
Everything you always wanted to know about the
parameterized complexity of Subgraph

Isomorphism

(but were afraid to ask)

Dániel Marx

Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary

(Joint work with Michał Pilipczuk)

BWAG: Bertinoro Workshop on Algorithms and Graphs
December 16, 2013
Bertinoro, Italy

1

Subgraph Isomorphism
Input: Graphs H and G .

Decide: Is H isomorphic to a subgraph of G?

Hard in general: Hamiltonian Cycle is a special case.
Hard even for planar graphs and 3-regular graphs.

Is Subgraph Isomorphism easy on
bounded-treewidth graphs?

2

Subgraph Isomorphism
Input: Graphs H and G .

Decide: Is H isomorphic to a subgraph of G?

Hard in general: Hamiltonian Cycle is a special case.
Hard even for planar graphs and 3-regular graphs.

Is Subgraph Isomorphism easy on
bounded-treewidth graphs?

2

DP and bounded treewidth

Standard dynamic programming on a tree decomposition yields the
following result:

Fact
Subgraph Isomorphism can be solved in time
f (|V (H)|, tw(G)) · n for some computable function f .

This algorithm needs that
H is small and
G has bounded treewidth.

3

Color coding and bounded treewidth

The color coding technique of [Alon, Yuster, Zwick 1994] gives the
following algorithm:

Fact
Subgraph Isomorphism can be solved in time
2O(|V (H)|) · nO(tw(H)).

This algorithm needs that
H is small,
H has bounded treewidth,

but the treewidth of G can be arbitrary.

4

Another DP

A dynamic programming algorithm of [Matoušek and Thomas 1992]
gives the following result:

Fact
Subgraph Isomorphism for connected H can be solved in time
f (|∆(H)|) · nO(tw(G)) for some computable function f .

This algorithm needs that
H has bounded degree,
H is connected, and
G has bounded treewidth,

but the size of H can be arbitrary.

5

Subgraph Isomorphism and Bin Packing

We can reduce Bin Packing (with polynomially bounded sizes) to
Subgraph Isomorphism with both H and G being a set of
paths:

Fact
Subgraph Isomorphism is NP-hard even if both H and G are
sets of paths.

The requirement that H is connected is essential in the [Matoušek
and Thomas 1992] result!

6

Parameters of Subgraph Isomorphism

We have seen that the complexity of Subgraph Isomorphism is
influenced by the following parameters of H and G :

number of vertices,
treewidth,
maximum degree,
number of components (connectedness)

. . . and these parameters can appear either in the exponent of n or
as a multiplier of the running time.

What other natural parameters influence the complexity of
Subgraph Isomorphism?

7

Parameters of Subgraph Isomorphism

We have seen that the complexity of Subgraph Isomorphism is
influenced by the following parameters of H and G :

number of vertices,
treewidth,
maximum degree,
number of components (connectedness)

. . . and these parameters can appear either in the exponent of n or
as a multiplier of the running time.

What other natural parameters influence the complexity of
Subgraph Isomorphism?

7

Cliquewidth and Subgraph Isomorphism

Dynamic programming on a tree decomposition:

Fact
Subgraph Isomorphism can be solved in time
f (|V (H)|, tw(G)) · n for some computable function f .

Can be generalized to clique width [Courcelle, Makowsky, Rotics 2000]:

Fact
Subgraph Isomorphism can be solved in time
f (|V (H)|, cw(G)) · n for some computable function f .

8

Cliquewidth and Subgraph Isomorphism

Color coding:

Fact
Subgraph Isomorphism can be solved in time
2O(|V (H)|) · nO(tw(H)).

Cannot be generalized to cliquewidth: cliques have cliquewidth 2 and
k-Clique is W[1]-hard.

Fact
Subgraph Isomorphism cannot be solved in time
f (|V (H)|) · nO(cw(H)) for any computable function f , unless
W[1] = FPT.

8

Planarity and Subgraph Isomorphism
Fact
Subgraph Isomorphism can be solved in time
f (|V (H)|, tw(G)) · n for some computable function f .

The result can be generalized to bounded local treewidth and implies
the following result for planar G :

Fact
Subgraph Isomorphism for planar G can be solved in time
f (|V (H)|) · n for some computable function f .

9

Planarity and Subgraph Isomorphism
Fact
Subgraph Isomorphism can be solved in time
f (|V (H)|, tw(G)) · n for some computable function f .

Bounded local treewidth can be further generalized:

Fact
Subgraph Isomorphism can be solved in time
f (|V (H)|, x(G)) · n for some computable function f , where

x(G) is the genus of G ,
x(G) is the size of the largest clique minor,
x(G) is the size of the largest topological clique minor.

Follows from the linear-time solvability of first-order model checking
on graphs of bounded expansion [Dvořak, Král, Thomas 2010], [Grohe,
Kreutzer, Siebertz 2013].

9

Treewidth and feedback vertex set number

Fact [Bodlaender 1990], [Ponomarenko 1988]

Graph Isomorphism can be solved in time nO(tw(G)).

Major open question if there is a f (tw(G)) · nO(1) time algorithm.

Feedback vertex set number fvs(G): minimum number of
vertices whose deletion makes the graph a forest.

Easy: tw(G) ≤ fvs(G) + 1.

Fact [Kratsch and Schweitzer 2010]

Graph Isomorphism can be solved in time f (fvs(G)) · nO(1).

Is feedback vertex set number a relevant parameter also for
Subgraph Isomorphism?

10

Treewidth and feedback vertex set number

Fact [Bodlaender 1990], [Ponomarenko 1988]

Graph Isomorphism can be solved in time nO(tw(G)).

Major open question if there is a f (tw(G)) · nO(1) time algorithm.

Feedback vertex set number fvs(G): minimum number of
vertices whose deletion makes the graph a forest.

Easy: tw(G) ≤ fvs(G) + 1.

Fact [Kratsch and Schweitzer 2010]

Graph Isomorphism can be solved in time f (fvs(G)) · nO(1).

Is feedback vertex set number a relevant parameter also for
Subgraph Isomorphism?

10

Parameters

We consider the following 10 parameters for H and G :

1 Number of vertices |V (·)|.
2 Number of connected components cc(·).
3 Maximum degree ∆(·).
4 Treewidth tw(·).
5 Pathwidth pw(·).
6 Feedback vertex set number fvs(·).
7 Clique width cw(·).
8 Genus genus(·).
9 Hadwiger number (largest clique minor) hadw(·).
10 Topological Hadwiger number (largest topological clique

minor) hadwT (·).

11

Main result
Goal
Determine for every combination of these parameters whether there
is an algorithm with running time

f1(p1, p2, . . . , p`) · nf2(p`+1,...,pt).

12

Main result
Goal
Determine for every combination of these parameters whether there
is an algorithm with running time

f1(p1, p2, . . . , p`) · nf2(p`+1,...,pt).

5 possible additional restrictions on H or G :
1 Genus is 0 (i.e., planar).
2 Number of components is 1 (i.e., connected).
3 Treewidth is at most 1 (i.e., graph is a forest).
4 Maximum degree at most 2 (i.e., paths and cycles).
5 Maximum degree at most 3.

12

Main result
Goal
Determine for every combination of these parameters whether there
is an algorithm with running time

f1(p1, p2, . . . , p`) · nf2(p`+1,...,pt).

Main result
For any combination of the 2× 10 parameters in the multiplier and
the exponent and for any combinations of the 5 additional
restrictions, we either show an algorithm or prove that no such
algorithm exists (under standard complexity assumption).

12

Main result
Goal
Determine for every combination of these parameters whether there
is an algorithm with running time

f1(p1, p2, . . . , p`) · nf2(p`+1,...,pt).

Main result
For any combination of the 2× 10 parameters in the multiplier and
the exponent and for any combinations of the 5 additional
restrictions, we either show an algorithm or prove that no such
algorithm exists (under standard complexity assumption).

Every question in this framework is completly answered by
11 positive results and
17 negative results.

12

Results

Short Description Thm H G

|V (·)| cc ∆ fvs pw tw cw genus hadw hadwT cc ∆ fvs pw tw cw genus hadw hadwT

Thm P.1 (page 17) M M
FO model checking

Thm P.2 (page 17) M M

Color coding Thm P.3 (page 17) M E

Matoušek-Thomas Thm P.4 (page 18) M M E

Paths&Cycles → Paths&Cycles Thm P.5 (page 18) E 2

Thm P.6 (page 19) E 2 M

Thm P.7 (page 21) E 2 EDynamic Programming

Thm P.8? (page 23) M 1

Thm P.9? (page 28) M 2 M M

Thm P.10? (page 36) E M M EFVS and CSPs

Thm P.11? (page 46) E E M M E

Thm N.1 (page 46) M 2 1

Thm N.2 (page 47) 1 1 E E 0Bin Packing

Thm N.3 (page 47) 2 1 3 E 1

Planar cubic HamPath Thm N.4 (page 48) 1 2 1 3 0

Clique Thm N.5 (page 48) M 1 E

HamPath in bounded cw Thm N.6 (page 48) 1 2 1 M

Thm N.7? (page 57) M E 1 1 3 M M 0

Thm N.8? (page 61) 1 E 1 M M M M E

Thm N.9? (page 61) 1 E 1 3 M M M
Grid Tiling, 1-in-n gadgets

Thm N.10? (page 63) 1 3 E 1 M M M E M

Thm N.11? (page 64) 1 3 E 1 M M 0
Grid Tiling, moustache gadgets

Thm N.12? (page 66) 1 E 1 3 M 0

Small planar graph Thm N.13? (page 67) M 1 3 0

Thm N.14? (page 74) M 2 1 1 M M 0

Thm N.15? (page 77) M 2 1 1 3 M 0

Thm N.16? (page 79) M 2 1 1 M M E M
Exact Planar Arc Supply

Thm N.17? (page 79) M 2 1 1 M M E M

Figure 1: Positive and negative results in the paper. Results marked with ? are new findings that were not known before.

7

13

Comparing specifications
Finding an algorithm satisfying a specification does not become any
easier if we

remove a parameter,
move a parameter from the exponent to the multiplier,
remove a constraint,
adding a parameter to the multiplier or the exponent whose
value is already bounded by a constraint, or
adding a parameter to the multiplier (resp., exponent) whose
value can be bounded by a computable function of the
parameters already in the multiplier (resp., exponent) on
instances where all the constraints in the description hold.

Claim
For any specification, the 11 positive and 17 negative results imply
a positive or negative answer using these rules.

Can be verified by a computer program.

14

Comparing specifications
Finding an algorithm satisfying a specification does not become any
easier if we

remove a parameter,
move a parameter from the exponent to the multiplier,
remove a constraint,
adding a parameter to the multiplier or the exponent whose
value is already bounded by a constraint, or
adding a parameter to the multiplier (resp., exponent) whose
value can be bounded by a computable function of the
parameters already in the multiplier (resp., exponent) on
instances where all the constraints in the description hold.

Claim
For any specification, the 11 positive and 17 negative results imply
a positive or negative answer using these rules.

Can be verified by a computer program.
14

Finding a tree in a tree

Fact
Subgraph Isomorphism is polynomial-time solvable if both H
and G are trees.

15

Finding a tree in a tree

Fact
Subgraph Isomorphism is polynomial-time solvable if both H
and G are trees.

Dynamic programming: for every edge-defined subtree TH ⊆ H
and TG ⊆ G , we let x(TH ,TG) = true if there is a subgraph iso-
morphism from TH to TG matching the root edges.

eH

eG

15

Finding a tree in a tree

Fact
Subgraph Isomorphism is polynomial-time solvable if both H
and G are trees.

We need to match the children trees of TH to the children trees of
TG : we need to solve a bipartite matching problem.

T 1
H T 2

H
T 3

H

T 1
G

T 2
G T 3

G T 4
G T 5

G

eH eG

15

Finding a tree in a tree

Fact
Subgraph Isomorphism is polynomial-time solvable if both H
and G are trees.

We need to match the children trees of TH to the children trees of
TG : we need to solve a bipartite matching problem.

T 1
H T 2

H
T 3

H

T 1
G

T 2
G T 3

G T 4
G T 5

G

eH eG

15

Finding a forest in a tree
Positive result P.8
Subgraph Isomorphism can be solved in randomized time
f (cc(H)) · nO(1) if G is a tree.

Dynamic programming: for every pair of edge-defined subtrees
TH ⊆ H, TG ⊆ H, and subset S of components of H, we let
x(TH ,TG , S) = true if there is a subgraph isomorphism from
TH ∪ S to TG matching the root edges.

16

Finding a forest in a tree
Positive result P.8
Subgraph Isomorphism can be solved in randomized time
f (cc(H)) · nO(1) if G is a tree.

Dynamic programming: for every pair of edge-defined subtrees
TH ⊆ H, TG ⊆ H, and subset S of components of H, we let
x(TH ,TG , S) = true if there is a subgraph isomorphism from
TH ∪ S to TG matching the root edges.

T 1
H T 2

H
T 3

H

T 1
G

T 2
G T 3

G T 4
G T 5

G

eH eG

K1 K2 K3
S

16

Finding a forest in a tree
Positive result P.8
Subgraph Isomorphism can be solved in randomized time
f (cc(H)) · nO(1) if G is a tree.

Dynamic programming: for every pair of edge-defined subtrees
TH ⊆ H, TG ⊆ H, and subset S of components of H, we let
x(TH ,TG , S) = true if there is a subgraph isomorphism from
TH ∪ S to TG matching the root edges.

T 1
H T 2

H
T 3

H

T 1
G

T 2
G T 3

G T 4
G T 5

G

eH eG

K1 K2 K3
S

16

Finding a forest in a tree

Essentially, we need to solve bipartite (perfect) matching with an
additional restriction: the edges are labeled with ` colors and we
need at least one edge of each color.

Fact [Mulmuley, Vazirani, Vazirani 1987]

Given a bipartite (multi)graph B with nonnegative integer weights
and a target weight w , there is a randomized algorithm for finding
a perfect matching of weight exactly w in time polynomial in |B|
and w .

We can solve our colored matching problem in time f (`) · nO(1):
Replace each edge of label i with two parallel edges of weight
0 and 2i−1 + 22`−i .
Find a perfect matching of weight exactly
w =

∑`
i=1(2i−1 + 22`−i).

17

Finding a forest in a tree

Essentially, we need to solve bipartite (perfect) matching with an
additional restriction: the edges are labeled with ` colors and we
need at least one edge of each color.

Fact [Mulmuley, Vazirani, Vazirani 1987]

Given a bipartite (multi)graph B with nonnegative integer weights
and a target weight w , there is a randomized algorithm for finding
a perfect matching of weight exactly w in time polynomial in |B|
and w .

We can solve our colored matching problem in time f (`) · nO(1):
Replace each edge of label i with two parallel edges of weight
0 and 2i−1 + 22`−i .
Find a perfect matching of weight exactly
w =

∑`
i=1(2i−1 + 22`−i).

17

Finding a forest in a tree

Essentially, we need to solve bipartite (perfect) matching with an
additional restriction: the edges are labeled with ` colors and we
need at least one edge of each color.

Fact [Mulmuley, Vazirani, Vazirani 1987]

Given a bipartite (multi)graph B with nonnegative integer weights
and a target weight w , there is a randomized algorithm for finding
a perfect matching of weight exactly w in time polynomial in |B|
and w .

We can solve our colored matching problem in time f (`) · nO(1):
Replace each edge of label i with two parallel edges of weight
0 and 2i−1 + 22`−i .
Find a perfect matching of weight exactly
w =

∑`
i=1(2i−1 + 22`−i).

17

— intermission —

18

Constraint satisfaction problems

We define a Constraint Satisfaction Problem (CSP) by
a domain D of values,
a set V of variables, and
a set of constraints, where a constraint is a binary relation on
two variables.

Examples:
3-Coloring of G is a CSP with |D| = 3 and V = V (G),
k-Coloring of G is a CSP with D = V (G) and |V | = k .

Primal graph: vertex set is V , there is an edge between u and v if
there is a constraint on u and v .

Fact [Freuder 1990]

A CSP instance with primal graph G can be solved in time
nO(tw(G)).

19

Constraint satisfaction problems

We define a Constraint Satisfaction Problem (CSP) by
a domain D of values,
a set V of variables, and
a set of constraints, where a constraint is a binary relation on
two variables.

Examples:
3-Coloring of G is a CSP with |D| = 3 and V = V (G),
k-Coloring of G is a CSP with D = V (G) and |V | = k .

Primal graph: vertex set is V , there is an edge between u and v if
there is a constraint on u and v .

Fact [Freuder 1990]

A CSP instance with primal graph G can be solved in time
nO(tw(G)).

19

Projections
Projection graph: vertex set is V , there is an edge −→uv if the
constraint on u and v is a projection from u to v .

a projection source makes the problem easy to solve.
a projection sink is useless in general.

Fact
We can solve in polynomial time a CSP instance if its primal graph
is planar and has a projection sink.

20

Projections
Projection graph: vertex set is V , there is an edge −→uv if the
constraint on u and v is a projection from u to v .

a projection source makes the problem easy to solve.
a projection sink is useless in general.

Fact
We can solve in polynomial time a CSP instance if its primal graph
is planar and has a projection sink.

20

Projections
There is a spanning in-tree T rooted at the projection sink.

Cut open this tree, duplicating variables and constraints the
obvious way.
Duplicated variables are automatically synchronized.
Resulting primal graph is outerplanar ⇒ has treewidth ≤ 3 ⇒
polynomial-time solvable.

T

21

Projections
There is a spanning in-tree T rooted at the projection sink.
Cut open this tree, duplicating variables and constraints the
obvious way.

Duplicated variables are automatically synchronized.
Resulting primal graph is outerplanar ⇒ has treewidth ≤ 3 ⇒
polynomial-time solvable.

21

Projections
There is a spanning in-tree T rooted at the projection sink.
Cut open this tree, duplicating variables and constraints the
obvious way.
Duplicated variables are automatically synchronized.

Resulting primal graph is outerplanar ⇒ has treewidth ≤ 3 ⇒
polynomial-time solvable.

21

Projections
There is a spanning in-tree T rooted at the projection sink.
Cut open this tree, duplicating variables and constraints the
obvious way.
Duplicated variables are automatically synchronized.

Resulting primal graph is outerplanar ⇒ has treewidth ≤ 3 ⇒
polynomial-time solvable.

21

Projections
There is a spanning in-tree T rooted at the projection sink.
Cut open this tree, duplicating variables and constraints the
obvious way.
Duplicated variables are automatically synchronized.

Resulting primal graph is outerplanar ⇒ has treewidth ≤ 3 ⇒
polynomial-time solvable.

21

Projections
There is a spanning in-tree T rooted at the projection sink.
Cut open this tree, duplicating variables and constraints the
obvious way.
Duplicated variables are automatically synchronized.

Resulting primal graph is outerplanar ⇒ has treewidth ≤ 3 ⇒
polynomial-time solvable.

21

Projections
There is a spanning in-tree T rooted at the projection sink.
Cut open this tree, duplicating variables and constraints the
obvious way.
Duplicated variables are automatically synchronized.

Resulting primal graph is outerplanar ⇒ has treewidth ≤ 3 ⇒
polynomial-time solvable.

21

Projections
There is a spanning in-tree T rooted at the projection sink.
Cut open this tree, duplicating variables and constraints the
obvious way.
Duplicated variables are automatically synchronized.

Resulting primal graph is outerplanar ⇒ has treewidth ≤ 3 ⇒
polynomial-time solvable.

21

Projections
There is a spanning in-tree T rooted at the projection sink.
Cut open this tree, duplicating variables and constraints the
obvious way.
Duplicated variables are automatically synchronized.
Resulting primal graph is outerplanar ⇒ has treewidth ≤ 3 ⇒
polynomial-time solvable.

21

— end of intermission —

22

Feedback vertex set number

Positive result
Subgraph Isomorphism can be solved in time
f (fvs(G),∆(G)) · nO(1) if G is planar and H is connected.

Fact
There is a set Z of O(∆2(G) · fvs(G)) vertices such that every
component of G \ Z is a tree and has at most two edges to Z .

23

Feedback vertex set number

Positive result
Subgraph Isomorphism can be solved in time
f (fvs(G),∆(G)) · nO(1) if G is planar and H is connected.

Fact
There is a set Z of O(∆2(G) · fvs(G)) vertices such that every
component of G \ Z is a tree and has at most two edges to Z .

23

Feedback vertex set number

Positive result
Subgraph Isomorphism can be solved in time
f (fvs(G),∆(G)) · nO(1) if G is planar and H is connected.

Fact
There is a set Z of O(∆2(G) · fvs(G)) vertices such that every
component of G \ Z is a tree and has at most two edges to Z .

23

Feedback vertex set number

Let us guess which subset of edges indicident to Z is used by
the solution.
Let us fix an edge coloring of H and let us guess the correct
edge coloring of the edges incident to Z .

H G

24

Feedback vertex set number

We formulate finding the subgraph isomorphism
φ : V (H)→ V (G) as a CSP problem: the variables
correspond to the vertices in Z and the value of a u ∈ Z is the
preimage φ−1(u).

If G \ Z has a component adjacent to u, v ∈ Z , then this
forces a constraint on φ−1(u) and φ−1(v).
After taking care of some technicalities, these are the only
constraints: we need to solve a CSP instance.

H G

24

Feedback vertex set number

We formulate finding the subgraph isomorphism
φ : V (H)→ V (G) as a CSP problem: the variables
correspond to the vertices in Z and the value of a u ∈ Z is the
preimage φ−1(u).
If G \ Z has a component adjacent to u, v ∈ Z , then this
forces a constraint on φ−1(u) and φ−1(v).

After taking care of some technicalities, these are the only
constraints: we need to solve a CSP instance.

φ−1(u)

φ−1(v)

u

v

H G

24

Feedback vertex set number

We formulate finding the subgraph isomorphism
φ : V (H)→ V (G) as a CSP problem: the variables
correspond to the vertices in Z and the value of a u ∈ Z is the
preimage φ−1(u).
If G \ Z has a component adjacent to u, v ∈ Z , then this
forces a constraint on φ−1(u) and φ−1(v).
After taking care of some technicalities, these are the only
constraints: we need to solve a CSP instance.

φ−1(u)

φ−1(v)

u

v

H G

24

Feedback vertex set number

Fix a spanning tree in H and guess how the tree goes via the
components of G \ Z (which components are traversed).

This forces some constraints to be projections, in fact, creates
a projection sink.
As G is planar, the primal graph is planar and the CSP
instance can be solved in polynomial time.

H G

25

Feedback vertex set number

Fix a spanning tree in H and guess how the tree goes via the
components of G \ Z (which components are traversed).

This forces some constraints to be projections, in fact, creates
a projection sink.
As G is planar, the primal graph is planar and the CSP
instance can be solved in polynomial time.

H G

25

Feedback vertex set number

Fix a spanning tree in H and guess how the tree goes via the
components of G \ Z (which components are traversed).
This forces some constraints to be projections, in fact, creates
a projection sink.
As G is planar, the primal graph is planar and the CSP
instance can be solved in polynomial time.

H G

25

Feedback vertex set number

Positive result
Subgraph Isomorphism can be solved in time
f (fvs(G),∆(G)) · nO(1) if G is planar and H is connected.

Can be generalized:

Positive result P.10
Subgraph Isomorphism can be solved in time
f1(fvs(G),∆(G)) · nf2(genus(G),cc(H)).

Positive result P.11
Subgraph Isomorphism can be solved in time
f1(fvs(G),∆(G)) · nf2(hadw(G),cc(H),∆(H)).

26

Feedback vertex set number

Positive result
Subgraph Isomorphism can be solved in time
f (fvs(G),∆(G)) · nO(1) if G is planar and H is connected.

Can be generalized:

Positive result P.10
Subgraph Isomorphism can be solved in time
f1(fvs(G),∆(G)) · nf2(genus(G),cc(H)).

Positive result P.11
Subgraph Isomorphism can be solved in time
f1(fvs(G),∆(G)) · nf2(hadw(G),cc(H),∆(H)).

26

Graph Structure Theorem

Decomposing H-minor-free graphs into almost embeddable parts:

Theorem [Robertson-Seymour]

For every graph H, there is an integer k and a surface Σ such that
every H-minor-free graph

can be built by clique sums from graphs that are k-almost
embeddable in Σ,

(or equivalently)
has a tree decomposition where every torso is k-almost
embeddable in Σ.

Originally stated only combinatorially, algorithmic versions are
known.

27

k-almost embeddable

Definition
Graph G is k-almost embeddable in surface Σ if

there is a set X of at most k apex vertices and
a graph G0 embedded in Σ, such that
G \ X can be obtained from G0 by attaching vortices of width
k on disjoint disks D1, . . . , Dk .

28

Projection sinks

Fact
We can solve in polynomial time a CSP instance if its primal graph
G is planar and has a projection sink.

Straightforward generalization:

Fact
We can solve in time nf (genus(G)) a CSP instance if its primal graph
G has a projection sink.

By using the Robertson-Seymour structure theorem and carefully
handling vortices and cliques sums, we get the following
generalization:

Fact
We can solve in time nf (hadw(G)) a CSP instance if its primal graph
G has a projection sink.

29

Projection sinks

Fact
We can solve in polynomial time a CSP instance if its primal graph
G is planar and has a projection sink.

Straightforward generalization:

Fact
We can solve in time nf (genus(G)) a CSP instance if its primal graph
G has a projection sink.

By using the Robertson-Seymour structure theorem and carefully
handling vortices and cliques sums, we get the following
generalization:

Fact
We can solve in time nf (hadw(G)) a CSP instance if its primal graph
G has a projection sink.

29

Hardness proofs
To prove that there is no algorithm for Subgraph Isomorphism
with running time

nf (p1,...,pt),

we should show that Subgraph Isomorphism is NP-hard even
for instances where each of p1, . . . , pt is bounded by a universal
constant.

To prove that there is no algorithm for Subgraph Isomorphism
with running time

f1(p1, p2, . . . , p`) · nf2(p`+1,...,pt),

we use the fact that there is no f (k) · nO(1) algorithm for
k-Clique unless FPT = W[1]. Then we need a reduction from
k-Clique to Subgraph Isomorphism such that

each of p1, . . . , p` is bounded by a function of k , and
each of p`+1, . . . , pt is bounded by a universal constant.

30

Hardness proofs
To prove that there is no algorithm for Subgraph Isomorphism
with running time

nf (p1,...,pt),

we should show that Subgraph Isomorphism is NP-hard even
for instances where each of p1, . . . , pt is bounded by a universal
constant.

To prove that there is no algorithm for Subgraph Isomorphism
with running time

f1(p1, p2, . . . , p`) · nf2(p`+1,...,pt),

we use the fact that there is no f (k) · nO(1) algorithm for
k-Clique unless FPT = W[1]. Then we need a reduction from
k-Clique to Subgraph Isomorphism such that

each of p1, . . . , p` is bounded by a function of k , and
each of p`+1, . . . , pt is bounded by a universal constant.

30

Grid Tiling
Grid Tiling
Input: A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for

each cell.
Find: A pair si ,j ∈ Si ,j for each cell such that

Horizontal neighbors agree in the first component.
Vertical neighbors agree in the second component.

(1,1)
(1,3)
(4,2)

(1,5)
(4,1)
(3,5)

(1,1)
(4,2)
(3,3)

(2,2)
(4,1)

(1,3)
(2,1)

(2,2)
(3,2)

(3,1)
(3,2)
(3,3)

(1,1)
(3,1)

(3,2)
(3,5)

k = 3, D = 5
31

Grid Tiling
Grid Tiling
Input: A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for

each cell.
Find: A pair si ,j ∈ Si ,j for each cell such that

Horizontal neighbors agree in the first component.
Vertical neighbors agree in the second component.

(1,1)
(1,3)
(4,2)

(1,5)
(4,1)
(3,5)

(1,1)
(4,2)
(3,3)

(2,2)
(4,1)

(1,3)
(2,1)

(2,2)
(3,2)

(3,1)
(3,2)
(3,3)

(1,1)
(3,1)

(3,2)
(3,5)

k = 3, D = 5
31

Grid Tiling

Reduction from k-Clique

Definition of the sets:

For i = j : (x , y) ∈ Si ,j ⇐⇒ x = y
For i 6= j : (x , y) ∈ Si ,j ⇐⇒ x and y are adjacent.

(vi , vi)

Each diagonal cell defines a value vi . . .
32

Grid Tiling

Reduction from k-Clique

Definition of the sets:

For i = j : (x , y) ∈ Si ,j ⇐⇒ x = y
For i 6= j : (x , y) ∈ Si ,j ⇐⇒ x and y are adjacent.

(., vi)

(vi , .) (vi , vi) (vi , .) (vi , .) (vi , .)

(., vi)

(., vi)

(., vi)

. . . which appears on a “cross”
32

Grid Tiling

Reduction from k-Clique

Definition of the sets:

For i = j : (x , y) ∈ Si ,j ⇐⇒ x = y
For i 6= j : (x , y) ∈ Si ,j ⇐⇒ x and y are adjacent.

(., vi)

(vi , .) (vi , vi) (vi , .) (vi , .) (vi , .)

(., vi)

(., vi) (vj , vj)

(., vi)

vi and vj are adjacent for every 1 ≤ i < j ≤ k .
32

Grid Tiling

Reduction from k-Clique

Definition of the sets:

For i = j : (x , y) ∈ Si ,j ⇐⇒ x = y
For i 6= j : (x , y) ∈ Si ,j ⇐⇒ x and y are adjacent.

(., vi) (., vj)

(vi , .) (vi , vi) (vi , .) (vi , vj) (vi , .)

(., vi) (., vj)

(vj , .) (vj , vi) (vj , .) (vj , vj) (vj , .)

(., vi) (., vj)

vi and vj are adjacent for every 1 ≤ i < j ≤ k .
32

Hardness proofs

Negative result N.7
Unless FPT = W[1], there is no algorithm for Subgraph
Isomorphism with running time

f1(cc(H), pw(G), fvs(G)) · nf2(pw(H)),

even if H is a forest and G is a connected planar graph with
maximum degree 3.

We need to reduce k × k Grid Tiling to an instance of
Subgraph Isomorphism where

cc(H), pw(G), fvs(G) is bounded by a function of k ,
pw(H) is bounded by a universal constant,
H is a forest,
G is a connected planar graph with maximum degree 3.

33

Gadget construction
Consider the following subgraphs in H and G :

T1

T2

. . .

Tn

rH

1

2

. . .

n − 1

vout

part of H part of G

rG

If a subgraph isomorphism maps special vertex rH to rG , then one
of the tree Ti protrudes out at vertex vout.

Slightly more challenging: construct such gadgets where H has
bounded degree and bounded pathwidth.

34

Gadget construction
Consider the following subgraphs in H and G :

T1

T2

. . .

Tn

rH
vout

part of H part of G

rG
Ti

If a subgraph isomorphism maps special vertex rH to rG , then one
of the tree Ti protrudes out at vertex vout.

Slightly more challenging: construct such gadgets where H has
bounded degree and bounded pathwidth.

34

Gadget construction
Consider the following subgraphs in H and G :

T1

T2

. . .

Tn

rH
vout

part of H part of G

rG
Ti

If a subgraph isomorphism maps special vertex rH to rG , then one
of the tree Ti protrudes out at vertex vout.

Slightly more challenging: construct such gadgets where H has
bounded degree and bounded pathwidth.

34

Hardness proofs
Generalizing it to a gadget where 8 paths of certain lengths
protrude out:

35

Hardness proofs

Graph H Graph G

36

Hardness proofs
Negative result N.7
Unless FPT = W[1], there is no algorithm for Subgraph
Isomorphism with running time

f1(cc(H), pw(G), fvs(G)) · nf2(pw(H)),

even if H is a forest and G is a connected planar graph with
maximum degree 3.

A variant of the result:

Negative result N.8
Unless FPT = W[1], there is no algorithm for Subgraph
Isomorphism with running time

f1(cc(H), pw(G), fvs(G), genus(G),∆(G)) · nf2(pw(H),hadw(G)),

even if H is a forest tree and G is a connected planar graph with
maximum degree 3.

Essentially: add a new vertex to H and G to make them connected.

37

Hardness proofs
Negative result N.7
Unless FPT = W[1], there is no algorithm for Subgraph
Isomorphism with running time

f1(cc(H), pw(G), fvs(G)) · nf2(pw(H)),

even if H is a forest and G is a connected planar graph with
maximum degree 3.

A variant of the result:

Negative result N.8
Unless FPT = W[1], there is no algorithm for Subgraph
Isomorphism with running time

f1(cc(H), pw(G), fvs(G), genus(G),∆(G)) · nf2(pw(H),hadw(G)),

even if H is a forest tree and G is a connected planar graph with
maximum degree 3.

Essentially: add a new vertex to H and G to make them connected.
37

Hardness proofs
Negative result N.7
Unless FPT = W[1], there is no algorithm for Subgraph
Isomorphism with running time

f1(cc(H), pw(G), fvs(G)) · nf2(pw(H)),

even if H is a forest and G is a connected planar graph with
maximum degree 3.

A variant of the result:

Negative result N.9
Unless FPT = W[1], there is no algorithm for Subgraph
Isomorphism with running time

f1(cc(H), pw(G), fvs(G), genus(G)) · nf2(pw(H)),

even if H is a forest tree and G is a connected planar graph with
maximum degree 3.

Essentially: connecting the gadgets in a path like manner.

38

Hardness proofs
Negative result N.7
Unless FPT = W[1], there is no algorithm for Subgraph
Isomorphism with running time

f1(cc(H), pw(G), fvs(G)) · nf2(pw(H)),

even if H is a forest and G is a connected planar graph with
maximum degree 3.

A variant of the result:

Negative result N.9
Unless FPT = W[1], there is no algorithm for Subgraph
Isomorphism with running time

f1(cc(H), pw(G), fvs(G), genus(G)) · nf2(pw(H)),

even if H is a forest tree and G is a connected planar graph with
maximum degree 3.

Essentially: connecting the gadgets in a path like manner.
38

Hardness proofs

Graph H Graph G

39

Summary

We formulated a framework with 2× 10 parameters and 5
constraints.
We showed that 11 positive results and 17 negative results
(some known, some new) answer every question in this
framework.
We developed a computer program to check for complete
coverage and to find the questions that are not yet explained
by the results.
Some interesting new positive results and very careful and
nontrivial hardness proofs.
Full paper and program on arxiv.

40

	
	
	DP and bounded treewidth
	Color coding and bounded treewidth
	Another DP
	Subgraph Isomorphism and Bin Packing
	Parameters of Subgraph Isomorphism
	Parameters of Subgraph Isomorphism
	Cliquewidth and Subgraph Isomorphism
	Cliquewidth and Subgraph Isomorphism
	Planarity and Subgraph Isomorphism
	Planarity and Subgraph Isomorphism
	Treewidth and feedback vertex set number
	Treewidth and feedback vertex set number
	Parameters
	Main result
	Main result
	Main result
	Main result
	Results
	Comparing specifications
	Comparing specifications
	Finding a tree in a tree
	Finding a tree in a tree
	Finding a tree in a tree
	Finding a tree in a tree
	Finding a forest in a tree
	Finding a forest in a tree
	Finding a forest in a tree
	Finding a forest in a tree
	Finding a forest in a tree
	Finding a forest in a tree
	
	Constraint satisfaction problems
	Constraint satisfaction problems
	Projections
	Projections
	Projections
	Projections
	Projections
	Projections
	Projections
	Projections
	Projections
	Projections
	Projections
	
	Feedback vertex set number
	Feedback vertex set number
	Feedback vertex set number
	Feedback vertex set number
	Feedback vertex set number
	Feedback vertex set number
	Feedback vertex set number
	Feedback vertex set number
	Feedback vertex set number
	Feedback vertex set number
	Feedback vertex set number
	Feedback vertex set number
	Graph Structure Theorem
	k-almost embeddable
	Projection sinks
	Projection sinks
	Hardness proofs
	Hardness proofs
	Grid Tiling
	Grid Tiling
	Grid Tiling
	Grid Tiling
	Grid Tiling
	Grid Tiling
	Hardness proofs
	Gadget construction
	Gadget construction
	Gadget construction
	Hardness proofs
	Hardness proofs
	Hardness proofs
	Hardness proofs
	Hardness proofs
	Hardness proofs
	Hardness proofs
	Summary

