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Steiner Tree

Steiner Tree
Given an edge-weighted graph G and set T ⊆ V (G ) of terminals,
find a minimum-weight tree in G containing every vertex of T .
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Steiner Tree

Known results:
APX-hard on general graphs.
1.386-approximation on general graphs [Byrka et al. 2010].
PTAS on planar graphs [Borradaile et al. 2009].

Generalizations:
Steiner Forest:
connect given pairs (si , ti ).
Directed Steiner Tree:
connection from the root to every terminal.
Strongly Connected Steiner Subgraph:
connect ti → tj for every i , j .
Group Steiner Tree:
reach one vertex of each group (this talk)
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Group Steiner Tree
Group Steiner Tree
Given an edge-weighted graph G and sets T1, . . . ,Tk ⊆ V (G ) of
terminals, find a minimum-weight tree in G containing at least one
vertex from each Ti .

Best approximation for general graphs:
O(log3 n) [Garg et al. 2000]

Best approximation for trees:
O(log2 n) [Garg et al. 2000]

No O(log2−ε)-approximation for trees, unless NP admits
quasipolynomial-time Las Vegas algorithms
[Halperin and Krauthgamer 2003].
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Group Steiner Tree
Group Steiner Tree
Given an edge-weighted graph G and sets T1, . . . ,Tk ⊆ V (G ) of
terminals, find a minimum-weight tree in G containing at least one
vertex from each Ti .

Problem is APX-hard even on trees:
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Planar Group Steiner Tree
Variant where each group corresponds to the vertices of one face:

Main result
Planar Group Steiner Tree admits an EPTAS:
a (1+ ε)-approximation can be obtained in time f (1/ε)nO(1).
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Main result
Planar Group Steiner Tree admits an EPTAS:
a (1+ ε)-approximation can be obtained in time f (1/ε)nO(1).

Rest of the talk:
Quick overview of the main conceptual steps of a framework
that has been used for various planar PTASs, including
Steiner Tree.
Highlighting the two new conceptual steps that we introduce
for Planar Group Steiner Tree.
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Bounded treewidth

Using standard dynamic programming
techniques, an optimal solution for
Steiner Tree on graphs of treewidth w
can be found in time 2O(w logw) · nO(1).
Recent advances improved the running time
to 2O(w) · nO(1) [Cygan et al. 2011]
[Bodlaender et al. 2013] [Fomin et al. 2014]

Can be extended to Planar Group
Steiner Tree.

We need that the input graph G
has bounded treewidth!
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Shifting strategy

Theorem [Klein 2008]

Given an edge-weighted planar graph G and an ε > 0, we can find
in polynomial time a set F of edges such that w(F ) ≤ εw(G ) and
G/F has treewidth O(1/ε).

We “buy” F by contracting it in G and putting it into a
solution.
We can solve the problem on the graph G/F of treewidth
O(1/ε) optimally ⇒ OPT+ εw(G ) solution
Gives an additive εw(G ) approximation in time 2O(1/ε) · nO(1).

We need that the input graph G itself
is a constant-factor approximation of the optimum!
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Spanner construction

Main part of the Steiner Tree PTAS of [Borradaile et al. 2009]:

Spanner construction
Given an initial solution L, we can extend it to L′ such that

1 w(L′) ≤ f (1/ε) · w(L) and
2 If there is a tree X of G containing some terminals T on L,

then there is a tree X ′ ⊆ L′ also containing T with
w(X ′) ≤ w(X ) + εw(L).

If L is a constant-factor approximation of the solution, then
1 Graph L′ is also a constant-factor approximation.
2 Restriction to L′ introduces only O(εOPT) additive error.

We need that the initial solution L
is a constant-factor approximation!
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Constant-factor approximation

How to get a constant-factor approximation for Steiner Tree?
Easy 2-approximation: use a minimum spanning tree.
1.386-approximation on general graphs [Byrka et al. 2010].
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PTAS for Steiner Tree

Constant-factor approximation in polynomial time.

Construction of the spanner.

Reduction to bounded treewidth
with the shifting strategy

Solving the bounded-treewidth instances
using dynamic programming.
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PTAS for Planar Group Steiner Tree

Spanner bootstrapping

Reaching the relevant terminals using prize collecting.

Construction of the spanner.

Reduction to bounded treewidth
with the shifting strategy

Solving the bounded-treewidth instances
using dynamic programming.
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Spanner bootstrapping

First problem:
No O(1)-approximation is known for Planar Group Steiner.

Given an initial solution L,
we can get a OPT+ εw(L) solution.

Bootstrapping:
Given a c-approximation L for large c , we get a solution with
approximation ratio (1+ εc) ≤ c/2.
Given a c/2-approximation ⇒ we get ratio c/4.
Given a c/4-approximation ⇒ we get ratio c/8.
. . .

Starting from a trivial O(n)-approximation, we need to repeat this
O(log n) times to get a O(1)-approximation!
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Reaching relevant terminals
Second problem:
The spanner construction of [Borradaile et al. 2009] considers only
terminals that are already on the initial solution:

Spanner construction
Given an initial solution L, we can extend it to L′ such that

1 w(L′) ≤ f (1/ε) · w(L) and
2 If there is a tree X of G containing some terminals T on L,

then there is a tree X ′ ⊆ L′ also containing T with
w(X ′) ≤ w(X ) + εw(L).
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Reaching relevant terminals
Second problem:
The spanner construction of [Borradaile et al. 2009] considers only
terminals that are already on the initial solution:

Spanner construction
Given an initial solution L, we can extend it to L′ such that

1 w(L′) ≤ f (1/ε) · w(L) and
2 If there is a tree X of G containing some terminals T on L,

then there is a tree X ′ ⊆ L′ also containing T with
w(X ′) ≤ w(X ) + εw(L).

The solution may reach terminals that are not on spanner:
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There are two potential ways to solve the problem:

1 Extend the spanner to reach the terminals used by the
solution.

2 Fix the groups solution by connecting the solution to their
terminals on the spanner.

Neither solution is likely to work in general. . .
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Prize collecting

Our goal is to extend the initial solution L to L′ such that the
terminals on L′ are sufficient for a (1+ ε)-approximate solution.

Assign a potential π(g) to each group g such that
total potential is O(w(L)) and
if X is a solution that reaches the “bad” terminals of the
groups in S , then the groups in S can be fixed at cost π(S).

Extend L by “cheap” trees: the cost of the tree is not much
larger than the potential of the groups it reaches.
Suppose that the solution has a subtree F that reaches the
“bad” terminals of the groups S .

If w(F ) is small compared to π(S): argue that F is cheap, we
should have extended L with it.
If w(F ) is large compared to π(S): fix S at cost π(S) and
charge it on F .

16



Prize collecting

Our goal is to extend the initial solution L to L′ such that the
terminals on L′ are sufficient for a (1+ ε)-approximate solution.

Assign a potential π(g) to each group g such that
total potential is O(w(L)) and
if X is a solution that reaches the “bad” terminals of the
groups in S , then the groups in S can be fixed at cost π(S).

Extend L by “cheap” trees: the cost of the tree is not much
larger than the potential of the groups it reaches.

Suppose that the solution has a subtree F that reaches the
“bad” terminals of the groups S .

If w(F ) is small compared to π(S): argue that F is cheap, we
should have extended L with it.
If w(F ) is large compared to π(S): fix S at cost π(S) and
charge it on F .

16



Prize collecting

Our goal is to extend the initial solution L to L′ such that the
terminals on L′ are sufficient for a (1+ ε)-approximate solution.

Assign a potential π(g) to each group g such that
total potential is O(w(L)) and
if X is a solution that reaches the “bad” terminals of the
groups in S , then the groups in S can be fixed at cost π(S).

Extend L by “cheap” trees: the cost of the tree is not much
larger than the potential of the groups it reaches.
Suppose that the solution has a subtree F that reaches the
“bad” terminals of the groups S .

If w(F ) is small compared to π(S): argue that F is cheap, we
should have extended L with it.
If w(F ) is large compared to π(S): fix S at cost π(S) and
charge it on F .

16



Prize collecting — a special case

Special case: each group has at most 2 terminals.

We can define a submodular potential function π with total
potential w(L) · O(log n).
We can use the submodular prize-collecting procedure of
[Bateni et al. SODA 2011] to collect cheap trees.

We get a spanner L′ of weight f (1/ε) · log n · OPT
⇒ we want additive error ε′w(L′) for ε′ := ε/(f (1/ε) log n)
⇒ running time is 2O(1/ε′) · nO(1) = nf (1/ε).

Theorem
Planar Group Steiner Tree admits a nf (1/ε) time PTAS if
every group has only two terminals.
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Minimal vs. nonminimal
We may assume that L is path
(standard trick of cutting open a tree).
Two types of groups: minimal and nonminimal.

Which type is easier to handle?
18



Potential for nonminimal groups

Key observation: a subpath of the initial solution L can be used
to fix a nonminimal group.

We can assign a potential π(g) to the nonminimal groups such that

total potential is O(w(L))

each nonminimal group g can be fixed with cost π(g).

This is the beginning of a long journey. . .
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PTAS for Planar Group Steiner Tree

Spanner bootstrapping

Reaching the relevant terminals using prize collecting.

Construction of the spanner.

Reduction to bounded treewidth
with the shifting strategy

Solving the bounded-treewidth instances
using dynamic programming.
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Summary

Main result
Planar Group Steiner Tree admits an EPTAS:
a (1+ ε)-approximation can be obtained in time f (1/ε)nO(1).

Open: PTAS for the following two generalizations?

Group Steiner Tree on planar graphs where the groups
are connected and disjoint.
Directed Steiner Tree on planar graphs.
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