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ABSTRACT. We present a method for reducing the treewidth of a graph while preserving all the
minimal s − t separators. This technique turns out to be very useful for establishing the fixed-
parameter tractability of constrained separation and bipartization problems. To demonstrate the power
of this technique, we prove the fixed-parameter tractability of a number of well-known separation and
bipartization problems with various additional restrictions (e.g., the vertices being removed from the
graph form an independent set). These results answer a number of open questions in the area of
parameterized complexity.

1. Introduction
Finding cuts and separators is a classical topic of combinatorial optimization and in recent

years there has been an increase in interest in the fixed-parameter tractability of such problems
[19, 11, 15, 28, 16, 13, 5, 20]. Recall that a problem is fixed-parameter tractable (or FPT) with
respect to a parameter k if it can be solved in time f(k) · nO(1) for some function f(k) depending
only on k [10, 12, 21]. In typical parameterized separation problems, the parameter k is the size
of the separator we are looking for, thus fixed-parameter tractability with respect to this parameter
means that the combinatorial explosion is restricted to the size of the separator, but otherwise the
running time depends polynomially on the size of the graph.

The main technical contribution of the present paper is a theorem stating that given a graph G,
two terminal vertices s and t, and a parameter k, we can compute in a FPT-time a graph G∗ having
its treewidth bounded by a function of k while (roughly speaking) preserving all the minimal s− t
separators of size at most k. Combining this theorem with the well-known Courcelle’s Theorem,
we obtain a powerful tool for proving the fixed parameter tractability of constrained separation and
bipartization problems. We demonstrate the power of the methodology with the following results.

• We prove that the MINIMUM STABLE s − t CUT problem (Is there an independent set S of
size at most k whose removal separates s and t?) is fixed-parameter tractable. This problem
received some attention in the community. Our techniques allow us to prove various gen-
eralizations of this result very easily. First, instead of requiring that S is independent, we
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can require that it induces a graph that belongs to a hereditary class G; the problem remains
FPT. Second, in the MULTICUT problem a list of pairs of terminals are given (s1, t1), . . . ,
(s`, t`) and the solution S has to be a set of at most k vertices that induces a graph from G
and separates si from ti for every i. We show that this problem is FPT parameterized by k
and `, which is a very strong generalization of previous results [19, 28]. Third, the results
generalize to the MULTICUT-UNCUT problem, where two sets T1, T2 of pairs of terminals
are given, and S has to separate every pair of T1 and should not separate any pair of T2.
• We prove that the EXACT STABLE BIPARTIZATION problem (Is there an independent set

of size exactly k whose removal makes the graph bipartite?) is fixed-parameter tractable
(FPT) answering an open question posed in 2001 by Dı́az et al. [9]. We establish this result
by proving that the STABLE BIPARTIZATION problem (Is there an independent set of size
at most k whose removal makes the graph bipartite?) is FPT, answering an open question
posed by Fernau [7].
• We show that the EDGE-INDUCED VERTEX CUT (Are there at most k edges such that the

removal of their endpoints separates two given terminals s and t?) is FPT, answering an
open problem posed in 2007 by Samer [7]. The motivation behind this problem is described
in [27].

We believe that the above results nicely demonstrate the message of the paper. Slightly chang-
ing the definition of a well-understood cut problem usually makes the problem NP-hard and deter-
mining the parameterized complexity of such variants directly is by no means obvious. On the other
hand, using our techniques, the fixed-parameter tractability of many such problems can be shown
with very little effort. Let us mention (without proofs) three more variants that can be treated in a
similar way: (1) separate s and t by the deletion of at most k edges and at most k vertices, (2) in a
2-colored graph, separate s and t by the deletion of at most k black and at most k white vertices, (3)
in a k-colored graph, separate s and t by the deletion of one vertex from each color class.

As the examples above show, our method leads to the solution of several independent problems;
it seems that the same combinatorial difficulty lies at the heart of these problems. Our technique
manages to overcome this difficulty and it is expected to be of use for further problems of similar
flavor. Note that while designing FPT-time algorithms for bounded-treewidth graphs and in particu-
lar the use of Courcelle’s Theorem is a fairly standard technique, we use this technique for problems
where there is no bound on the treewidth of the graph appearing in the input.

(Multiterminal) cut problems [19, 16, 13, 5] play a mysterious, and not yet fully understood,
role in the fixed-parameter tractability of certain problems. Proving that BIPARTIZATION [25], DI-
RECTED FEEDBACK VERTEX SET [6], and ALMOST 2-SAT [23] are FPT answered longstanding
open questions, and in each case the algorithm relies on a non-obvious use of separators. Fur-
thermore, EDGE MULTICUT has been observed to be equivalent to FUZZY CLUSTER EDITING, a
correlation clustering problem [3, 8, 1]. Thus aiming for a better understanding of separators in
a parameterized setting seems to be a fruitful direction of research. Our results extend our under-
standing of separators by showing that various additional constraints can be accommodated. It is
important to point out that our algorithm is very different from previous parameterized algorithms
for separation problems [19, 16, 13, 5]. Those algorithms in the literature exploit certain nice prop-
erties of separators, and hence it seems impossible to generalize them for the problems we consider
here. On the other hand, our approach is very robust and, as demonstrated by our examples, it is
able to handle many variants.

The paper assumes the knowledge of the definition of treewidth and its algorithmic use, includ-
ing Courcelle’s Theorem (see the surveys [2, 14]).
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2. Treewidth Reduction
The main combinatorial result of the paper is presented in this section. We start with some

preliminary definitions. Two slightly different notions of separation will be used in the paper:

Definition 2.1. We say that a set S of vertices separates sets of vertices A and B if no component
of G \ S contains vertices from both A \ S and B \ S. If s and t are two distinct vertices of G,
then an s − t separator is a set S of vertices disjoint from {s, t} such that s and t are in different
components of G \ S.

In particular, if S separates A and B, then A∩B ⊆ S. Furthermore, given a set W of vertices,
we say that a set S of vertices is a balanced separator ofW if |W∩C| ≤ |W |/2 for every connected
component C of G \ S. A k-separator is a separator S with |S| = k. The treewidth of a graph is
closely connected with the existence of balanced separators:

Lemma 2.2 ([24], [12, Section 11.2]).
(1) If G(V,E) has treewidth greater than 3k, then there is a set W ⊆ V of size 2k + 1 having

no balanced k-separator.
(2) If G(V,E) has treewidth at most k, then every W ⊆ V has a balanced (k + 1)-separator.

Note that the contrapositive of (1) in Lemma 2.2 says that if every set W of vertices has a
balanced k-separator, then the treewidth is at most 3k. This observation, and the following simple
extension, will be convenient tools for showing that a certain graph has low treewidth.

Lemma 2.3. Let G be a graph, C1,. . . , Cr subsets of vertices, and let C :=
⋃r

i=1Ci. Suppose that
every Wi ⊆ Ci has a balanced separator Si ⊆ Ci of size at most w. Then every W ⊆ C has a
balanced separator S ⊆ C of size wr.

If we are interested in separators of a graph G contained in a subset C of vertices, then each
component of G \ C (or the neighborhood of each component in C) can be replaced by a clique,
since there is no way to disconnect these components with separators in C. The notion of torso and
Proposition 2.5 formalize this concept.

Definition 2.4. Let G be a graph and C ⊆ V (G). The graph torso(G,C) has vertex set C and
vertices a, b ∈ C are connected by an edge if {a, b} ∈ E(G) or there is a path P in G connecting a
and b whose internal vertices are not in C.

Proposition 2.5. LetC1 ⊆ C2 be two subsets of vertices inG and let a, b ∈ C1 be two vertices. A set
S ⊆ C1 separates a and b in torso(G,C1) if and only if S separates these vertices in torso(G,C2).
In particular, by setting C2 = V (G), we get that S ⊆ C1 separates a and b in torso(G,C1) if and
only if it separates them in G.

Analogously to Lemma 2.3, we can show that if we have a treewidth bound on torso(G,Ci) for
every i, then these bounds add up for the union of the Ci’s.

Lemma 2.6. Let G be a graph and C1,. . . , Cr be subsets of V (G) such that for every 1 ≤ i ≤ r,
the treewidth of torso(G,Ci) is at most w. Then the treewidth of torso(G,C) for C :=

⋃r
i=1Ci is

at most 3r(w + 1).

If the minimum size of an s− t separator is `, then the excess of an s− t separator S is |S| − `
(which is always nonnegative). Note that if s and t are adjacent, then no s− t separator exists, and
in this case we say that the minimum size of an s − t separator is∞. The aim of this section is to
show that, for every k, we can construct a set C ′ covering all the s − t separators of size at most k
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such that torso(G,C ′) has treewidth bounded by a function of k. Equivalently, we can require that
C ′ covers every s − t separator of excess at most e := k − `, where ` is the minimum size of an
s− t separator.

If X is a set of vertices, we denote by δ(X) the set of those vertices in V (G) \ X that are
adjacent to at least one vertex of X . The following result is folklore; it can be proved by a simple
application of the uncrossing technique (see the proof below) and it can be deduced also from the
observations of [22] on the strongly connected components of the residual graph after solving a flow
problem.

Lemma 2.7. Let s, t be two vertices in graph G such that the minimum size of an s− t separator is
`. Then there is a collection X = {X1, . . . , Xq} of sets where {s} ⊆ Xi ⊆ V (G) \ ({t} ∪ δ({t}))
(1 ≤ i ≤ q), such that

(1) X1 ⊂ X2 ⊂ · · · ⊂ Xq,
(2) |δ(Xi)| = ` for every 1 ≤ i ≤ q, and
(3) every s− t separator of size ` is a subset of

⋃q
i=1 δ(Xi).

Furthermore, such a collection X can be found in polynomial time.

Proof. Let X = {X1, . . . , Xq} be a collection of sets such that (2) and (3) holds. Let us choose
the collection such that q is the minimum possible, and among such collections,

∑q
i=1 |Xi|2 is the

maximum possible. We show that for every i, j, either Xi ⊂ Xj or Xj ⊂ Xi holds, thus the sets
can be ordered such that (1) holds.

Suppose that neither Xi ⊂ Xj nor Xj ⊂ Xi holds for some i and j. We show that after
replacing Xi and Xj in X with the two sets Xi ∩Xj and Xi ∪Xj , properties (2) and (3) still hold,
and the resulting collection X ′ contradicts the optimal choice of X . The function δ is well-known
to be submodular, i.e.,

|δ(Xi)|+ |δ(Xj)| ≥ |δ(Xi ∩Xj)|+ |δ(Xi ∪Xj)|.
Both δ(Xi∩Xj) and δ(Xi∪Xj) are s− t separators (because bothXi∩Xj andXi∪Xj contain s)
and hence have size at least k. The left hand side is 2`, hence there is equality and |δ(Xi ∩Xj)| =
|δ(Xi ∪Xj)| = ` follows. This means that property (2) holds after the replacement. Observe that
δ(Xi ∩ Xj) ∪ δ(Xi ∪ Xj) ⊆ δ(Xi) ∪ δ(Xj): any edge that leaves Xi ∩ Xj or Xi ∪ Xj leaves
either Xi or Xj . We show that there is equality here, implying that property (3) remains true after
the replacement. It is easy to see that δ(Xi ∩Xj) ∩ δ(Xi ∪Xj) ⊆ δ(Xi) ∩ δ(Xj), hence we have

|δ(Xi∩Xj)∪δ(Xi∪Xj)| = 2`−|δ(Xi∩Xj)∩δ(Xi∪Xj)| ≥ 2`−|δ(Xi)∩δ(Xj)| = |δ(Xi)∪δ(Xj)|,
showing the required equality.

If Xi ∩Xj or Xi ∪Xj was already present in X , then the replacement decreases the size of the
collection, contradicting the choice of X . Otherwise, we have that |Xi|2 + |Xj |2 < |Xi ∩Xj |2 +
|Xi∪Xj |2 (to verify this, simply represent |Xi| as |Xi∩Xj |+|Xi\Xj |, |Xj | as |Xi∩Xj |+|Xj\Xi|,
|Xi ∪Xj | as |Xi ∩Xj |+ |Xi \Xj |+ |Xj \Xi| and do direct calculation having in mind that both
|Xi \Xj | and |Xj \Xi| are greater than 0), again contradicting the choice of X . Thus an optimal
collection X satisfies (1) as well.

To construct X in polynomial time, we proceed as follows. It is easy to check in polynomial
time whether a vertex v is in a minimum s − t separator, and if so to produce such a separator Sv.
Let Xv be the set of vertices reachable from s in G \ Sv. It is clear that Xv satisfies (2) and if we
take the collection X of all such Xv’s, then together they satisfy (3). If (1) is not satisfied, then we
start doing the replacements as above. Each replacement either decreases the size of the collection
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or increases
∑t

i=1 |Xi|2 (without increasing the collection size), thus the procedure terminates after
a polynomial number of steps.

Lemma 2.7 shows that the union C of all minimum s− t separators can be covered by a chain
of minimum s − t separators. It is not difficult to see that this chain can be used to define a tree
decomposition (in fact, a path decomposition) of torso(G,C). This observation solves the problem
for e = 0. For the general case, we use induction on e.

Lemma 2.8. Let s, t be two vertices of graph G and let ` be the minimum size of an s− t separator.
For some e ≥ 0, let C be the union of all minimal s− t separators having excess at most e (i.e. of
size at most k = `+ e). Then, for some constant d, there is an O(f(`, e) · |V (G)|d) time algorithm
that returns a set C ′ ⊇ C ∪ {s, t} such that the treewidth of torso(G,C ′) is at most g(`, e), where
functions f and g depend only on ` and e .

Proof. We prove the lemma by induction on e. Consider the collection X of Lemma 2.7 and define
Si := δ(Xi) for 1 ≤ i ≤ q. For the sake of uniformity, we define X0 := ∅, Xq+1 := V (G) \ {t},
S0 := {s}, Sq+1 := {t}. For 1 ≤ i ≤ q+ 1, let Li := Xi \ (Xi−1 ∪Si−1). Also, for 1 ≤ i ≤ q+ 1
and two disjoint non-empty subsets A,B of Si ∪ Si−1, we define Gi,A,B to be the graph obtained
from G[Li ∪ A ∪ B] by contracting the set A to a vertex a and the set B to a vertex b. Taking into
account that if C includes a vertex of some Li then e > 0, we prove the key observation that makes
it possible to use induction.

Claim 2.9. If a vertex v ∈ Li is in C, then there are disjoint non-empty subsets A,B of Si ∪ Si−1

such that v is part of a minimal a− b separator K2 in Gi,A,B of size at most k (recall that k = `+ e)
and excess at most e− 1.

Proof. By definition of C, there is a minimal s − t separator K of size at most k that contains v.
Let K1 := K \Li and K2 := K ∩Li. Partition (Si ∪Si−1) \K into the set A of vertices reachable
from s in G \K and the set B of vertices non-reachable from s in G \K. Let us observe that both
A and B are non-empty. Indeed, due to the minimality of K, G has a path P from s to t such that
V (P )∩K = {v}. By selection of v, Si−1 separates v from s and Si separates v from t. Therefore,
at least one vertex u of Si−1 occurs in P before v and at least one vertex w of Si occurs in P after v.
The prefix of P ending at u and the suffix of P starting at w are both subpaths in G \K. It follows
that u is reachable from s in G\K, i.e. belongs to A and that w is reachable from t in G\K, hence
non-reachable from s and thus belongs to B.

To see that K2 is an a− b separator in Gi,A,B , suppose that there is a path P connecting a and
b in Gi,A,B avoiding K2. Then there is a corresponding path P ′ in G connecting a vertex of A and a
vertex of B. Path P ′ is disjoint from K1 (since it contains vertices of Li and (Si ∪ Si−1) \K only)
and from K2 (by construction). Thus a vertex of B is reachable from s in G \K, a contradiction.

To see that K2 is a minimal a − b separator, suppose that there is a vertex u ∈ K2 such that
K2 \ {u} is also an a − b separator in Gi,A,B . Since K is minimal, there is an s − t path P in
G \ (K \u), which has to pass through u. Arguing as when we proved that A and B are non-empty,
we observe that P includes vertices of both A and B, hence we can consider a minimal subpath
P ′ of P between a vertex a′ ∈ A and a vertex b′ ∈ B. We claim that all the internal vertices of
P ′ belong to Li. Indeed, due to the minimality of P ′, an internal vertex of P ′ can belong either
to Li or to V (G) \ (K1 ∪ Li ∪ Si−1 ∪ Si). If all the internal vertices of P ′ are from the latter set
then there is a path from a′ to b′ in G \ (K1 ∪ Li) and hence in G \ (K1 ∪K2) in contradiction to
b′ ∈ B. If P ′ contains internal vertices of both sets then G has an edge {u,w} where u ∈ Li while
w ∈ V (G)\ (K1∪Li∪Si−1∪Si). But this is impossible since Si−1∪Si separates Li from the rest
of the graph. Thus it follows that indeed all the internal vertices of P ′ belong to Li. Consequently,
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P ′ corresponds to a path in Gi,A,B from a to b that avoids K2 \ u, a contradiction that proves the
minimality of K2.

Finally, we show that K2 has excess at most e − 1. Let K ′2 be a minimum a − b separator
in Gi,A,B . Observe that K1 ∪ K ′2 is an s − t separator in G. Indeed, consider a path P from s
to t in G \ (K1 ∪ K ′2). It necessarily contains a vertex u ∈ K2, hence arguing as in the previous
paragraph we notice that P includes vertices of both A and B. Considering a minimal subpath P ′

of P between a vertex a′ ∈ A and b′ ∈ B we observe, analogously to the previous paragraph that all
the internal vertices of this path belong to Li. Hence this path corresponds to a path between a and
b in Gi,A,B . It follows that P ′, and hence P , includes a vertex of K ′2, a contradiction showing that
K1 ∪K ′2 is indeed an s − t separator in G. Due to the minimality of K2, K ′2 6= ∅. Thus K1 ∪K ′2
contains at least one vertex from Li, implying that K1 ∪K ′2 is not a minimum s− t separator in G.
Thus |K2| − |K ′2| = (|K1|+ |K2|)− (|K1|+ |K ′2|) < k − ` = e, as required. This completes the
proof of Claim 2.9.

Now we define C ′. Let C0 :=
⋃q+1

i=0 Si. For e = 0, C ′ = C0. Assume that e > 0. For
1 ≤ i ≤ q + 1 and disjoint non-empty subsets A,B of Si ∪ Si−1. Let Ci,A,B be such a superset
of the union of all minimal a− b separators of Gi,A,B of size most k and excess at most e− 1 that
Ci,A,B ∪{a, b} satisfies the induction assumption with respect to Gi,A,B (if the minimum size of an
a − b separator of Gi,A,B is greater than k then we set Ci,A,B = ∅). We define C ′ as the union of
C0 and all sets Ci,A,B as above. Observe that C ′ is defined correctly in the sense that any vertex v
participating in an s − t minimal separator of size at most k indeed belongs to C ′. For e = 0, the
correctness of C ′ follows from the definition of sets Si. For e > 0, the correctness follows from the
above Claim if we take into account that since

⋃q+1
i=1 Li ∪ C0 = V (G), v belongs to some Li.

We shall show that the treewidth of torso(G,C ′) is at most g(`, e), a function recursively de-
fined as follows: g(`, 0) := 6` and g(`, e) := 3 · (2` + 32` · (g(`, e − 1) + 1)) for e > 0. We do
this by showing that in graph G, every set W ⊆ C ′ has a balanced separator of size at most 2` (for
e = 0) and at most 2` + 32` · (g(`, e − 1) + 1) (for e > 0). By Proposition 2.5, this will imply
that in torso(G,C ′), W has a balanced separator with the same upper bound. By Lemma 2.2(1), the
desired upper bound on the treewidth will immediately follow.

Let W ⊆ C ′ be an arbitrary set. Let 1 ≤ i ≤ q + 1 be the smallest value such that |W ∩Xi| ≥
|W |/2. Consider the separator Si ∪ Si−1 (whose size is at most 2`). In G \ (Si ∪ Si−1), the sets
Xi−1, Li, and V (G) \ (Si ∪ Si−1 ∪ Xi−1 ∪ Li) are pairwise separated from each other. By the
selection of i, the first and the third sets do not contain more than half of W . If e = 0, then C ′ is
disjoint from Li, hence the treewidth upper bound follows for e = 0. We assume that e > 0 and,
using the induction assumption, will show that W ∩ Li has a balanced separator S of size at most
32` · (g(`, e− 1) + 1). This will immediately imply that S ∪Si ∪Si−1 is a balanced separator of W
of size at most 2` + 32` · (g(`, e − 1) + 1), which, in turn, will imply the desired upper bound on
the treewidth of torso(G,C ′).

By the induction assumption, the treewidth of torso(Gi,A,B, Ci,A,B) is at most g(`, e − 1) for
any pair of disjoint subsets A, B of Si∪Si−1 such that Gi,A,B has an a− b separator of size at most
k. By the combination of Lemma 2.2(2) and Proposition 2.5, graph G has a balanced separator of
size at most g(`, e − 1) + 1 for any set Wi,A,B ⊆ Ci,A,B . Let C∗ be the union of Ci,A,B for all
such A and B. Taking into account that the number of choices of A and B is at most 32`, for any
W ∗ ⊆ C∗,G has a balanced separator of size at most 32` ·(g(`, e−1)+1) according to Lemma 2.3.
By definition of C ′, W ∩ Li ⊆ C∗, hence the existence of the desired separator S follows.

We conclude the proof by showing that the above set C ′ can be constructed in time O(f(`, e) ·
|V (G)|d). In particular, we present an algorithm whose running time is O(f(`, e) · (|V (G)| −
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2)d) (we assume that G has more than 2 vertices), where f(`, e) is recursively defined as follows:
f(`, 0) = 1 and f(`, e) = f(`, e− 1) · 32` + 1 for e > 0.

The set Xi can be computed as shown in the proof of Lemma 2.7. Then the set Si can be
obtained as in the first paragraph of the proof of the present lemma. Their union results in C0

which is C ′ for e = 0. Thus for e = 0, C ′ can be computed in time O(|V (G)| − 2)d) (instead
of considering s and t, we may consider their sets of neighbors). Since the computation involves
computing a minimum cut, we may assume that d > 1. Now assume that e > 0. For each i such
that 1 ≤ i ≤ q+ 1 and |Li| > 0, we explore all possible disjoint subsets A and B of Si ∪ Si−1. For
the given choice, we check if the size of a minimum a− b separator of Gi,A,B is at most k (observe
that it can be done in O(|Li|d)) and if yes, compute the set Ci,A,B . By the induction assumption,
the computation takes O(f(`, e − 1) · |Li|d). So, exploring all possible choices of A and B takes
O(f(`, e− 1) · 32` · |Li|d). The overall complexity of computing C ′ is

O((|V (G)| − 2)d + f(`, e− 1) · 32` ·
q+1∑
i=1

|Li|d).

Since allLi are disjoint and
⋃q+1

i=1 Li ⊆ V (G)\{s, t},
∑q+1

i=1 |Li| ≤ |V (G)|−2, hence
∑q+1

i=1 (|Li|)d ≤
(|V (G)| − 2)d. Taking into account the recursive expression for f(`, e), the desired runtime fol-
lows.

Remark 2.10. The recursion g(`, e) := 3 · (2` + 32` · g(`, e − 1)) implies that g(`, e) is 2O(e`),
i.e., the treewidth bound is exponential in ` and e. It is an obvious question whether it is possible to
improve this dependence to polynomial. However, a simple example (graph G is the n-dimensional
hypercube, k = (n − 1)n, s and t are opposite vertices) shows that the function g(`, e) has to be
exponential. The size of the minimum s− t separator is ` := n. We claim that every vertex v of the
hypercube (other than s and t) is part of a minimal s− t separator of size at most n(n− 1). To see
this, let P be a shortest path connecting s and v. Let P ′ = P − v be the subpath of P connecting s
with a neighbor v′ of v. Let S be the neighborhood of P ′; clearly S is an s− t separator and v ∈ S.
However, S \v is not an s− t separator: the path P is not blocked by S \v as S \v does not contain
any vertex farther from s than v. Since P ′ has at most n − 1 vertices and every vertex has degree
n, we have |S| ≤ n(n − 1). Thus v (and every other vertex) is part of a minimal separator of size
at most n(n − 1). Hence if we set ` := n and e := n(n − 1), then C contains every vertex of the
hypercube. The treewidth of an n-dimensional hypercube is Ω(2n/

√
n) [4], which is also a lower

bound on g(`, e).

The following theorem states our main combinatorial tool in a form that will be very convenient
to use.

Theorem 2.11 (The Treewidth Reduction Theorem). Let G be a graph, S ⊆ V (G), and let k be
an integer. Let C be the set of all vertices of G participating in a minimal s − t cut of size at most
k for some s, t ∈ S. Then there is an FPT algorithm, parameterized by k and |S|, that computes a
graph G∗ having the following properties:

(1) C ∪ S ⊆ V (G∗)
(2) For every s, t ∈ S, a set K ⊆ V (G∗) with |K| ≤ k is a minimal s − t separator of G∗ if

and only if K ⊆ C ∪ S and K is a minimal s− t separator of G.
(3) The treewidth of G∗ is at most h(k, |S|) for some function h.
(4) For any K ⊆ C, G∗[K] is isomorphic to G[K].

Proof. For every s, t ∈ S that can be separated by the removal of at most k vertices, the algorithm
of Lemma 2.8 computes a set C ′s,t containing all the minimal s − t separators of size at most k.
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By Lemma 2.6, if C ′ is the union of these at most
(|S|

2

)
sets, then G′ = torso(G,C ′) has treewidth

bounded by a function of k and |S|. Note thatG′ satisfies all the requirements of the theorem except
the last one: two vertices of C ′ non-adjacent in G may become adjacent in G′ (see Definition 2.4).
To fix this problem we subdivide each edge {u, v} of G′ such that {u, v} /∈ E(G) into two edges
with a vertex between them, and, to avoid selecting this vertex into a cut, we split it into k+1 copies.
In other words, for each edge {u, v} ∈ E(G′)\E(G) we introduce k+1 new verticesw1, . . . , wk+1

and replace {u, v} by the set of edges {{u,w1}, . . . , {u,wk+1}, {w1, v}, . . . , {wk+1, v}}. Let G∗

be the resulting graph. It is not hard to check that G∗ satisfies all the properties of the present
theorem.

Remark 2.12. The treewidth of G∗ may be larger than the treewidth of G. We use the phrase
“treewidth reduction” in the sense that the treewidth of G∗ is bounded by a function of k and |S|,
while the treewidth of G is unbounded.

3. Constrained Separation Problems
Let G be a class of graphs. Given a graph G, vertices s and t, and parameter k, the G-MINCUT

problem asks if G has an s − t separator C of size at most k such that G[C] ∈ G. The following
theorem is the central result of this section.

Theorem 3.1. Assume that G is decidable and hereditary (i.e. whenever G ∈ G then for any
V ′ ⊆ V , G[V ′] ∈ G). Then the G-MINCUT problem is FPT.

Proof. (Sketch) Let G∗ be a graph satisfying the requirements of Theorem 2.11 for S = {s, t}.
According to Theorem 2.11, G∗ can be computed in FPT time. We claim that (G, s, t, k) is a ‘YES’
instance of the G-MINCUT problem if and only if (G∗, s, t, k) is a ‘YES’ instance of this problem.
Indeed, let K be an s − t separator in G such that |K| ≤ k and G(K) ∈ G. Since G is hereditary,
we may assume that K is minimal (otherwise we may consider a minimal subset of K separating s
from t). By the second and fourth properties of G∗ (see Theorem 2.11), K separates s from t in G∗

and G∗[K] ∈ G. The opposite direction can be proved similarly.
Thus we have established an FPT-time reduction from an instance of the G-MINCUT problem to

another instance of this problem where the treewidth is bounded by a function of parameter k. Now,
let G1 = (V (G∗), E(G∗), ST ) be a labeled graph where ST = {s, t}. We present an algorithm for
constructing a monadic second-order (MSO) formula ϕ whose atomic predicates (besides equality)
areE(x1, x2) (showing that x1 and x2 are adjacent inG∗) and predicates of the formX(v) (showing
that v is contained in X ⊆ V ), whose size is bounded by a function of k, and G1 |= ϕ if and only if
(G∗, s, t, k) is a ‘YES’ instance of the G-MINCUT problem. According to a restricted version of the
well-known Courcelle’s Theorem (see the survey article of Grohe [14], Remarks 3.191 and 3.20), it
will follow that the G-MINCUT problem is FPT. The part of ϕ describing the separation of s and t is
based on the ideas from [13].

We construct the formula ϕ as

ϕ = ∃C(AtMostk(C) ∧ Separates(C) ∧ InducesG(C)),

where AtMostk(C) is true if and only if |C| ≤ k, Separates(C) is true if and only if C separates the
vertices of ST in G∗, and InducesG(C) is true if and only C induces a graph of G.

1Although the branchwidth of G1 appears in the parameter, it can be replaced by the treewidth of G1 since the former
is bounded by a function of k if and only if the latter is [26].
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In particular, AtMostk(C) states that C does not have k + 1 mutually non-equal elements: this
can be implemented as

∀c1, . . . ,∀ck+1

∨
1≤i,j≤k+1

(ci = cj).

Formula Separates(C) is a slightly modified formula uvmc(X) from [13], that looks as follows:

∀s∀t∀Z
(
ST (s)∧ST (t)∧¬(s = t)∧¬C(s)∧¬C(t)∧Connects(Z, s, t)

)
→
(
∃v(C(v)∧Z(v)))

)
,

where Connects(Z, s, t) is true if and only if in the modeling graph there is a path from s and t
all vertices of which belong to Z. For the definition of the predicate Connects, see Definition 3.1 in
[13].

To construct InducesG(C), we explore all possible graphs having at most k vertices and for
each of these graphs we check whether it belongs to G. Since the number of graphs being ex-
plored depends on k and G is a decidable class, in FPT time we can compile the set {G′1, . . . , G′r}
of all graphs of at most k vertices that belong to G. Let k1, . . . kr be the respective numbers of
vertices of G′1, . . . G

′
r. Then InducesG(C) = Induces1(C)∨ · · · ∨ Inducesr(C), where Inducesi(C)

states that C induces G′i. To define Inducesi, let v1, . . . , vki
be the set of vertices of G′i and define

Adji(c1, . . . , cki
) as the conjunction of all E(cx, cy) such that vx and vy are adjacent in G′i and of

all ¬E(cx, cy) such that vx and vy are not adjacent in G′i. Then

Inducesi(C) = AtMostki
(C)∧∃c1 . . . ∃cki

( ∧
1≤j≤ki

C(cj)∧
∧

1≤x,y≤ki

cx 6= cy∧Adji(c1, . . . , cki
)
)
.

It is not hard to verify that indeed G1 |= ϕ if and only if (G∗, s, t, k) is a ‘YES’ instance of the
G-MINCUT problem.

In particular, let G0 be the class of all graphs without edges. Then G0-MINCUT is the MINIMUM
STABLE s− t CUT problem whose fixed-parameter tractability has been posed as an open question
by Kanj [17]. Clearly, G0 is hereditary and hence the G0-MINCUT is FPT.

Theorem 3.1 can be used to decide if there is an s−t separator of size at most k having a certain
property, but cannot be used if we are looking for s− t separators of size exactly k. We show (with
a very easy argument) that some of these problems actually become hard if the size is required to
be exactly k. Let graph G′ be obtained from graph G by introducing two isolated vertices s and t.
Now there is an independent set of size exactly k that is an s− t separator in G′ if and only if there
is an independent set of size k in G, implying that finding such a separator is W[1]-hard.

Theorem 3.2. It is W[1]-hard to decide if G has an s − t separator that is an independent set of
size exactly k.

Samer and Szeider [27] introduced the notion of edge-induced vertex-cut and the corresponding
computational problem: given a graph G and two vertices s and t, the task is to decide if there are
k edges such that deleting the endpoints of these edges separates s and t. It remained an open
question in [27] whether this problem is FPT. Samer reposted this problem as an open question in
[7]. Using Theorem 3.1, we answer this question positively. For this purpose, we introduce Gk,
the class of graphs where the number of vertices minus the size of the maximum matching is at
most k, observe that this class is hereditary, and show that (G, s, t, k) is a ‘YES’-instance of the
edge-induced vertex-cut problem if and only if (G, s, t, 2k) is a ‘YES’ instance of the Gk-mincut
problem. Then we apply Theorem 3.1 to get the following corollary.

Corollary 3.3. The EDGE-INDUCED VERTEX-CUT problem is FPT.
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MULTICUT is the generalization of MINCUT where, instead of s and t, the input contains a set
(s1, t1), . . . , (s`, t`) of terminal pairs. The task is to find a set S of at most k nonterminal vertices
that separate si and ti for every 1 ≤ i ≤ `. MULTICUT is known to be FPT [19, 28] parameterized
by k and `. In the G-MULTICUT problem, we additionally require that S induces a graph from
G. It is not difficult to generalize Theorem 3.1 for G-MULTICUT: all we need to do is to change
the construction of ϕ such that it requires the separation of each pair (si, ti). We state this here in
an even more general form. In the G-MULTICUT-UNCUT problem the input contains an additional
integer `′ ≤ `, and we change the problem by requiring for every `′ ≤ i ≤ ` that S does not separate
si and ti.

Theorem 3.4. If G is decidable and hereditary, then G-MULTICUT-UNCUT is FPT parameterized by
k and `.

Theorem 3.4 helps clarify a theoretical issue. In Section 2, we definedC as the set of all vertices
appearing in minimal s− t separators of size at most k. There is no obvious way of finding this set
in FPT-time and Lemma 2.6 produces only a superset C ′ of C. However, Theorem 3.4 can be used
to find C: a vertex v is in C if and only if there is a set S of size at most k − 1 and two neighbors
v1, v2 of v such that S separates s and t in G \ v, but S does not separate s from v1 and t from v2 in
G \ v (including the possibility that v1 = s or v2 = t).

4. Constrained Bipartization Problems
Reed et al. [25] solved a longstanding open question by proving the fixed-parameter tractability

of the BIPARTIZATION problem: given a graph G and an integer k, find a set S of at most k vertices
such that G \ S is bipartite (see also [18] for a somewhat simpler presentation of the algorithm). In
fact, they showed that the BIPARTIZATION problem can be solved by at most 3k applications of a
procedure solving MINCUT. The key result that allows to transform BIPARTIZATION to a separation
problem is the following lemma.

Lemma 4.1. Let G be a bipartite graph and let (B′,W ′) be a 2-coloring of the vertices. Let B and
W be two subsets of V (G). Then for any S, G\S has a 2-coloring where B \S is black and W \S
is white if and only if S separates X := (B ∩B′) ∪ (W ∩W ′) and Y := (B ∩W ′) ∪ (W ∩B′).

In this section we consider the G-BIPARTIZATION problem: a generalization of the BIPARTIZA-
TION problem where, in addition to G \ S being bipartite, it is also required that S induces a graph
belonging to a class G.

Theorem 4.2. G-BIPARTIZATION is FPT if G is hereditary and decidable.

Proof. Using the algorithm of [25], we first try to find a set S0 of size at most k such that G \ S0 is
bipartite. If no such set exists, then clearly there is no set S satisfying the requirements. Otherwise,
we branch in 3|S0| directions: each vertex of S0 is removed or colored black or colored white. For
a particular branch, let R = {v1, . . . , vr} be the vertices of S0 to be removed and let B0 (resp.,
W0) be the vertices of S0 having color black (resp., white) in a 2-coloring of the resulting bipartite
graph. Let us call a set S such that S∩S0 = R, andG\S is bipartite and having a 2-coloring where
B0 and W0 are colored black and white, respectively, a set compatible with (R,B0,W0). Clearly,
(G, k) is a ‘YES’ instance of the G-BIPARTIZATION problem if and only if for at least one branch
corresponding to partition (R,B0,W0) of S0, there is a set compatible with (R,B0,W0) having
size at most k and such that G[S] ∈ G. Clearly, we need to check only those branches where G[B0]
and G[W0] are both independent sets.
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We transform the problem of finding a set compatible with (R,B0,W0) into a separation prob-
lem. Let (B′,W ′) be a 2-coloring of G \ S0. Let B = N(W0) \ S0 and W = N(B0) \ S0. Let us
defineX and Y as in Lemma 4.1, i.e., X := (B∩B′)∪(W ∩W ′), and Y := (B∩W ′)∪(W ∩B′).
We construct a graph G′ that is obtained from G by deleting the set B0 ∪W0, adding a new vertex s
adjacent to X ∪R, and adding a new vertex t adjacent with Y ∪R. Note that every s− t separator
in G′ contains R. By Lemma 4.1, a set S is compatible with (R,B0,W0) if and only if S is an s− t
separator in G′. Thus what we have to decide is whether there is an s− t separator S of size at most
k such that G′[S] = G[S] is in G. That is, we have to solve the G-MINCUT instance (G′, s, t, k).
The fixed-parameter tractability of the G-BIPARTIZATION problem now immediately follows from
Theorem 3.1.

Theorem 4.2 immediately implies that the STABLE BIPARTIZATION problem is FPT: just set G
to be the class of all graphs without edges. This answers an open question of Fernau [7]. Next, we
show that the EXACT STABLE BIPARTIZATION problem is FPT, answering a question posed by Dı́az
et al. [9]. This result may seem surprising because the corresponding exact separation problem is
W[1]-hard by Theorem 3.2 and hence the approach of Theorem 4.2 is unlikely to work. Instead,
we argue that under appropriate conditions, any solution of size at most k can be extended to an
independent set of size exactly k.

Theorem 4.3. Given a graph G and an integer k, deciding whether G can be made bipartite by the
deletion of an independent set of size exactly k is fixed-parameter tractable.

Proof. (Sketch) It is more convenient to consider an annotated version of the problem where the
independent set being deleted has to be a subset of a set D ⊆ V (G) given as part of the input.
Without the annotation, D is initially set to V (G). If G is not bipartite, then the algorithm starts by
finding an odd cycleC of minimum length (which can be done in polynomial time). It is not difficult
to see that the minimality of C implies that either C is a triangle or C is chordless. Moreover, in the
latter case, every vertex not in C is adjacent to at most 2 vertices of the cycle.

If |V (C)∩D| = 0, then clearly no subset ofD is a solution. If 1 ≤ |V (C)∩D| ≤ 3k+1, then
we branch on the selection of each vertex v ∈ V (C) ∩D into the set S of vertices being removed
and apply the algorithm recursively with the parameter k being decreased by 1 and the set D being
updated by the removal of v and N(v) ∩D. If |V (C) ∩D| > 3k + 1, then we apply the approach
of Theorem 4.2 to find an independent set S ⊆ D of size at most k whose removal makes the graph
bipartite, and then argue that S can be extended to an independent set of size exactly k. To ensure
that S ⊆ D, we may, for example split all vertices v ∈ V (G) \ D into k + 1 independent copies
with the same neighborhood as v. If |S| = k, we are done. Otherwise, |S| = k′ < k. In this
case we observe that by the minimality of C, each vertex of S (either in C or outside C) forbids
the selection of at most 3 vertices of V (C) ∩ D including itself. Thus the number of vertices of
V (C)∩D allowed for selection is at least 3k+1−3k′ = 3(k−k′)+1. Since the cycle is chordless,
we can select k− k′ independent vertices among them and thus complement S to be of size exactly
k.

The above algorithm has a number of stopping conditions, the only non-trivial of them occurs
if G is bipartite but k > 0. In this case we check if G[D] has k independent vertices, which can be
done in a polynomial time.
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