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Abstract. The sum of a coloring is the sum of the colors assigned to
the vertices (assuming that the colors are positive integers). The sum
Σ(G) of graph G is the smallest sum that can be achieved by a proper
vertex coloring of G. The chromatic strength s(G) of G is the minimum
number of colors that is required by a coloring with sum Σ(G). For
every k, we determine the complexity of the question “Is s(G) ≤ k?”: it
is coNP-complete for k = 2 and Θp

2-complete for every fixed k ≥ 3. We
also study the complexity of the edge coloring version of the problem,
with analogous definitions for the edge sum Σ′(G) and the chromatic
edge strength s′(G). We show that for every k ≥ 3, it is Θp

2-complete to
decide whether s′(G) ≤ k holds. As a first step of the proof, we present
graphs for every r ≥ 3 with chromatic index r and edge strength r + 1.
For some values of r, such graphs were not known before.
Keywords. graph coloring, chromatic strength, chromatic number,
chromatic index

Subject classification. 68Q17

1. Introduction

A vertex coloring of graph G(V,E) is an assignment ψ: V → N of colors
(positive integers) to the vertices such that adjacent vertices receive different
colors. The sum of a vertex coloring ψ is the sum of the colors assigned to
the vertices, Σψ(G) =

∑
v∈V ψ(v). The chromatic sum Σ(G) of graph G is the

smallest sum that a proper coloring of G can have. Edge coloring versions of
the above concepts are defined analogously, the sum of an edge coloring ψ is
denoted by Σ′

ψ(G), while the chromatic edge sum of G is Σ′(G).
In the minimum sum coloring problem our aim is to find a coloring with

sum as small as possible, that is, to determine the chromatic sum of the graph.
The problem was first studied independently by Supowit (1987) and by Ku-
bicka & Schwenk (1989) (see also Kubicka 1989). Minimum sum coloring is
motivated by applications in scheduling and VLSI design (see e.g., Bar-Noy
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et al. 1998 and Nicoloso et al. 1999). Determining the chromatic sum is NP-
hard in general. In fact, it remains hard also on some classes of graphs where
coloring is easy, such as bipartite graphs (Bar-Noy & Kortsarz 1998) and in-
terval graphs (Marx 2005; Szkaliczki 1999). Approximation algorithms were
given for several graph classes: the minimum sum can be 4-approximated in
perfect graphs (Bar-Noy et al. 1998), 1.796-approximated in interval graphs
(Halldórsson et al. 2003), and 27/26-approximated in bipartite graphs (Giaro
et al. 2002). Considering the analogous minimum sum edge coloring problem,
determining the chromatic edge sum is NP-hard even for bipartite graphs (Gi-
aro & Kubale 2000), but can be solved in polynomial time for trees (Giaro
& Kubale 2000; Salavatipour 2003). Moreover, there is a 1.796-approximation
algorithm for bipartite graphs (Halldórsson et al. 2003) and a 2-approximation
algorithm for general graphs (Bar-Noy et al. 1998).

Kubicka & Schwenk (1989) noted that the number of colors required by
a minimum sum coloring can be much greater than the chromatic number of
the graph. In particular, for every k ≥ 2, they show a tree for which every
minimum sum coloring uses at least k different colors (see Figure 1.1 for an
example of the case k = 3). Let s(G) be the chromatic strength of G, which is
the smallest number of colors required in a minimum sum coloring of G. The
chromatic edge strength s′(G) is defined analogously. Clearly, s(G) ≥ χ(G),
but as the example above shows, s(G) − χ(G) can be arbitrarily large. On
the other hand, Mitchem et al. (1997) and independently Hajiabolhassan et al.

(2000) proved an analog of Vizing’s Theorem showing that s′(G) ≤ ∆(G) + 1
in every simple graph G. Hence we have

∆(G) ≤ χ′(G) ≤ s′(G) ≤ ∆(G) + 1

if G is a simple graph. Harary and Plantholt conjectured (see West (Winter
1994–95)) that the second inequality is in fact an equality, hence if a simple
graph is k-edge-colorable, then it has a minimum sum edge coloring with k
colors. However, this conjecture turned out to be false: for every odd integer
k ≥ 5, a graph with chromatic index k and edge strength k + 1 was given
in Mitchem et al. (1997). Moreover, Hajiabolhassan et al. (2000) gives such
a graph for k = 4. Thus we can conclude that the chromatic index and the
chromatic edge strength are not always the same.

Here we study the computational complexity of determining the chromatic
strength and chromatic edge strength of a simple graph. The complexity of the
vertex strength is investigated in Salavatipour (2003):

Theorem 1.1 (Salavatipour 2003). For every k ≥ 3, it is NP-hard to decide
whether s(G) ≤ k holds for a given graph G.
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Figure 1.1: A tree with strength 3. The figure shows a minimum sum coloring
with sum 11, while every 2-coloring has sum 12.

Notice that it is not clear whether this problem belongs to NP. A minimum
sum k-coloring is not a good certificate for s(G) ≤ k, since we cannot verify
that it is indeed a minimum sum coloring. On the other hand, the problem
does not seem to belong to coNP either: a minimum sum coloring with more
than k colors does not certify that s(G) > k, since it does not prove that this
sum cannot be achieved using only k colors. Our main contribution is that we
determine the exact complexity of the chromatic strength problem by showing
that for every k ≥ 3, it is Θp

2-complete to decide whether s(G) ≤ k holds. The
class Θp

2 contains those problems that can be solved in polynomial time with
a logarithmic number of NP oracle calls (see Section 5 for definitions). It is
interesting to see a natural coloring problem that is complete for this lesser-
known complexity class. In Salavatipour (2003) the complexity of the case
k = 2 was left as an open question. We answer this question by showing that
deciding s(G) ≤ 2 is coNP-complete.

We obtain our Θp
2-completeness result for the chromatic strength by proving

the stronger statement that even the more restricted chromatic edge strength
problem is Θp

2-complete. The complexity of edge strength is also treated in
Salavatipour (2003). By observing that s′(G) = χ′(G) for every regular simple
graph, they conclude that for regular graphs “Is s′(G) ≤ k?” has the same
complexity as “Is χ′(G) ≤ k?” and the latter problem is known to be NP-
complete for every k ≥ 3 (Holyer 1981; Leven & Galil 1983). However, if
we want to prove that edge strength is Θp

2-complete (that is, harder than the
chromatic index problem), then necessarily we have to consider graphs where
the edge strength and the chromatic index are not the same. Therefore, we need
substantially different (and more complicated) arguments than in Salavatipour
(2003).

We prove the Θp
2-completeness of chromatic edge strength the following way.

First we show that for every k ≥ 3, there is a simple graph Gk with ∆(Gk) =
χ′(Gk) = k and s′(Gk) = k + 1. That is, we give counterexamples to the
conjecture of Harary and Plantholt in all the remaining cases. Next, in Section 5
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we introduce some new Θp
2-complete problems, which might be of independent

interest as well. In particular, we show that it is Θp
2-complete to decide whether

every minimum vertex cover of a given graph includes the distinguished vertex
v̂. Finally, we show that if there is a graph with maximal degree k where the
chromatic index and the chromatic edge strength are different, then it is Θp

2-
complete to decide whether the edge strength is k in a graph with maximum
degree k. Together with the existence of the counterexample graphs, this gives
the required result.

The paper is organized as follows. In Section 2, we show that it is coNP-
complete to decide whether s(G) ≤ 2. In the rest of the paper, we consider
only the edge coloring version of the problem. Section 3 introduces notation
and tools for edge colorings. The counterexamples to the conjecture of Harary
and Plantholt are given in Section 4. In Section 5 we summarize the results
on the complexity class Θp

2, and introduce the new Θp
2-complete problems.

The reduction for the main hardness result is presented in Section 6. The
construction of the key gadget of the reduction is given in Section 7.

2. Vertex strength of bipartite graphs

In this section we prove that for k = 2, it is coNP-complete to decide whether
s(G) ≤ k holds. Notice that, unlike in the case k ≥ 3, now it is easy to see
that the problem is in coNP. First, the question makes sense only if the graph
is bipartite, otherwise trivially s(G) ≥ 3. In a bipartite graph the sum of the
best 2-coloring is easy to determine: each connected component of the graph
has exactly two 2-colorings, and taking the better coloring of each component
gives the best 2-coloring of the graph. Therefore, a minimum sum coloring with
more than 2 colors certifies that s(G) ≤ 2 does not hold: one can determine
the sum of the best 2-coloring, and check that it is indeed larger than the sum
of the given coloring. Thus the problem is in coNP.

The proof of coNP-hardness is by reduction from the precoloring extension
problem. Precoloring extension (PrExt) is a generalization of vertex color-
ing (Tuza 1997): we are given a graph G(V,E) with a subset W ⊆ V of vertices
having preassigned colors, the question is whether this precoloring can be ex-
tended to a proper k-coloring of the graph. We denote by 1-PrExt the special
case where every color is used at most once in the precoloring. 1-PrExt is
NP-complete for bipartite graphs (Hujter & Tuza 1993), but polynomial-time
solvable for interval graphs (Biró et al. 1992) and more generally, for chordal
graphs (Marx 2004). In our proof, we need the following result:
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Figure 2.1: The new vertices attached to vertex v of H , and three minimum
sum colorings that assign to vertex v (a) color 1, (b) color 2, (c) color 3.

Theorem 2.1 (Bodlaender et al. 1994). 1-PrExt is NP-complete for bipar-
tite graphs, even if the number of colors is 3.

Moreover, it can be assumed that the 3 precolored vertices are in the same
bipartition class (see the proof in Bodlaender et al. (1994)).

Theorem 2.2. Given a graph G, it is coNP-complete to decide if s(G) ≤ 2
holds.

Proof. As we have noted above, the problem is in coNP. Hardness is proved
by reduction from 1-PrExt for bipartite graphs. Given a bipartite graph
H(A,B;E) with three precolored vertices v1, v2, v3 ∈ A, we construct a (bipar-
tite) graph G such that s(G) ≤ 2 if and only if the precoloring of H cannot

be extended to the whole graph. We assume that vertex vi (i = 1, 2, 3) is
precolored with color i.

To construct the graph G, we attach 5 new vertices to every non-precolored
vertex v of H (see Figure 2.1). Let the set Vv contain vertex v and the 5 vertices
attached to it. In every coloring, the sum of the 6 vertices in Vv is at least 9.
Moreover, as shown in Figure 2.1a-c, this minimum sum 9 can be achieved with
colorings that assign color 1, 2, or 3 to vertex v.

We attach 9 new vertices to the three precolored vertices v1, v2, v3 (see
Figure 2.2). Denote by V ∗ the set of these 12 vertices. The vertices in the set
V ∗ have a sum of at least 17 in every coloring. Furthermore, it can be verified
by inspection that the coloring shown in the figure is the unique minimum sum
coloring of V ∗. This completes the description of the graph G. Clearly, if H is
bipartite, then G is bipartite as well.
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Figure 2.2: The graph that connects the precolored vertices v1, v2, v3, and its
unique minimum sum coloring with sum 17.

If the graph H has n+3 vertices, then G has 6n+12 vertices, and the sum
of every coloring is at least 9n + 17. Moreover, G has a 2-coloring with sum
9n+18: color v1, v2, v3, and their bipartition class with color 2, the other class
receives color 1. Every set Vv has sum 9 in this coloring, while V ∗ has sum
18. This means that s(G) > 2 if and only if there is a coloring of G with sum
exactly 9n+17: otherwise the sum of G is 9n+18, which can be also achieved
by a 2-coloring. If there is a coloring ψ with sum 9n + 17, then it induces a
coloring of H . For such a coloring ψ, the sum of ψ has to be exactly 17 on
the vertices of V ∗. Therefore, V ∗ is colored as shown in Figure 2.2, thus the
coloring induced by ψ is a precoloring extension of H .

To prove the other direction, assume that H has a precoloring extension
with 3 colors. This coloring can be extended to a coloring of G having sum
9n+17. In V ∗, the coloring can be extended to the coloring shown in Figure 2.2.
In every Vv, depending on the color of v, the coloring can be extended to one of
the three colorings shown in Figure 2.1. The set V ∗ has sum 17 in the resulting
coloring, while every Vv has sum 9. Thus the sum of the coloring is 9n + 17,
and s(G) = 3 follows. �

3. Minimum sum edge coloring

For the rest of the paper, we consider only edge colorings, hence even if it is not
noted explicitly, “coloring” will mean “edge coloring.” We introduce notation
and new parameters that turn out to be useful in studying minimum sum edge
colorings. Let ψ be an edge coloring of G(V,E), and let Ev be the set of edges
incident to vertex v. For every v ∈ V , let Σ′

ψ(v) =
∑

e∈Ev
ψ(e) be the sum of v,

and for a subset V ′ ⊆ V , let Σ′
ψ(V ′) =

∑
v∈V ′ Σ′

ψ(v). Clearly, Σ′
ψ(V ) = 2Σ′

ψ(G);
therefore, minimizing Σ′

ψ(V ) is equivalent to minimizing Σ′
ψ(G).
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The degree of vertex v is denoted by d(v) := |Ev|. For every vertex v,

let `(v) :=
∑d(v)

i=1 i = d(v)(d(v) + 1)/2, and for a set of vertices V ′ ⊆ V , let
`(V ′) :=

∑
v∈V ′ `(v). Since Σ′

ψ(v) is the sum of d(v) distinct positive integers,
Σ′
ψ(v) ≥ `(v) in every proper coloring ψ. Let εψ(v) = Σ′

ψ(v) − `(v) ≥ 0 be the
error of vertex v in coloring ψ. For V ′ ⊆ V we define εψ(V ′) =

∑
v∈V ′ εψ(v), and

call εψ(V ) the error of coloring ψ. The error is always non-negative: Σ′
ψ(V ) ≥

`(V ), hence εψ(V ) = Σ′
ψ(V )− `(V ) ≥ 0. Notice that εψ(V ) has the same parity

for every coloring ψ. Minimizing the error of the coloring is clearly equivalent to
minimizing the sum of the coloring. In particular, if ψ is a zero error coloring,
that is, εψ(V ) = 0, then ψ is a minimum sum coloring of G. In a zero error
coloring, the edges incident to vertex v are colored with the colors 1, 2, . . . , d(v).

However, in general, G does not necessarily have a zero error coloring. For
every V ′ ⊆ V , the error of V ′ is ε(V ′) = minψ εψ(V ′), the smallest error V ′ can
have in a proper coloring of G. (Notice that ε(V ′) =

∑
v∈V ′ ε({v}) does not

always hold, in fact, ε({v}) = 0 for every v ∈ V ).

Quasigraphs. Parallel edges are not allowed for the graphs considered in
this paper. However, for convenience we extend the problem by introducing
half-loops. A half-loop is a loop that contributes only 1 to the degree of its
end vertex. Every vertex has at most one half-loop. If a graph is allowed to
have half-loops, then it will be called a quasigraph (the terminology half-loop
and quasigraph is borrowed from Lovász 1997). In a quasigraph, the sum of
an edge coloring is defined to be the sum of the color of the edges plus half the
sum of the color of the half-loops; therefore, the sum of a quasigraph is not
necessarily an integer. However, the error of a coloring is always integer, and
with these definitions it remains true that the sum of the vertices is twice the
sum of the edges.

The following observation shows that allowing half-loops does not make the
problem more difficult:

Proposition 3.1. Given a quasigraph G, one can create in polynomial time
a graph G′ such that Σ′(G′) = 2Σ′(G) and s′(G′) = s′(G).

Proof. To obtain G′, take two disjoint copies G1, G2 of G and remove every
half-loop. If there was a half-loop at v in G, then add an edge v1v2 to G′, where
v1 and v2 are the vertices corresponding to v in G1 and G2, respectively. In
graph G′, give to every edge the color of the corresponding edge in G. If the
sum of the coloring in G was S, then we obtain a coloring in G′ with sum 2S:
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two edges of G′ correspond to every edge of G, but only one edge corresponds
to every half-loop of G.

On the other hand, one can show that if G′ has a k-coloring with sum
S, then G has a k-coloring with sum at most S/2. The edges of G′ can be
partitioned into three sets E1, E2, E

′: set Ei contains the edges induced by
Gi (i = 1, 2), and E ′ contains the edges corresponding to the half-loops. If ψ
is an edge coloring of G′ with sum S, then S = Σ′

ψ(E1) + Σ′
ψ(E2) + Σ′

ψ(E ′).
Without loss of generality, it can be assumed that Σ′

ψ(E1) ≤ Σ′
ψ(E2), hence

Σ′
ψ(E1)+Σ′

ψ(E
′)/2 ≤ S/2. The k-coloring ofG1 induced by ψ has sum Σ′

ψ(E1)+
Σ′
ψ(E ′)/2 ≤ S/2, since the edges in E ′ correspond to half-loops. �

Therefore, finding a minimum sum edge coloring for the quasigraph G is the
same problem as finding a minimum sum edge coloring for the corresponding
graph G′. In particular, G and G′ have the same edge strength. In Section 6,
we show that for every k ≥ 3, it is Θp

2-complete to determine whether the
edge strength of a quasigraph is at most k. By the above construction, Θp

2-
completeness follows for ordinary simple graphs as well.

Gadgets. The reduction in Section 6 is of the component design type: we
build “gadgets” corresponding to vertices and edges, and in the reduction a
larger graph is constructed from these smaller graphs. In some cases, these
gadgets themselves are also built from smaller gadgets. Here we introduce the
terminology and the notational conventions that will be used while working
with gadgets.

A gadget is a graph whose vertices are divided into external and internal

vertices. On the figures, the external vertices of the gadgets are framed (see,
for example, Figure 6.1 or Figure 6.2). If an external vertex has degree one,
then the edge incident to it will be called a pendant edge (for example, the
gadget in Figure 6.1 has 3 pendant edges).

We will use two operations to create larger graphs from smaller components.
If u and v are vertices of G and H , respectively, then the two gadgets can be
joined by identifying these two vertices (see Figure 3.1b). In particular, if v is
the end vertex of a pendant edge g, then this operation will be called attaching

the pendant edge g of H to vertex u of G. If e is a pendant edge of G, and f
is a pendant edge of H , then we can form a larger gadget by identifying these
two edges (see Figure 3.1c).
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Figure 3.1: The two different ways of combining gadgets. (a) Two gadgets G
and H . (b) Identifying the vertices u and v. (c) Identifying the two edges e
and f .

4. Graphs with s′(G) > χ′(G)

The aim of this section is to show that for every k ≥ 3, there is a simple graph
G with ∆(G) = χ′(G) = k and s′(G) = k + 1. This gives a counterexample to
the conjecture of Harary and Plantholt (see West Winter 1994–95) for every
possible value of k. Notice that for k = 2 there are no such graphs: if χ′(G) = 2,
then every connected component of G is a path or an even cycle, which can be
edge colored optimally with 2 colors.

It turns out that for k > 3, the graphs constructed by Izbicki (1964) (long
before the conjecture) have the required properties. For every k ≥ 3, the Izbicki
graph Ik(Vk, Ek) is defined as follows (see Figure 4.1):

Vk = {Rs, Qt, Pt | 1 ≤ s ≤ k − 3, 1 ≤ t ≤ k},

Ek = {(Rs, Qt), (Qt, Qt+1), (Qt, Pt) | 1 ≤ s ≤ k − 3, 1 ≤ t ≤ k},

where Qk+1 = Q1. We note that these graphs were used by Leven & Galil
(1983) to reduce the edge coloring problem of multigraphs to the edge coloring
of simple graphs. Vertices Rs and Qt have degree k, while vertices Pt have
degree 1; therefore, by the following lemma, the k edges (Qt, Pt) have pairwise
different colors in every k-edge-coloring of Ik.

Lemma 4.1 (Izbicki 1964). Let G be a graph that contains only degree 1 and
degree k vertices; denote by n the number of vertices in G having degree k,
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Figure 4.1: Izbicki’s graphs for k = 3, 4, 5. In I4, the sum of the coloring
decreases if we use the colors shown in frames.

and let F be the set of edges incident to the degree 1 vertices. In every k-edge-
coloring of G, if fi (1 ≤ i ≤ k) denotes the number of edges in F with color i,
then fi has the same parity as n.

Proof. If vertex v has degree k, then every color appears at v in every k-
edge-coloring. Therefore, with the above notation, color i appears at exactly
n + fi vertices. This number must be even, hence n and fi have the same
parity. �

Since Ik has n = 2k−3 vertices with degree k, thus the Lemma implies that
fi is odd for every 1 ≤ i ≤ k. The set F contains k edges in the graph Ik, hence
every fi is 1, and the edges in F have pairwise different colors. Therefore, if Ik
has a k-edge-coloring, then this coloring has error

∑k

i=1(i − 1) = k(k − 1)/2,
since the degree k vertices Rs, Qt have zero error. Moreover, Ik is k-edge-
colorable, as shown by the following coloring ψ:

ψ(Rs, Qt) = [t+ s+ 2]k (1 ≤ s ≤ k − 3, 1 ≤ t ≤ k),

ψ(Qt, Pt) = t (1 ≤ t ≤ k),

ψ(Qt, Qt+1) = [t+ 2]k (1 ≤ t ≤ k),

where [x]k = x− k for x > k, and [x]k = x for x ≤ k.
Now consider the coloring ψ′ that is the same as ψ except that

ψ′(Qk−1, Pk−1) = 1 instead of k − 1,

ψ′(Qk−1, Qk) = k + 1 instead of 1,

ψ′(Qk, Pk) = 1 instead of k.
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Figure 4.2: A graph with ∆(G) = χ′(G) = 3 but s′(G) = 4. The figure shows a
minimum sum edge coloring with sum 29 using 4 colors, every 3-edge-coloring
has sum at least 30.

This modification increases the sum by (1+(k+1)+1)−((k−1)+1+k) = 3−k,
which is negative if k > 3. Therefore, Ik (for k > 3) has a (k+1)-edge-coloring
with sum strictly smaller than the minimum sum that can be achieved by any
k-edge-coloring, hence s′(Ik) > k = χ′(Ik) = ∆(Ik).

Proposition 4.2. For every k > 3, χ′(Ik) = k and s′(Ik) = k + 1. �

For k = 3, the graph I3 does not provide a counterexample to the conjec-
ture of Harary and Plantholt, as the minimum sum 12 can be achieved using
only 3 colors (see Figure 4.1). However, the 3-edge-colorable graph shown in
Figure 4.2 gives a counterexample for the case k = 3. This graph is the small-
est counterexample for k = 3, and was found by an exhaustive computerized
search. The search was performed using the program nauty of Brendan McKay
(see McKay 1990), which is capable of enumerating all non-isomorphic graphs
with a given number of vertices and maximum degree. For each graph it was
first checked whether it is 3-edge-colorable, and if so, then the sum of the best
3-edge-coloring and the best 4-edge-coloring was determined by a simple back-
tracking method. Checking all the 19430 non-isomorphic connected graphs on
12 vertices with maximum degree 3 took under a minute on a 800MHz com-
puter.

Figure 4.2 shows a 4-edge-coloring of the graph with sum 29. Unfortunately,
we cannot give a hand-verifiable proof that this sum cannot be achieved by a 3-
edge-coloring. However, a very simple program can check all the 315 ≈ 14.3·106

possible 3-edge-colorings of the 15 edges, and can verify that the best 3-edge-
coloring has sum 30.

Proposition 4.3. For every k ≥ 3, there is a simple graph Gk with ∆(Gk) =
χ′(Gk) = k and s′(Gk) = k + 1. �
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5. The complexity class Θp
2

In the introduction, we have argued that the problem of deciding whether
s′(G) ≤ k holds does not seem to belong to either NP or coNP. Thus deter-
mining the chromatic edge strength of a graph seems to be a problem more
difficult than those contained in NP. However, not much more difficult: using
an NP-oracle, the value of Σ′(G) can be determined with a polynomial number
of oracle queries, and with one additional query it can be decided whether there
is a k-edge-coloring with sum Σ′(G). In fact, a logarithmic number of oracle
queries is sufficient: the value of Σ′(G) can be determined using binary search.
Therefore, as an upper bound, it can be said that this problem is in PNP = ∆p

2.
But exactly where does this problem lie between NP and ∆p

2?

The class Θp
2 = PNP[O(logn)] contains those languages that can be decided by

a polynomial-time oracle Turing-machine that makes O(logn) adaptive queries
to an NP oracle. There are several other natural characterizations of Θp

2 in the
literature: as shown in Hemachandra (1989); Papadimitriou & Zachos (1982);
Wagner (1990), it is equivalent to PNP

|| (polynomial-time computation with

parallel access to an NP-oracle), LNP
|| (log-space bounded computation with

parallel access to an NP-oracle), and LNP (log-space computation with an NP-
oracle). The notation Θp

2 comes from Wagner (1990), who defines this class
as part of the polynomial hierarchy: Θp

i+1 is the class of problems that can
be decided in polynomial time by at most O(logn) queries to a Σp

i -oracle.
Clearly, Σp

i ,Π
p
i ⊆ Θp

i+1 ⊆ ∆p
i+1. It is conjectured that these inclusions are

proper. However, our present knowledge does not even rule out the possibility
of P = PSPACE.

There are some more exotic characterizations of Θp
2. For example, Lange

& Reinhardt (1994) introduced the concept of empty alternation, and proved
the surprising result that log-space and polynomial-time bounded computation
with auxiliary Turing tape and empty alternation equals Θp

2. Holzer & McKen-
zie (2003) gave similar characterizations of Θp

2 using auxiliary stacks (see also
Holzer & McKenzie 2002).

The class Θp
2 turns out to be relevant in other ways as well. Mahaney (1982)

has shown that if NP has a sparse Turing-complete set, then the polynomial
hierarchy (PH) collapses to ∆p

2. Kadin (1989) has strengthened this result by
showing that if NP has sparse Turing-complete sets, then PH ⊆ Θp

2. Moreover,
this theorem is optimal in the sense that the collapse to Θp

2 relativizes, but
there are relativized worlds with sparse NP-complete sets where PH does not
collapse bellow Θp

2 (Kadin 1989).

If a complexity class has several natural complete problems, then this makes
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the class natural and worth studying. The abundance of complete problems
is usually taken as a sign that the class captures some important aspect of
computation. Wagner (1987) has shown that NP-hard optimization problems
often give rise to Θp

2-complete decision problems. For example, it is Θp
2-complete

to decide if the size of a maximum independent set in G is odd, or to decide if
two graphs G1 and G2 have maximum independent sets of the same size.

Besides these somewhat technical problems, Θp
2 has more natural complete

problems. The following greedy algorithm is a well-known heuristic for the
maximum independent set problem: take a vertex with minimum degree, put
it into the independent set, delete it and its neighbors from the graph, and
continue this while there are vertices in the graph. In general, this will not
necessarily result in a maximum independent set, but in certain graphs, with a
lucky sequence of choices, it is possible that the result is optimal. Hemaspaan-
dra & Rothe (1998) showed that it is Θp

2-complete to decide whether the greedy
algorithm can find a maximum independent set in the given graph G. More
generally, for every rational number r ≥ 1, they show that it is Θp

2-complete
to decide whether the greedy algorithm can find an r-approximation of the
optimum, that is, an independent set of size at least 1/r times the maximum.

Another example can be found in the study of electoral systems. The Con-
dorcet Paradox states that even if every voter has a clear preference order of
the candidates, it is not necessary that there is a “best” candidate who can
beat every other candidate in pairwise comparisons (such a candidate is called
a Condorcet winner). In 1876 Lewis Caroll proposed an electoral system that
can be used to find a winner even if there is no such best candidate: let that
candidate be the winner who can become a Condorcet winner with a minimal
number of changes in the preferences of the voters. Hemaspaandra et al. (1997)
showed that it is Θp

2-complete to decide whether candidate X is the winner in
this system. It is quite fascinating to see that there is a Θp

2-complete problem
that was posed more than 100 years before the definition of the class Θp

2.

In Section 6, we show that for every k ≥ 3, it is Θp
2-complete to decide

whether s′(G) ≤ k holds. In order to prove this result, we introduce four new
Θp

2-complete variants of the minimum vertex cover problem:

Minimum Vertex Cover with v̂

Input: A graph G(V,E) and a distinguished vertex v̂ ∈ V

Question: [Does at least one/Does every] minimum vertex cover in
G [contains/avoids] v̂?
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The four problems are abbreviated MVC-∃∈, MVC-∃6∈, MVC-∀∈, MVC-
∀6∈ (the symbol ∃ stands for “Does at least one,” ∀ stands for “Does every,”
∈ stands for “contains,” and 6∈ stands for “avoids”). The rest of this section
is devoted to the proof that these four problems are Θp

2-complete for 3-regular
graphs. This result might be of independent interest as well. In the following,
we denote by τ(G) the size of the minimum vertex cover of G.

Lemma 5.1. The MVC-∃∈ problem is Θp
2-hard.

Proof. Given two graphs G1 and G2, it is Θp
2-complete to decide whether

τ(G1) ≤ τ(G2) holds (Spakowski & Vogel 2000). We reduce this decision
problem to MVC-∃∈. Add a new isolated vertex v̂ to G2, let G′

2 be the resulting
graph. We can assume that G1 and G′

2 have the same number n of vertices:
otherwise we could add new isolated vertices without changing the problem.
Let G be the graph obtained by joining every vertex of G1 with every vertex
of G′

2. A vertex cover S of G has to contain either every vertex of G1 or every
vertex of G′

2: if a vertex u ∈ G1 is missing from S, then every neighbor of u
has to be in S. Therefore, a minimum vertex cover of G either

1. contains every vertex of G1 and a minimum vertex cover of G′
2, or

2. contains every vertex of G′
2 and a minimum vertex cover of G1.

In the first case the size of the vertex cover is n + τ(G′
2) = n + τ(G2), in the

second case n + τ(G1). If τ(G1) > τ(G2), then every minimum vertex cover is
of the first type, otherwise there is at least one minimum vertex cover of the
second type. Thus if τ(G1) ≤ τ(G2), then there is a minimum vertex cover that
contains v̂ (second type), otherwise there is no such minimum vertex cover. �

Theorem 5.2. All four problems MVC-∃∈, MVC-∃6∈, MVC-∀∈, MVC-∀6∈ are
Θp

2-complete for 3-regular graphs.

Proof. To see that these problems belong to the class Θp
2, observe that

by using binary search, a logarithmic number of adaptive NP-oracle calls are
sufficient to determine τ(G), the size of the minimum vertex cover in the graph.
Having done that, a single NP or coNP query can answer whether there is a
vertex cover, whether every vertex cover of size τ(G) has the required property.

Lemma 5.1 proves that the MVC-∃∈ problem is Θp
2-hard. We show that the

problem remains Θp
2-hard when restricted to 3-regular graphs. Given a graph

G with a distinguished vertex v̂, we transform it to a graph G′ with maximum
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degree 3 without changing the answer to the MVC-∃∈ problem. Later we will
transform this graph into a 3-regular graph G′′.

Let v be a vertex of G, and consider an arbitrary ordering of the neighbors
of v. The vertex v is replaced by a cycle Cv of length 2d(v) having vertices
av,1, bv,1, . . . , av,d(v), bv,d(v). If u and v are neighbors in G, then Cu and Cv are
connected by an edge. More precisely, if u is the i-th neighbor of v, and v is the
j-th neighbor of u, then vertex av,i and au,j are neighbors in G′. Furthermore,
for every vertex v in G, a degree 1 vertex cv is attached to bv,1. This completes
the description of G′.

We claim that τ(G′) =
∑

v∈V d(v) + τ(G). Let Xv = {av,1, bv,1, . . . ,av,d(v),
bv,d(v), cv}. The Xv’s form a partition of the vertex set of G′. Since Xv contains
a cycle of length 2d(v), every vertex cover has to contain at least d(v) vertices
from Xv. Thus the size of every vertex cover in G′ is at least

∑
v∈V d(v).

Furthermore, if a vertex cover contains exactly d(v) vertices from Xv, then
these vertices have to be bv,1, . . . , bv,d(v). Therefore, if u and v are neighbors in
G, then every vertex cover in G′ has to contain either more than d(u) vertices
from Xu or more than d(v) vertices from Xv, otherwise the edge connecting
Xu and Xv would not be covered. This implies that in at least τ(G) of the
Xv’s, the vertex cover contains more than d(v) vertices, hence the size of every
vertex cover in G′ is at least

∑
v∈V d(v) + τ(G). On the other hand, if S is a

vertex cover of G, then we can construct a vertex cover of G′ as follows. For
each v ∈ S, we add the vertices {av,1, . . . , av,d(v), cv} to the vertex cover; for
v 6∈ S, we add the vertices {bv,1, . . . , bv,d(v)}. This is gives a vertex cover of G′

having size exactly
∑

v∈V d(v) + τ(G).

Let av̂,1 be the distinguished vertex of G′. If there is a minimum vertex
cover of G that contains v̂, then the argument in the previous paragraph shows
that there is a minimum vertex cover of G′ that contains av̂,1. Conversely,
assume that S ′ is a minimum vertex cover of G′. Let S be the set of those v’s
for which S contains more than d(v) vertices of Xv. As we have seen above, S
is a minimum vertex cover of G. From av̂,1 ∈ S ′ it follows that v̂ ∈ S, hence in
this case G has a minimum vertex cover containing the distinguished vertex v̂.

The same reduction can be used to show the Θp
2-completeness of MVC-∃6∈

for graphs with maximum degree 3. This time let bv̂,1 be the distinguished
vertex of G′. A similar argument shows that G has a minimum vertex cover
containing v̂ if and only if G′ has a minimum vertex cover not containing bv̂,1,
hence MVC-∃6∈ has the same complexity as MVC-∃∈. Moreover, since MVC-∀∈

is the complement of MVC-∃6∈, and MVC-∀6∈ is the complement of MVC-∃∈,
it follows that the remaining two problems are Θp

2-complete as well, because
Θp

2 is closed under taking complements.
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ba c

Figure 5.1: Attaching gadgets to the graph to make it 3-regular.

The theorem requires us to prove the Θp
2-completeness of the problems for

3-regular graphs, but the constructed graph G′ has vertices with degree less
than 3. If a vertex v of G′(V ′, E ′) has degree less than 3, then attach to v one
or two gadgets to make the degree of v exactly 3, Figure 5.1 shows the attached
gadget. Assume that g such gadgets are attached, denote by G′′(V ′′, E ′′) the
resulting 3-regular graph. At least 3 vertices of each gadget have to be selected
to cover the edges of the gadgets, thus τ(G′′) ≥ τ(G′)+3g. On the other hand,
given a vertex cover of G′, adding to this set the vertices a, b, c of every gadget
yields a vertex cover of G′′; therefore, τ(G′′) = τ(G′) + 3g. Moreover, every
minimum vertex cover of G′ can be extended to a minimum vertex cover of
G′′, and if S is a minimum vertex cover of G′′, then S ∩ V ′ induces a minimum
vertex cover of G′. Therefore, every minimum vertex cover of G′ contains the
distinguished vertex if and only if every minimum vertex cover of G′′ contains
it, hence the theorem is proved for 3-regular graphs as well. �

Replacing minimum vertex cover with maximum independent set in the
problem definition results in four new problems MIS-∃∈, MIS-∃6∈, MIS-∀∈,
MIS-∀6∈. From the well-known fact that every maximum independent set is
the complement of a minimum vertex cover, it follows that these four problems
are equivalent to the four problems MVC-∃6∈, MVC-∃∈, MVC-∀6∈, MVC-∀∈,
respectively. For example, there is a maximum independent set containing
vertex v̂ if and only if there is a minimum vertex cover not containing v̂.

Corollary 5.3. All four problems MIS-∃∈, MIS-∃6∈, MIS-∀∈, MIS-∀6∈ are
Θp

2-complete for 3-regular graphs. �

6. The reduction

For every k ≥ 3, we prove that it is Θp
2-complete to decide whether s′(G) ≤ k

holds for a given graph G. The reduction is from the MVC-∃∈ problem defined
in Section 5. Given a 3-regular graph G, we construct a quasigraph G′ such
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Figure 6.1: The vertex gadget. The two numbers on each edge show two edge
colorings of the gadget.

that ε(G′) = τ(G) + ck, where τ(G) is the size of a minimum vertex cover in
G, and ck is a constant depending only on k. Moreover, the minimum error
τ(G) + ck can be achieved by a k-edge-coloring of G′ if and only if there is a
minimum vertex cover of G containing the distinguished vertex v̂. This means
that s′(G) ≤ k if and only if the answer to the MVC-∃∈ problem is yes. The
constructed graph G′ is a quasigraph, but we want to prove that checking
s′(G) ≤ k is Θp

2-hard for simple graphs. However, this is not a problem, as the
transformation of Proposition 3.1 gives us a simple graph G′′ with the same
edge strength as G′.

The quasigraph G′ is constructed by associating vertex gadgets and edge
gadgets to the vertices and edges of G. The vertex gadget shown in Figure 6.1
has 3 pendant edges that correspond to the 3 edges incident to the vertex in G.
The coloring of the pendant edges will determine whether we add the vertex to
the vertex cover or not. If the vertex is in the vertex cover, then all 3 pendant
edges are colored with color 2, otherwise the pendant edges have color 1. The
gadget has the following properties:

◦ There is a coloring ψ with zero error on the internal vertices of the vertex
gadget that colors all three pendant edges with color 1. Moreover, every
coloring with zero error on the internal vertices colors the pendant edges
with color 1.

◦ There is a coloring ψ∗ that colors all three pendant edges with color 2
and has an error of 1 on the internal vertices.

Figure 6.1 shows two edge colorings of the vertex gadget. The first coloring has
zero error on the internal vertices and assigns color 1 to the pendant edges. The
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Figure 6.2: The edge gadget with 3 different edge colorings.

error of the second coloring is 1 (the error occurs at vertex v), and assigns color
2 to the pendant edges. Moreover, the first coloring is the unique coloring with
zero error on the internal vertices: the reader can easily verify this by observing
that the edges incident to degree 1 vertices have to be colored with color 1,
and the implications of this uniquely determines the coloring of the rest of the
graph. These observations prove that the gadget has the required properties.

The edge gadget shown in Figure 6.2 has two pendant edges f and g. If
a coloring has zero error on the internal vertices of the gadget, then clearly
edges f and g have color 1 or 2. There are 4 different ways of coloring f and
g with these two colors. In 3 out of 4 of these combinations, when at least one
of f and g is colored with color 2, the coloring can be extended to the whole
gadget with zero error (Figure 6.2 shows these 3 different colorings). On the
other hand, if both f and g have color 1, then there is at least one error on
the internal vertices of the gadget. The reader can verify this by following the
implications of coloring f and g with color 1, and requiring that every internal
vertex has zero error.

For the distinguished vertex v̂, a more complicated gadget is required than
the vertex gadget shown in Figure 6.1. Like the vertex gadget, the special

vertex gadget has a low-error coloring that assigns color 1 to the three pendant
edges, and there is a coloring with error greater by 1 that assigns color 2 to the
pendant edges. Furthermore, the low-error coloring can be achieved only with
∆+1 colors, while the other coloring uses only ∆ colors. The following lemma
states the properties of this gadget formally:

Lemma 6.1 (Special vertex gadget). For every k ≥ 3, if there is a simple graph
Hk with χ′(Hk) = ∆(Hk) = k and s′(Hk) = k + 1, then there is a quasigraph
Dk satisfying the following requirements:

(i) Dk has three pendant edges. Denote by V0 the internal vertices of Dk.

(ii) Every edge coloring ψ with εψ(V0) = ε(V0) uses at least k + 1 colors and
assigns color 1 to the three pendant edges.
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(iii) There is a (k + 1)-edge-coloring ψ with εψ(V0) = ε(V0) that assigns color
1 to the three pendant edges.

(iv) There is a k-edge-coloring ψ∗ with εψ∗(V0) = ε(V0) + 1 that assigns color
2 to the three pendant edges.

The proof of Lemma 6.1 is deferred to Section 7. We note here that the
vertex gadget of Figure 6.1 satisfies these properties with ε(V0) = 0, except for
Property (ii).

Theorem 6.2. For every k ≥ 3, if there is a graph Hk with χ′(Hk) = ∆(Hk) =
k and s′(Hk) = k + 1, then it is Θp

2-complete to decide whether s′(G) ≤ k.

Proof. The proof is by reduction from the MVC-∃∈ problem, which was
proved Θp

2-complete in Section 5 (Theorem 5.2). Given a 3-regular graph
G(V,E) with a distinguished vertex v̂, we construct a quasigraph G′ with max-
imum degree k such that s′(G) = k if and only if there is a minimum vertex
cover of G containing v̂.

The quasigraph G′(V ′, E ′) is constructed as follows. Initially, let us ignore
the distinguished vertex v̂, considering it an ordinary vertex like the others.
Later we will show what modifications have to be done for v̂. For each vertex
v of G, a vertex gadget Sv is added to G′, and for each edge e of G, an edge
gadget Se is added to G′. Direct the edges of G arbitrarily. For each vertex v of
G, consider an arbitrary ordering of the 3 edges incident to v. If the i-th edge
incident to v ∈ V (i = 1, 2, 3) is an edge e entering v, then identify pendant
edge ei of Sv with pendant edge f of Se. If the i-th edge incident to v ∈ V is
an edge e leaving v, then identify edge ei of Sv with edge g of Se. Thus every
vertex of G′ is an internal vertex of a vertex gadget Sv or an edge gadget Se.
Denote by Vv the internal vertices of gadget Sv and by Ve the internal vertices
of Se, by construction these sets form a partition of V ′.

We claim that G′ has an edge coloring with error t if and only if G has a
vertex cover of size t. Assume first that D ⊆ V is a vertex cover of G. If v ∈ D,
then color gadget Sv using coloring ψ∗: every pendant edge has color 2 and
there is an error of 1 on the internal vertices. If v 6∈ D, then we use coloring
ψ of the vertex gadget: every pendant edge of Sv has color 1 and there is no
error on the internal vertices. Now consider a gadget Se for some e ∈ E. The
two pendant edges f and g are already colored with color 1 or 2. However, at
least one of them is colored with 2, since at least one end vertex of e is in D.
Therefore, using one of the three colorings shown in Figure 6.2, we can extend
the coloring to every edge of Se with zero error on the internal vertices of the
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gadget. Errors appear on the internal vertices of Sv only for v ∈ D, hence the
total error of the coloring is |D|.

On the other hand, consider an edge coloring of G′ with error t. Let V̂ ⊆ V
be the set of those v ∈ V for which there is error in Vv. Similarly, let Ê ⊆ E be
the set of those e ∈ E for which there is error in Ve. Clearly, the coloring has
error at least |V̂ |+ |Ê| ≤ t. Let V be a set of |Ê| vertices in G that cover every

edge in Ê. The set of vertices V̂ ∪ V has size at most |V̂ | + |Ê| ≤ t. We show

that this set is a vertex cover of G. It is clear that every edge e ∈ Ê is covered,
since there is a v ∈ V covering e. Now consider an edge e 6∈ Ê, this means that
Ve is colored with zero error; thus, as we have observed, at least one pendant
edge of Se is colored with color 2. If this edge is the pendant edge of the vertex
gadget Sv, then there is at least one error in Vv and v is in V̂ . However, if the
pendant edge of Se and Sv is identified in the construction, then e is incident
to v, and it follows that v ∈ V̂ covers e.

We have shown that ε(G′) = τ(G). Now we modify G′ slightly to take into
account the distinguished vertex v̂. The gadget corresponding to vertex v̂ is
not the vertex gadget of Figure 6.1, but the special vertex gadget defined in
Lemma 6.1. By modifying appropriately the argument presented above, one
can show that ε(G′) = τ(G) + ε(V0), where ε(V0) is the minimum error on the
internal vertices of the special gadget. Moreover, if G has a minimum vertex
cover D containing v̂, then G′ has a minimum sum edge coloring using only k
colors, since in this case we can use the coloring ψ∗ on the special gadget. On
the other hand, if there is a minimum sum edge coloring using k colors, then
by Property (ii) of Lemma 6.1, the error is more than ε(V0) on the internal
vertices of the special gadget. This means that vertex v̂ is contained in the
set V̂ defined above, hence the constructed minimum vertex cover contains v̂.
Therefore, s′(G′) = k if and only if G has a minimum vertex cover containing
v̂, what we had to prove. �

In Section 4 we have seen that for every k ≥ 3, there is a simple graph
with maximum degree and chromatic index k that has edge strength k + 1.
Combining this with Theorem 6.2 gives

Corollary 6.3. For every fixed k ≥ 3, it is Θp
2-complete to decide whether

s′(G) ≤ k. �

We note that deciding s′(G) ≤ 2 is trivial: s′(G) ≤ 2 is only possible if
χ′(G) ≤ 2, which means that every connected component of the graph is a
path or an even cycle. It is easy to see that s′(G) = χ′(G) = 2 holds for every
such graph.
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Determining the chromatic edge strength is the special case of determin-
ing the chromatic strength: edge strength of G is simply the strength of the
line graph of G. Therefore, Corollary 6.3 implies hardness for the chromatic
strength as well:

Corollary 6.4. For every fixed k ≥ 3, it is Θp
2-complete to decide whether

s(G) ≤ k. �

In the introduction, we have noted that if G is a simple graph, then s′(G) is
either ∆(G) or ∆(G)+1 (Hajiabolhassan et al. 2000; Mitchem et al. 1997), and
consequently, s′(G) is either χ′(G) or χ′(G) + 1. In Theorem 6.2, we construct
a graph with maximum degree and chromatic index k. Therefore, comparing
s′(G) to ∆(G) or to χ′(G) is also hard:

Corollary 6.5. For every k ≥ 3, it is Θp
2-complete to decide for graphs with

maximum degree k whether s′(G) = ∆(G) holds. �

Corollary 6.6. For every k ≥ 3, it is Θp
2-complete to decide for graphs with

maximum degree k whether s′(G) = χ′(G) holds. �

Hajiabolhassan et al. (2000) asked for a characterization of those graphs where
s′(G) 6= χ′(G). Corollary 6.6 implies that we cannot hope for a nontrivial (NP
or coNP) characterization of such graphs.

7. Special vertex gadget

The aim of this section is to construct the special vertex gadget defined in
Lemma 6.1. However, some preparations are required before the proof. We
recursively construct two families of trees Ti and Ni (i ≥ 1). Every Ti has a
pendant edge e, and every Ni has a root r. The trees T1 and N1 consist of a
single edge. The tree Ti is the same as Ni−1, with a pendant edge connected
to the root r. The tree Ni is constructed by attaching the pendant edges of
a T1, T2, . . . , Ti tree to a common root r. The construction is demonstrated in
Figure 7.1.

The properties of these trees are summarized in the following lemma:

Lemma 7.1. (a) There is an edge coloring of the tree Ti that has no error on the
internal vertices of Ti, and assigns color i to the pendant edge e. Furthermore,
every coloring that assigns color j to e has error at least |j − i| on the internal
vertices.
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Figure 7.1: The trees Ti and Ni.

(b) There is a zero error edge coloring of the tree Ni that assigns the colors
1, 2, . . . , i to the edges incident to r. Furthermore, if color j ≤ i is missing at
r in a coloring, then this coloring has error at least i − j + 1 on the internal
vertices of Ni.

Proof. The proof is by induction on i. Both statements are trivial for i = 1.
Now assume that i > 1 and both (a) and (b) hold for every 1 ≤ i′ < i. First
we prove statement (a). Since Ti − e is isomorphic to Ni−1, it has a zero error
coloring by the induction hypotheses. Extending this coloring by assigning
color i to edge e does not create errors on the internal vertices of Ti, proving
the first part of statement (a). Consider now an edge coloring of Ti that assigns
color j to e. This coloring colors Ti − e = Ni−1 in such a way that color j is
missing at vertex r. If j < i, then by the induction hypothesis, there is an
error of at least (i − 1) − j + 1 = |j − i| on the internal vertices of Ni−1, and
we are done. On the other hand, if j > i, then in the coloring of Ti the degree
i internal vertex r has error at least j − i.

Next we prove statement (b). Let e1, e2, . . . , ei be the edges incident to r in
Ni, edge ej is the pendant edge of the tree Tj attached to r. A zero error edge
coloring of Ni can be obtained by coloring every attached tree Tj in such a way
that the internal vertices have zero error and edge ej has color j. Clearly, there
is no error on r or on any other vertex of Ni in this coloring.

Suppose that a color j ≤ i is missing from r in a coloring ψ of Ni. Define
the following sequence of edges: es1 = ej and esk+1

= eψ(es
k
) until an edge

with ψ(es
k′
) > i is found (it can be verified that this sequence is finite). Since

esk
is the pendant edge of a tree Tsk

, by statement (a), there is error at least
|sk − ψ(esk

)| on the internal vertices of Tsk
. Therefore, the internal vertices of
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Ni have error at least

|ψ(es1) − s1| + |ψ(es2) − s2| + · · ·+ |ψ(es
k′−1

) − sk′−1| + |ψ(es
k′
) − sk′|

≥ (ψ(es1) − s1) + (ψ(es2) − s2) + · · ·+ (ψ(es
k′−1

) − sk′−1) + (ψ(es
k′
) − sk′)

= ψ(es
k′
) − s1 ≥ i+ 1 − j,

since by definition, ψ(esk
) = sk+1 for 1 ≤ k < k′, and ψ(es

k′
) > i. �

The coloring defined by Lemma 7.1 will be called the standard coloring of these
gadgets. In the standard coloring of Ti the pendant edge receives color i, and
the color of every other edge is less than i. Moreover, the tree Ti can be colored
such that the pendant edge has color j and the internal error is exactly |i− j|.
To see this, consider the standard coloring of Ti, and recolor the pendant edge
with color j. If j > i, then this results in a proper coloring with internal error
j− i. If j < i, then the recolored pendant edge will conflict with an edge f that
has color j in the standard coloring. The conflict can be resolved by giving
color i to f (this does not cause any further conflicts, since in the standard
coloring only the pendant edge has color i). The recoloring introduces an error
of i− j at one end point of f .

Denote by Σ′
∆(G) the minimum sum that a ∆(G)-edge-coloring of G can

have. By definition, Σ′
∆(G) ≥ Σ′(G). Denote by ε∆(G) the error of the best

∆(G)-edge-coloring, that is, ε∆(G) = 2Σ′
∆(G) − `(G).

In the following lemma, we determine how the errors on the vertices change
if we attach an edge of G2 to vertex v of G1.

Lemma 7.2. Let G1(V1, E1) and G2(V2, E2) be two graphs such that V1∩V2 =
{v} and edge e is the only edge in G2 incident to v. Let d be the degree of v
in G1. Let G(V1 ∪ V2, E1 ∪ E2) be the graph obtained by joining G1 and G2

at vertex v. If ψ1 is an edge coloring of G1, ψ2 is an edge coloring of G2, and
these colorings assign distinct colors to the edges incident to v, then they can
be combined to obtain an edge coloring ψ of G such that

εψ(u) =






εψ1
(u) if u ∈ V1 \ {v}

εψ2
(u) if u ∈ V2 \ {v}

εψ1
(u) + ψ2(e) − (d+ 1) if u = v.

Conversely, if ψ is an edge coloring of G, then it induces an edge coloring ψ1

of G1 such that

εψ1
(u) =

{
εψ(u) if u ∈ V1 \ {v}

εψ(v) − ψ(e) + d+ 1 if u = v.
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Proof. The first statement clearly holds for every vertex u 6= v, since com-
bining the two colorings can change the error only on v, the only common
vertex of the two graphs. Let Ev ⊆ E1 be the edges incident to v in G1. The
error of v in coloring ψ is

εψ(v) =
∑

f∈Ev

ψ(f) + ψ(e) −
d+1∑

i=1

i =
∑

f∈Ev

ψ1(f) + ψ2(e) −
d∑

i=1

i− (d+ 1)

=

(
∑

f∈Ev

ψ1(f) −
d∑

i=1

i

)

+ ψ2(e) − (d+ 1) = εψ1
(v) + ψ2(e) − (d+ 1).

The second statement can be proved by a similar calculation. �

In particular, if we attach a tree Td(v) to a vertex v, then the error changes as
follows:

Lemma 7.3. Let v be an arbitrary vertex of the simple graph G(V,E); attach
to v the pendant edge e of the tree Td(v). Denote by G′ the resulting graph.

(a) The error ε(G′) is either ε(G) − 1 or ε(G) + 1, and it is ε(G) − 1 if and
only if there is a minimum sum edge coloring ψ of G such that some color
c ≤ d(v) is missing from v.

(b) If d(v) < ∆(G), then ε∆(G′) is either ε∆(G) − 1 or ε∆(G) + 1, and it is
ε∆(G) − 1 if and only if there is a ∆(G)-edge-coloring with error ε∆(G) where
some color c′ ≤ d(v) is missing from v.

Proof. Let ψ be a minimum sum edge coloring of G, and let c ≤ d(v) + 1
be the smallest color not present at v in ψ. As discussed after the proof of
Lemma 7.1, the tree Td(v) has a coloring that assigns color c to the pendant
edge e and has internal error |d(v)− c|. This coloring can be combined with ψ
to obtain a coloring ψ′ of G′. We use Lemma 7.2 to calculate the error of ψ′.
The total error on the internal vertices of Td(v) is |d(v) − c|, and the error on
the vertices of G is the same as in ψ, except on v, where the error is increased
by c − (d(v) + 1). Therefore, the error of ψ′ is εψ′(G′) = εψ(G) + c − (d(v) +
1)+ |d(v)− c|. If c ≤ d(v), then this equals εψ(G)−1, thus ε(G′) ≤ ε(G)−1. If
c = d(v)+1, then εψ′(G) = εψ(G)+1, and ε(G′) ≤ ε(G)+1 follows. Therefore,
we have obtained that ε(G′) ≤ ε(G) + 1, and if G has a minimum sum edge
coloring where a color c ≤ d(v) is missing from v, then ε(G′) ≤ ε(G) − 1.

To finish the proof of statement (a), we have to show that ε(G′) ≥ ε(G)−1,
and if every minimum sum edge coloring of G uses at v every color not greater
than d(v), then ε(G′) ≥ ε(G) + 1. Assume that a minimum sum coloring ψ′ of
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G′ is given with ψ′(e) = c. By Lemma 7.1, the error is at least |d(v)− c| on the
internal vertices of the tree Td(v), so the error, εψ′(V ), is at most ε(G′)−|d(v)−c|
on the vertices V . The coloring ψ′ induces a coloring ψ of G, and by the second
part of Lemma 7.2,

εψ(G) = εψ′(V ) − c+ d(v) + 1 ≤ ε(G′) − |d(v) − c| − c+ d(v) + 1 ≤ ε(G′) + 1,

hence ε(G′) ≥ εψ(G) − 1 ≥ ε(G) − 1. Moreover, equality is only possible if
c ≤ d(v) and ψ is a minimum sum edge coloring of G, or in other words, if
there is a minimum sum edge coloring of G such that color c ≤ d(v) is missing
from v. Finally, if every minimum sum coloring of G uses only colors at most
d(v) on v, then either c > d(v) or ψ is not a minimum sum coloring of G. In
either case, εψ′(G′) ≥ ε(G) + 1 follows, completing the proof of statement (a)
(recall that if ψ is not a minimum sum coloring of G, then εψ(G) ≥ ε(G) + 2,
since the error of every coloring has the same parity). The proof of statement
(b) is exactly the same. Notice that if d(v) < ∆(G), then ∆(G′) = ∆(G). �

The following gadget will be used in the construction of the special vertex
gadget.

Lemma 7.4. For every k ≥ 1, there is a quasigraph Hk satisfying the following
properties (V0 denotes the internal vertices of Hk):

(i) H has two pendant edges f, g.

(ii) There is a (k + 1)-edge-coloring ψk+1 with ψk+1(f) = k + 1, ψk+1(g) = 1
and εψk+1

(V0) = 0.

(iii) For every i ≤ k, there is a (k+1)-edge-coloring ψi with ψi(f) = i, ψi(g) =
2, and εψi

(V0) = k − i.

(iv) For every coloring ψ, if ψ(f) = i ≤ k, then εψ(V0) ≥ k − i.

(v) For every coloring ψ, if ψ(f) = k + 1 and εψ(V0) = 0, then ψ(g) = 1.

Proof. For k = 1, 2, 3, the graphHk is shown in Figure 7.2. It can be verified
directly that they satisfy the requirements of the lemma. For the remainder of
the proof, it is assumed that k ≥ 4.

The graph Hk is constructed as follows. Take a path on 6 vertices v1, v2,
v3, v4, v5, v6, let f = v1v2 and g = v5v6. Identify the root of a tree Nk−1 with
vertex v2. Attach a half-loop to v3, and attach to v3 the pendant edges of k−2
trees T2, T3, . . . , Tk−1. Attach a half-loop to v4 as well, and attach to v4 the
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Figure 7.2: The graphs H1, H2, H3, and H5.

pendant edges of k−3 trees T3, T4, . . . , Tk−1. The resulting graph Hk is shown
in Figure 7.2.

The coloring ψk+1 is defined by ψk+1(v1v2) = k + 1, ψk+1(v2v3) = k,
ψk+1(v3v4) = 1, ψk+1(v4v5) = 2, ψk+1(v5v6) = 1, ψk+1(v3v3) = k+1, ψk+1(v4v4) =
k, and it gives the standard coloring to the attached trees. It can be verified
that ψk+1 is a proper edge coloring and there is zero error on the internal
vertices, which gives Property (ii). Similarly, the coloring ψk required by Prop-
erty (iii) for i = k is defined as ψk(v1v2) = k, ψk(v2v3) = k + 1, ψk(v3v4) = k,
ψk(v4v5) = 1, ψk(v5v6) = 2, ψk(v3v3) = 1, ψk(v4v4) = 2, with the standard
coloring on the attached trees.

To obtain the coloring ψi for some i < k (Property (iii)), take the coloring
ψk defined above, and exchange the colors k and i on the alternating path
starting at edge f . (An alternating path is a path where the colors of the edges
are k and i alternately. There is a unique maximal alternating path starting
from f .) Exchanging k and i on the path introduces an error of k− i at a single
vertex, namely the vertex at the other end of the alternating path. Notice
that this color exchange cannot affect edge g, since edge v2v3 has color k + 1.
Therefore, we obtain a coloring satisfying Property (iii).

To see that Property (iv) holds, observe that a coloring ψ of Hk induces
a coloring of the tree Nk−1, and color ψ(f) is missing from the root of Nk−1.
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Therefore, in this coloring of Nk−1, there is error at least k−1−ψ(f)+1 = k−i
on the internal vertices (Lemma 7.1b), and this means that ψ has error at least
k − i on the internal vertices of Hk, as required.

To verify Property (v), assume that ψ(f) = k + 1 and eψ(V0) = 0, that is,
there is zero error on each internal vertex of the gadget. The color of edge v2v3

cannot be less than k, since in that case the tree Nk−1 could not be colored
with zero error on its internal vertices. Vertex v2 has degree k + 1, hence the
assumption that there is no error on v2 implies that ψ(v2v3) ≤ k + 1. Color
k + 1 is used by f on v2, therefore we can conclude that ψ(v2v3) = k. For
2 ≤ i ≤ k − 1, edge v3v4 cannot have color i, since that would imply that the
tree Ti attached to vertex v3 cannot be colored with zero internal error. Since
vertex v4 has degree k, and color k is already used at v3 by edge v2v3, it follows
that ψ(v3v4) = 1. This implies in turn that ψ(v4v5) 6= 1. However, there is zero
error on vertex v5; therefore, there must be an edge with color 1 at v5. Thus
edge g has color 1, as required. �

Now we are ready to construct the special vertex gadget:

Proof (Proof of Lemma 6.1). By assumption, there exists a graph G with
∆(G) = k and s′(G) = k+1 (or equivalently, ε(G) < ε∆(G)). If more than one
graph satisfies this condition, then select a graph G such that

(*) ε∆(G) − ε(G) > 0 is minimal,

and among these graphs,

(**) ε(G) is minimal.

For every vertex v of G, we define two sets Λ(v),Λ∆(v) ⊆ {1, 2, . . . , d(v)}.
Set Λ(v) contains j (1 ≤ j ≤ d(v)) if there is an edge coloring of G with error
ε(G) such that j is missing from v. If Λ(v) = ∅, then this means that every
minimum sum edge coloring has zero error on v. Similarly, Λ∆(v) contains j
(1 ≤ j ≤ d(v)), if there is a ∆(G)-edge-coloring with error ε∆(G) such that j
is missing from v.

First we show that at least one of Λ(v) and Λ∆(v) is empty for every vertex
v. Otherwise attach the pendant edge of a tree Td(v) to v, let G′ be the resulting
graph. Since there are colors j ∈ Λ(v), j′ ∈ Λ∆(v) not greater than d(v), by
(a) and (b) of Lemma 7.3, we have ε(G′) = ε(G) − 1 and ε∆(G′) = ε∆(G) − 1,
which contradicts the minimality of G with respect to (**).

Since ε∆(G) > 0, there is at least one vertex v with Λ∆(v) 6= ∅, Λ(v) = ∅.
Call such a vertex a join vertex (later we will join another gadget to G at such
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Figure 7.3: The structure of the special vertex gadget Dk.

a vertex, hence the name). Notice that d(v) < ∆(G), since Λ∆(v) 6= ∅ means
that there is a ∆(G)-edge-coloring that uses a color greater than d(v) at v.

The error has the same parity in every edge coloring, and ε∆(G) > ε(G) by
assumption, thus it follows that ε∆(G) ≥ ε(G) + 2. We claim that ε∆(G) =
ε(G) + 2 holds for a minimal graph G. Assume that on the contrary, ε∆(G) >
ε(G) + 2, and let v be a join vertex in G. Attach to v a tree Td(v) and let
G′ be the resulting graph. Since Λ∆(v) 6= ∅, there is a ∆(G)-edge-coloring of
G with error ε∆(G) such that some color c ≤ d(v) is missing from v, thus by
Lemma 7.3b, ε∆(G′) = ε∆(G) − 1. Moreover, since Λ(v) = ∅, every color not
greater than d(v) is used at v in every minimum sum edge coloring of G, hence
ε(G′) = ε(G) + 1, by Lemma 7.3a. Hence

ε∆(G′) − ε(G′) = (ε∆(G) − 1) − (ε(G) + 1) = ε∆(G) − ε(G) − 2.

This value is larger than 0 by the assumption ε∆(G) > ε(G) + 2. Therefore, G
is not minimal with respect to (*).

Now we are ready to construct the graph Dk. As shown in Figure 7.3, the
graph Dk consists of three parts: the minimal graph G defined above, a graph
Hi from Lemma 7.4, and the variable gadget shown in Figure 6.1. Let vertex
v be a join vertex of G. Set d = d(v), and connect to v the pendant edge f
of graph Hd. Finally, as shown on the figure, a graph with 34 new vertices is
connected to the pendant edge g of Hd. The edges e1, e2, e3 are the pendant
edges of Dk.

Denote by V0 the internal vertices of Dk and let VG be the vertices of G
(including v).

Claim 7.5. If V0 is the set of internal vertices of Dk, then ε(V0) = ε(G).
Moreover, if εψ(V0) = ε(G) for a coloring ψ of Dk, then ψ uses ∆(G)+1 colors,
ψ(f) = d+ 1 and ψ(ei) = 1 for i = 1, 2, 3.
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Proof. Color G with error ε(G) such that colors 1, 2, . . . , i appear at vertex
v (such a coloring exists, since v is a join vertex and Λ(v) = ∅). Color the edges
in Hd using coloring ψd+1 of Lemma 7.4, it assigns color d+1 to f , and it does
not introduce additional error on v or on the internal vertices of Hi. Since this
coloring assigns color 1 to edge g, it can be extended (in a unique way) to the
rest of graph Dk without increasing the error on V0 (similarly as in the case
of the vertex gadget of Section 6). Therefore, ε(V0) ≤ ε(G). Notice that this
coloring assigns color 1 to the edges e1, e2, e3.

To show that ε(V0) ≥ ε(G), let ψ be an edge coloring of Dk with εψ(V0) ≤
ε(G). First we show that ψ(f) > d. If not, then by Property (iv) of Lemma 7.4,
ψ has error at least d−ψ(f) on the internal vertices of Hd, hence there can be
error at most εψ(V0)−(d−ψ(f)) ≤ ε(G)−(d−ψ(f)) on VG. By the second part
of Lemma 7.2, this implies that ψ induces a coloring ψ′ of G with error at most
εψ′(G) ≤ εψ(VG)−ψ(f) + d+1 ≤ ε(G)− (d−ψ(f))−ψ(f)+ d+ 1 = ε(G) + 1.
Furthermore, ψ′ is not a minimum sum edge coloring of G, since color ψ(f) ≤ d
is missing from v, and Λ(v) = ∅. Therefore, εψ′(G) > ε(G), but this also means
that εψ′(G) ≥ ε(G) + 2, since the parity of the error is the same in every edge
coloring. However, this contradicts εψ′(G) ≤ ε(G) + 1.

Therefore, it can be assumed that ψ(f) > d for any coloring with εψ(V0) ≤
ε(G). Now, again by Lemma 7.2, ψ induces a coloring ψ′ of G with error

εψ′(G) = εψ(VG) − ψ(f) + (d+ 1) ≤ εψ(VG) ≤ εψ(V0) ≤ ε(G).

Since by definition εψ′(G) ≥ ε(G), these inequalities have to be equalities
throughout. In particular, ψ(f) = d+1 and εψ(V0) = ε(G), thus ε(V0) cannot be
strictly smaller than ε(G). Furthermore, every coloring ψ with εψ(V0) = ε(G)
induces a coloring ψ′ of G with error ε(G). We know that error ε(G) can be
achieved only by using ∆(G)+1 colors. Therefore, ∆(G)+1 colors are required
to achieve error ε(V0) = ε(G) on V0. Moreover, we have seen that in such a
coloring ψ, the edge f has color d + 1 and the error on V0 \ V is zero. By
Property (v) of Lemma 7.4, this implies that ψ(g) = 1 and it follows that the
pendant edges e1, e2, e3 also have color 1, as required. �

Property (ii) of Lemma 6.1 follows immediately from Claim 7.5. Moreover, in
the proof of the claim we have constructed a coloring ψ with εψ(V0) = ε(V0)
and ψ(ei) = 1 for i = 1, 2, 3, which implies Property (iii).

To show that Property (iv) holds, color G using ∆(G) colors with error
ε∆(G) = ε(G) + 2 such that color c ∈ Λ∆(v) is missing at vertex v; denote
this coloring by ψ∆. Color Hd such that edge f has color c, edge g has color
2, and there is error d− c on the internal vertices of Hd (the coloring ψc from
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Property (iii) of Lemma 7.4). This coloring can be extended to a coloring
of Dk without introducing further errors on V0 (see the second coloring in
Figure 6.1), which gives a coloring ψ∗ that assigns color 2 to the three pendant
edges e1, e2, e3. We use the first part of Lemma 7.2 to determine εψ∗(V0).
There is error d − c on V0 \ V , and εψ∗(u) = εψ∆

(u) for every u ∈ V \ {v}. By
Lemma 7.2, εψ∗(v) = εψ∆

(v)+ψ∗(f)−(d(v)+1) = εψ∆
(v)+c−d−1. Therefore,

εψ∗(V0) = εψ∆
(G) + (c− d − 1) + (d − c) = ε∆(G) − 1 = ε(G) + 1 = ε(V0) + 1,

as required. �
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