surj matrix: row i , column j is surj(Hi ,Hj).

hom(H,G) =
∑

F surj(H,F)sub(F ,G)
⇓

Hom = Surj · Sub

Hom = Surj Sub·

The Hom matrix is invertible!

24

Matrices
Fix an enumeration of graphs with ≤ k edges with nondecreasing
number of edges.

Hom matrix: row i , column j is hom(Hi ,Hj).
Sub matrix: row i , column j is sub(Hi ,Hj).
Surj matrix: row i , column j is surj(Hi ,Hj).

hom(H,G) =
∑

F surj(H,F)sub(F ,G)
⇓

Hom = Surj · Sub

Hom = Surj Sub·
H

G

The Hom matrix is invertible!

24

Matrices
Fix an enumeration of graphs with ≤ k edges with nondecreasing
number of edges.

Hom matrix: row i , column j is hom(Hi ,Hj).
Sub matrix: row i , column j is sub(Hi ,Hj).
Surj matrix: row i , column j is surj(Hi ,Hj).

hom(H,G) =
∑

F surj(H,F)sub(F ,G)
⇓

Hom = Surj · Sub

Hom = Surj Sub·

The Hom matrix is invertible!

24

Categorial product

One of the standard graph products:

Definition
G1 × G2 has vertex set V (G1)× V (G2) and (v1, v2) and (v ′1, v

′
2)

adjacent in G1 × G2 ⇐⇒ v1v
′
1 ∈ E (G1) and v2v

′
2 ∈ E (G2).

[missing figure]

Exercise:

hom(H,G1 × G2) = hom(H,G1) · hom(H,G2)

25

Extracting a term
Lemma
Given an algorithm for sub(H,G) =

∑
F∈Spasm(H) βF hom(F ,G)

(with βF 6= 0), we can compute hom(F ,G) for any F ∈ Spasm(H).

Use the algorithm on Z × G for every Z with ≤ k = |E (H)| edges.∑
F∈Spasm(H)

βF · hom(F ,Z × G) = bZ

HomT · =

bZ1βF1 · hom(F1,G)

βFt · hom(Ft ,G) bZt

...
...

The Hom matrix is invertible, so we can solve this system of equations!

26

Extracting a term
Lemma
Given an algorithm for sub(H,G) =

∑
F∈Spasm(H) βF hom(F ,G)

(with βF 6= 0), we can compute hom(F ,G) for any F ∈ Spasm(H).

Use the algorithm on Z × G for every Z with ≤ k = |E (H)| edges.∑
F∈Spasm(H)

βF · hom(F ,Z) · hom(F ,G) = bZ

HomT · =

bZ1βF1 · hom(F1,G)

βFt · hom(Ft ,G) bZt

...
...

The Hom matrix is invertible, so we can solve this system of equations!

26

Extracting a term
Lemma
Given an algorithm for sub(H,G) =

∑
F∈Spasm(H) βF hom(F ,G)

(with βF 6= 0), we can compute hom(F ,G) for any F ∈ Spasm(H).

Use the algorithm on Z × G for every Z with ≤ k = |E (H)| edges.∑
F∈Spasm(H)

hom(F ,Z) · βF · hom(F ,G) = bZ

HomT · =

bZ1βF1 · hom(F1,G)

βFt · hom(Ft ,G) bZt

...
...

The Hom matrix is invertible, so we can solve this system of equations!

26

Extracting a term
Lemma
Given an algorithm for sub(H,G) =

∑
F∈Spasm(H) βF hom(F ,G)

(with βF 6= 0), we can compute hom(F ,G) for any F ∈ Spasm(H).

Use the algorithm on Z × G for every Z with ≤ k = |E (H)| edges.∑
F∈Spasm(H)

hom(F ,Z) · βF · hom(F ,G) = bZ

HomT · =

bZ1βF1 · hom(F1,G)

βFt · hom(Ft ,G) bZt

...
...

The Hom matrix is invertible, so we can solve this system of equations!

26

Extracting a term
Lemma
Given an algorithm for sub(H,G) =

∑
F∈Spasm(H) βF hom(F ,G)

(with βF 6= 0), we can compute hom(F ,G) for any F ∈ Spasm(H).

Use the algorithm on Z × G for every Z with ≤ k = |E (H)| edges.∑
F∈Spasm(H)

hom(F ,Z) · βF · hom(F ,G) = bZ

HomT · =

bZ1βF1 · hom(F1,G)

βFt · hom(Ft ,G) bZt

...
...

The Hom matrix is invertible, so we can solve this system of equations!
26

Hardness results

Theorem
Counting k-matchings is W[1]-hard.

Proof: As Kk ∈ Spasm(M(k2)
), counting k-cliques can be reduced

to counting
(k
2

)
-matchings.

With standard techniques, we can show that there is no
f (k)no(k/ log k) time algorithm, assuming ETH.
For other counting problems, hardness boils down to finding a
graph of large treewidth in the spasm.

27

Hardness results

Theorem
Counting k-matchings is W[1]-hard.

Proof: As Kk ∈ Spasm(M(k2)
), counting k-cliques can be reduced

to counting
(k
2

)
-matchings.

With standard techniques, we can show that there is no
f (k)no(k/ log k) time algorithm, assuming ETH.
For other counting problems, hardness boils down to finding a
graph of large treewidth in the spasm.

27

Hardness results

Theorem
Counting k-matchings is W[1]-hard.

Proof: As Kk ∈ Spasm(M(k2)
), counting k-cliques can be reduced

to counting
(k
2

)
-matchings.

With standard techniques, we can show that there is no
f (k)no(k/ log k) time algorithm, assuming ETH.
For other counting problems, hardness boils down to finding a
graph of large treewidth in the spasm.

27

Hardness results

Theorem
If H is a class of graphs with unbounded vertex cover number, then
#Sub(H) is W[1]-hard.

Proof:
Let H′ =

⋃
H∈H Spasm(H).

Lemma: If H has vertex cover numer k , then Spasm(H)
contains a graph with treewidth Ω(k).
As H has unbounded vertex cover number, H′ has unbounded
treewidth.
Thus #Hom(H′) is W[1]-hard [Dalmau and Jonsson 2004].
We can reduce #Hom(H′) to #Sub(H).

28

Dichotomy result
Theorem
Assuming FPT 6= W[1], for every recursively enumerable class H of
graphs, the following are equivalent:

1 #Sub(H) is polynomial-time solvable.
2 #Sub(H) is FPT parameterized by |V (H)|.
3 H has bounded vertex cover number.

Ingredients:
Formula sub(H,G) =

∑
F∈Spasm(H) βF ,H hom(F ,G).

Complexity of hom(F ,G) is well understood from earlier work:
treewidth determines it.
Algorithmic result: bounded vc-number implies that
treewidth is bounded in the spasm.
Hardness result:

1 For F ∈ Spasm(H), hom(F ,G) can be reduced to hom(H,G).
2 If vc-number is unbounded, then the spasm contains graphs of

large treewidth.

29

Dichotomy result
Theorem
Assuming FPT 6= W[1], for every recursively enumerable class H of
graphs, the following are equivalent:

1 #Sub(H) is polynomial-time solvable.
2 #Sub(H) is FPT parameterized by |V (H)|.
3 H has bounded vertex cover number.

Ingredients:
Formula sub(H,G) =

∑
F∈Spasm(H) βF ,H hom(F ,G).

Complexity of hom(F ,G) is well understood from earlier work:
treewidth determines it.
Algorithmic result: bounded vc-number implies that
treewidth is bounded in the spasm.
Hardness result:

1 For F ∈ Spasm(H), hom(F ,G) can be reduced to hom(H,G).
2 If vc-number is unbounded, then the spasm contains graphs of

large treewidth.
29

Outlook

Similar approach for counting induced subgraphs.
Graph motif parameters: those that can be computed from
counting induced subgraphs of bounded size.
Linear combination of homomorphisms seems to be the most
fundamental form of description.

30

Advertisement
Postdoc positions available in parameterized
algorithms and complexity!

Institute for Computer Science and Control
Hungarian Academy of Sciences
Budapest, Hungary

31

