
Symposium on Theoretical Aspects of Computer Science year (city), pp. numbers
www.stacs-conf.org

TRACTABLE STRUCTURES FOR CONSTRAINT SATISFACTION

WITH TRUTH TABLES

DÁNIEL MARX

Department of Computer Science and Information Theory
Budapest University of Technology and Economics
Budapest H-1521, Hungary
E-mail address: dmarx@cs.bme.hu

Abstract. The way the graph structure of the constraints influences the complexity of
constraint satisfaction problems (CSP) is well understood for bounded-arity constraints.
The situation is less clear if there is no bound on the arities. In this case the answer depends
also on how the constraints are represented in the input. We study this question for the
truth table representation of constraints. We introduce a new hypergraph measure adaptive

width and show that CSP with truth tables is polynomial-time solvable if restricted to a
class of hypergraphs with bounded adaptive width. Conversely, assuming a conjecture on
the complexity of binary CSP, there is no other polynomial-time solvable case.
Keywords: computational complexity, constraint satisfaction, treewidth, adaptive width.

1. Introduction

Constraint satisfaction is a general framework that includes many standard algorithmic
problems such as satisfiability, graph coloring, database queries, etc. A constraint satisfac-
tion problem (CSP) consists of a set V of variables, a domain D, and a set C of constraints,
where each constraint is a relation on a subset of the variables. The task is to assign a
value from D to each variable such that every constraint is satisfied (see Definition 1.4 for
the formal definition). For example, 3SAT can be interpreted as a CSP problem where the
domain is D = {0, 1} and the constraints in C correspond to the clauses.

In general, solving constraint satisfaction problems is NP-hard if there are no additional
restrictions on the instances. The main goal of the research on CSP is to identify tractable
special cases of the general problem. The theoretical literature on the CSP investigates two
main types of restrictions. The first type is to restrict the constraint language, that is, the
type of constraints that are allowed. The second type is to restrict the structure induced
by the constraints on the variables. The hypergraph of a CSP instance is defined to be a
hypergraph on the variables of the instance such that for each constraint c ∈ C there is a
hyperedge Ec that contains all the variables that appear in c. If the hypergraph of the CSP
instance has very simple structure, then the instance is easy to solve. For example, it is

Research supported by the Magyary Zoltán Felsőoktatási Közalaṕıtvány and the Hungarian National
Research Fund (Grant Number OTKA 67651).

c© D. Marx
CC© Creative Commons Attribution-NoDerivs License

2 D. MARX

well-known that a CSP instance I with hypergraph H can be solved in time ‖I‖O(tw(H)) [5],
where tw(H) denotes the treewidth of H and ‖I‖ is the size of the representation of I in the
input. Thus if we restrict the problem to instances where the treewidth of the hypergraph
is bounded by some constant w, then the problem is polynomial-time solvable. The aim
of this paper is to investigate whether there exists some other structural property of the
hypergraph besides bounded treewidth that makes the problem tractable. Formally, for a
class H of hypergraphs, let CSP(H) be the restriction of CSP where the hypergraph of the
instance is assumed to be in H. Our goal is to characterize the complexity of CSP(H) for
every class H.

We investigate two notions of tractability. CSP(H) is polynomial-time solvable if every

instance of CSP(H) can be solved in time (‖I‖)O(1), where ‖I‖ is the length of the repre-
sentation of I in the input. The following notion interprets tractability in a less restrictive
way: CSP(H) is fixed-parameter tractable (FPT) if there is a function f such that every
instance I of CSP(H) can be solved in time f(H)(‖I‖)O(1), where H is the hypergraph of
the instance. Equivalently, the factor f(H) in the definition can be replaced with a factor
f(k) depending only on the number k of vertices of H: as the number of hypergraphs on k
vertices is bounded by a function of k, the two definitions result in the same notion. The
motivation behind the definition of fixed-parameter tractability is that in certain applica-
tions we expect the domain size to be much larger than the number of variables, hence a
constant factor in the running time depending only on the number of variables (or on the
hypergraph) is acceptable. For more background on fixed-parameter tractability, see [3, 4].

Bounded arities. If the constraints have bounded arity (i.e., edge size in H is bounded
by a constant), then the complexity of CSP(H) is well understood:

Theorem 1.1 ([7]). If H is a recursively enumerable class of hypergraphs with bounded
edge size, then (assuming FPT 6= W[1]) the following are equivalent:

(1) CSP(H) is polynomial-time solvable.
(2) CSP(H) is fixed-parameter tractable.
(3) H has bounded treewidth.

The assumption FPT 6= W[1] is a standard hypothesis of parameterized complexity.
Thus in the bounded arity case bounded treewidth is the only property of the hypergraph
that can make the problem polynomial-time solvable. Furthermore, the following sharpening
of Theorem 1.1 shows that there is no algorithm whose running time is significantly better
than the ‖I‖O(tw(H)) bound of the treewidth based algorithm. The result is proved under

the Exponential Time Hypothesis (ETH) [9]: it is assumed that there is no 2o(n) time
algorithm for n-variable 3SAT.

Theorem 1.2 ([11]). If there is a computable function f and a recursively enumerable class
H of hypergraphs with bounded edge size and unbounded treewidth such that the problem
CSP(H) can be solved in time f(H)‖I‖o(tw(H)/ log tw(H)) for instances I with hypergraph
H ∈ H, then ETH fails.

This means that the treewidth-based algorithm is almost optimal: in the exponent only
an O(log tw(H)) factor improvement is possible. It is conjectured in [11] that Theorem 1.2
can be made tight:

Conjecture 1.3 ([11]). If H is a class of hypergraphs with bounded edge size, then there is

no algorithm that solves CSP(H) in time f(H)‖I‖o(tw(H)) for instances I with hypergraph
H ∈ H, where f is an arbitrary computable function.

TRACTABLE STRUCTURES FOR CONSTRAINT SATISFACTION WITH TRUTH TABLES 3

Unbounded arities. The situation is less understood in the unbounded arity case,
i.e., when there is no bound on the maximum edge size in H. First, the complexity in the
unbounded-arity case depends on how the constraints are represented. In the bounded-
arity case, if each constraint contains at most r variables (r being a fixed constant), then

every reasonable representation of a constraint has size |D|O(r). Therefore, the size of the
different representations can differ only by a polynomial factor. On the other hand, if
there is no bound on the arity, then there can be exponential difference between the size
of succinct representations (e.g., formulas) and verbose representations (e.g., truth tables).
The running time is expressed as a function of the input size, hence the complexity of the
problem can depend on how the input is represented: longer representation means that it
can be easier to obtain a polynomial-time algorithm.

The most well-studied representation of constraints is listing all the tuples that satisfy
the constraint. For this representation, there are classes H with unbounded treewidth such
that CSP restricted to this class is polynomial-time solvable. For example, classes with
bounded (generalized) hypertree width [6], bounded fractional edge cover number [8], and
bounded fractional hypertree width [8, 10] are such classes. However, no classification the-
orem similar to Theorem 1.1 is known for this version. More succinct representations were
studied by Chen and Grohe [2]: constraints are represented by generalized DNF formulas
and ordered binary decision diagrams (OBDD). The complexity of the problem with this
representation was fully characterized: the complexity depends not on the treewidth of the
hypergraph, but on the treewidth of the incidence structure.

Truth table representation. In this paper we study another natural representation:
truth tables. A constraint of arity r is represented by having one bit for each possible r-
tuple that can appear on the r variables of the constraint, and this bit determines whether
this particular r-tuple satisfies the constraint or not. To increase the flexibility of the
representation and make it more natural, we allow that the variables have different domains,
i.e., each variable v has to be assigned a value from its domain Dom(v). Thus the size of
the truth table of an r-ary constraint is proportional to the size of the direct product of
the domains of the r variables. This representation is more verbose than listing satisfying
tuples: the size of the representation is proportional to the number of possible tuples even
if only few tuples satisfy the constraint. We define CSP as follows:

Definition 1.4. A CSP instance is a quadruple (V,D,Dom, C), where:

• V is a set of variables,
• D is a domain of values,
• Dom : V → 2D assigns a domain Dom(v) ⊆ D to each variable v ∈ V ,
• C is a set of constraints. Each ci ∈ C is a pair 〈si, Ri〉, where:

– si = (ui,1, . . . , ui,mi
) is a tuple of variables (the constraint scope), and

– Ri is a subset of
∏mi

j=1 Dom(ui,j) (the constraint relation).

For each constraint 〈si, Ri〉 the tuples of Ri indicate the allowed combinations of values
for the variables in si. The length mi of the tuple si is called the arity of the constraint.
A solution to a CSP instance is a function f : V → D such that f(v) ∈ Dom(v) for
every v ∈ V and for each constraint 〈si, Ri〉 with si = 〈ui,1, ui,2, . . . , ui,mi

〉, the tuple
〈f(ui,1), f(ui,2), . . . , f(ui,mi

)〉 is in Ri.
We denote by CSPtt the problem where each constraint 〈si, Ri〉 of arity mi is represented

by the truth table of the constraint relation Ri, that is, by a sequence of
∏mi

j=1 |Dom(ui,j)|

4 D. MARX

bits that describe that subset Ri of
∏mi

j=1 Dom(ui,j). For a class H, CSPtt(H) is the restric-
tion to instances with hypergraph in H.

Results. The main result of the paper is a complete characterization of the complexity
of CSPtt(H) (assuming Conjecture 1.3). The complexity of the problem depends on a new
hypergraph measure adaptive width:

Theorem 1.5 (Main). Assuming Conjecture 1.3, the following are equivalent:

(1) CSPtt(H) is polynomial-time solvable.
(2) CSPtt(H) is fixed-parameter tractable.
(3) H has bounded adaptive width.

The assumption in Theorem 1.5 is nonstandard, so it is up to the reader to decide
how strong this evidence is. However, the message of Theorem 1.5 is the following: a new
tractable class for CSPtt(H) would imply surprising new results for binary CSP. Thus it is
not worth putting too much effort in further studying CSPtt(H) with the hope of finding
new tractable classes: as this would disprove Conjecture 1.3, such an effort would be better
spent trying to disprove Conjecture 1.3 directly, by beating the ‖I‖O(tw(H)) algorithm for
binary CSP.

Listing the satisfying tuples is a more succinct representation of a constraint than a
truth table. Thus if CSP is polynomial-time solvable or fixed-parameter tractable for some
class H with the former representation, then this also holds for the latter representation as
well. In particular, this means that by the results of [8, 10], CSPtt(H) is polynomial-time
solvable if H has bounded fractional hypertree width. This raises the question whether
Theorem 1.5 gives any new tractable class H. In other words, is there a class H having
bounded adaptive width but unbounded fractional hypertree width? In Section 5, we answer
this question by constructing such a class H. This means that CSPtt(H) is polynomial-time
solvable, but if the constraints are represented by listing the satisfying tuples, then it is not
even known whether the problem is FPT.

2. Width parameters

Treewidth and various variants are defined in this section. We follow the framework of
width functions introduced by Adler [1]. A tree decomposition of a hypergraph H is a tuple
(T, (Bt)t∈V (T)), where T is a tree and (Bt)t∈V (T) is a family of subsets of V (H) such that for
each E ∈ E(H) there is a node t ∈ V (T) such that E ⊆ Bt, and for each v ∈ V (H) the set
{t ∈ V (T) | v ∈ Bt} is connected in T . The sets Bt are called the bags of the decomposition.

Let f : 2V (H) → R
+ be a function that assigns a real number to each subset of vertices. The

f -width of a tree-decomposition (T, (Bt)t∈V (T)) is max
{

f(Bt) | t ∈ V (T)}. The f -width of
a hypergraph H is the minimum of the f -widths of all its tree decompositions.

Definition 2.1. Let s(B) = |B| − 1. The treewidth of H is tw(H) := s-width(H).

A subset E′ ⊆ E(H) is an edge cover if
⋃

E′ = V (H). The edge cover number ρ(H) is
the size of the smallest edge cover (assuming H has no isolated vertices). For X ⊆ V (H),
let ρH(X) be the size of the smallest set of edges covering X.

Definition 2.2. The (generalized) hypertree width of H is hw(H) := ρH-width(H).

We also consider the linear relaxations of edge covers: a function γ : E(H) → [0, 1]
is a fractional edge cover of H if

∑

E:v∈E γ(E) ≥ 1 for every v ∈ V (H). The fractional

TRACTABLE STRUCTURES FOR CONSTRAINT SATISFACTION WITH TRUTH TABLES 5

cover number ρ∗(H) of H is the minimum of
∑

E∈E(H) γ(E) taken over all fractional edge

covers of H. We define ρ∗H(X) analogously to ρH(X): the requirement
∑

E:v∈E γ(E) ≥ 1 is
restricted to vertices of X.

Definition 2.3. The fractional hypertree width of H is fhw(H) := ρ∗H-width(H).

The dual of covering is independence. A subset X ⊆ V (H) is an independent set if
|X ∩ E| ≤ 1 for every E ∈ E(H). The independence number α(H) is the size of the largest
independent set and αH(X) is the size of the largest independent set that is a subset of
X. A function φ : V (H) → [0, 1] is a fractional independent set of the hypergraph H if
∑

v∈E φ(v) ≤ 1 for every E ∈ E(H). The fractional independence number α∗(H) of H is
the maximum of

∑

v∈V (H) φ(v) taken over all fractional independent sets φ of H. It is well-

known that α(H) ≤ α∗(H) = ρ∗(H) ≤ ρ(H) for every hypergraph H. Thus α∗-width gives
us the same notion as fractional hypertree width. The main new definition of the paper
uses fractional independent sets, but in a different way. For a function f : V (H) → R

+, we
define f(X) =

∑

v∈X f(v) for X ⊆ V (H) and define f -width accordingly.

Definition 2.4. The adaptive width adw(H) of a hypergraph H is the maximum of φ-width(H)
taken over all fractional independent sets φ of H.

Currently, we do not have an efficient algorithm for computing adaptive width. For-
tunately, the polynomial-time algorithm in Section 3 for instances with bounded adaptive
width does not need to determine the adaptive width of the input, it is sufficient that
the adaptive width is promised to be bounded. However, the hardness proof of Section 4
requires that the question adw(H) ≥ w is decidable (proof is omitted).

Lemma 2.5. There is an algorithm that, given hypergraph H and rational number w,
decides if adw(H) ≥ w. If the answer is yes, then the algorithm returns a rational fractional
independent set α such that the α-width of H is at least w.

We finish the section with a combinatorial observation (the closed neighborhood of a
vertex v is the union of all the edges containing v):

Lemma 2.6. Given a tree decomposition of hypergraph H, it can be transformed in polyno-
mial time (by removing vertices from some bags) into a tree decomposition of H satisfying
the following property: if two adjacent vertices u and v have the same closed neighborhood,
then u and v appear in exactly the same bags.

Proof. Consider a tree decomposition of H. If u and v are two vertices that do not satisfy the
requirements, then remove these vertices from those bags where only one of them appears
(since u and v are neighbors, they appear together in some bag Bt, hence both vertices
appear in at least one bag after the removals). The intersection of two subtrees is also a
subtree, thus it remains true that u and v appear in a connected subset of the bags. We
have to show that for every edge E ∈ E(H), there is a bag Bt that fully contains E even
after the removals. If {u, v} ⊆ E or E ∩ {u, v} = ∅, then this clearly follows from that
fact that some bag fully contains E before the removals. Assume without loss of generality
that u ∈ E and v 6∈ E. We show that E ∪ {v} is fully contained in some bag Bt before the
removals, hence (as {u, v} ⊆ E ∪ {v}) Bt fully contains E ∪ {v} even after the removals.
Since u ∈ E, edge E is in the closed neighborhood of v. Thus by assumption, E is also in
the closed neighborhood of v, which means that E ∪ {v} is a clique in H. It is well known
that every clique is fully contained in some bag of the tree decomposition (this follows from

6 D. MARX

the fact that subtrees of a tree satisfy the Helly property), thus it follows that E∪{v} ⊆ Bt

for some bag Bt.
Let us repeat these removals until there are no pairs u, v that violate the requirements;

eventually we get a tree decomposition as required. Observe that the procedure terminates
after a polynomial number of steps: vertices are only removed from the bags.

3. Algorithm for bounded adaptive width

We prove that CSPtt(H) is polynomial-time solvable if H has bounded adaptive width.
Bounded adaptive width ensures that no matter what the distribution of the domain sizes
in the input instance is, there is a decomposition where the variables in each bag have only
a polynomial number of possible assignments. For such a decomposition, the instance can
be solved by standard techniques.

Lemma 3.1. There is an algorithm that, given an instance I of CSPtt, an integer C,
and a tree decomposition (T, (Bt)t∈V (T)) of the hypergraph H of the instance such that
∏

v∈Bt
|Dom(v)| ≤ C for every bag Bt, solves the instance I in time polynomial in ‖I‖ · C.

Proof. If
∏

v∈Bt
|Dom(v)| ≤ C, then there are at most C possible assignments on the

variables in Bt. Using standard dynamic programming techniques, it is easy to check
whether it is possible to select one assignment ft for each bag Bt such that ft satisfies the
instance induced by the bag Bt and these assignments are compatible. For completeness,
we briefly describe how this can be done by a reduction to binary CSP.

Let us construct a binary CSP instance I ′ as follows. The set of variables of I ′ is
V (T), i.e., the bags of the tree decomposition. For t ∈ V (T), let bt ≤ C be the number of
assignments f to the variables in Bt such that f(v) ∈ Dom(v) for every v ∈ Bt; denote by
ft,i the i-th such assignment on Bt (1 ≤ i ≤ bt). The domain of I ′ is D′ = {1, . . . , C}. For
each edge t′t′′ ∈ E(T), we introduce a constraint ct′,t′′ = 〈(t′, t′′), Rt′,t′′〉, where (i, j) ∈ Rt′,t′′

if and only if

• ft′,i and ft′′,j are compatible, i.e., ft′,i(v) = ft′′,j(v) for every v ∈ Bt′ ∩ Bt′′ .
• ft′,i satisfies every constraints of I whose scope is contained in Bt′ .
• ft′′,j satisfies every constraints of I whose scope is contained in Bt′′ .

It is easy to see that a solution of I ′ determines a solution of I. The size of I ′ is polynomial
in C and ‖I‖. Since the graph of I ′ is a tree, it can be solved in time ‖I ′‖O(1) = (‖I‖C)O(1).

Theorem 3.2. If H has bounded adaptive width, then CSPtt(H) ∈ PTIME.

Proof. Let I be an instance of CSPtt(H) with hypergraph H such that adw(H) ≤ c. Let
N ≤ ‖I‖ be the size of the largest truth table in the input; we assume that N > 1,
since the problem is trivial if N = 1. We show that it is possible to find in time NO(c) a
tree decomposition (T,Bt∈V (T)) of the instance such that

∏

v∈Bt
|Dom(v)| ≤ NO(c) holds for

every bag Bt. By Lemma 3.1, this means that the instance can be solved in time polynomial
in ‖I‖ and NO(c), i.e., the running time is ‖I‖O(c).

Let φ(v) = log2 |Dom(v)|/ log2 N . We claim that φ is a fractional independent set of
H. If there is a constraint with (vi1 , vi2 , . . . , vir) such that

∑r
j=1 φ(vj) > 1, then the size of

the truth table describing the constraint is larger than N :
r

∏

j=1

|Dom(ij)| =

r
∏

j=1

2φ(vij
)·log2 N = 2log2 N ·

∑r
j=1

φ(vij
) > 2log2 N = N.

TRACTABLE STRUCTURES FOR CONSTRAINT SATISFACTION WITH TRUTH TABLES 7

Define φ′(v) = ⌈φ(v) log2 N⌉. Observe that φ(v) ≥ 1/ log2 N , hence φ′(v) < 2φ(v) log2 N
(if |Dom(v)| = 1, then the instance can be simplified). Let H ′ be the hypergraph that
is obtained from H by replacing each vertex v with a set Xv of φ′(v) vertices; if an
edge E contains some vertex v in H, then E contains every vertex of Xv in H ′. We
claim that H ′ has treewidth less than 2c log2 N . Since adw(H) ≤ c, H has a tree de-
composition (T,Bt∈V (T)) such that

∑

v∈Bt
φ(v) ≤ c holds for every bag Bt. Consider

the analogous decomposition (T,B′
t∈V (T)) of H ′; i.e., if a bag Bt contains a vertex v of

H, then let bag B′
t contain every vertex of Xv. The size of a bag B′

t is
∑

v∈Bt
|Xv | =

∑

v∈Bt
φ′(v) ≤ 2 log2 N · ∑

v∈Bt
φ(v) ≤ 2c log2 N , thus the treewidth of H ′ is indeed less

than 2c log2 N . Given a graph G with n vertices, it is possible to find a tree decomposi-
tion of width at most 4 tw(G) + 1 in time 2O(tw(G))nO(1) (see e.g., [4, Prop. 11.14]). Thus
we can a find a tree decomposition (T,B′′

t∈V (T)) of width at most 8c log2 N for H ′ in time

2O(2c log2 N)||H ′||O(1) = NO(c)||H ′||O(1).
In H ′, every vertex of Xv is contained in the same set of edges. By Lemma 2.6, it can

be assumed that each bag of (T,B′′
t∈V (T)) contains either all or none of Xv. Define the tree

decomposition (T,B∗
t∈V (T)) of H where bag B∗

t contains v if and only Xv is contained in

B′′
t . The φ-weight of a bag B∗

t can be bounded as
∑

v∈B∗
t

φ(v) ≤ 1

log2 N

∑

v∈B∗
t

φ′(v) =
1

log2 N
|B′′

t | ≤ 8c.

Thus in the tree decomposition (T,B∗
t∈V (T)), the product of the domain sizes is

∏

v∈B∗
t

|Dom(v)| =
∏

v∈B∗
t

2φ(v)·log2 N = 2
log2 N ·

∑

v∈B∗
t

φ(v) ≤ 2log2 N ·8c = N8c,

in each bag B∗
t , as required.

4. Hardness result for unbounded adaptive width

We prove the main complexity result of the paper in this section.

Theorem 4.1. Let H be a recursively enumerable class of hypergraphs with unbounded
adaptive width. Assuming Conjecture 1.3, CSPtt(H) is not FPT.

Proof. Suppose that CSPtt(H) can be solved in time h1(H)‖I‖c for some constant c and
computable function h1. Let us fix an arbitrary computable enumeration of the hypergraphs
in H. For every k ≥ 1, let Hk be the first hypergraph in this enumeration with adw(Hk) ≥ k.
For each k ≥ 1, let φk be the fractional independent set returned by the algorithm of
Lemma 2.5 for the question ‘adw(Hk) ≥ k?’.

Constructing the graph class G. For each k ≥ 1, we construct a graph Gk based
on Hk and φk. Let qk be the least common denominator of the rational values φk(v) for
v ∈ V (Hk). The graph Gk has a clique Kv of size qk · φ(v) for each v ∈ V (Hk) and if u
and v are neighbors in Hk, then every vertex of Ku is connected to every vertex of Kv. Let
G = {Gk | k ≥ 1}.

We claim that tw(Gk) ≥ qkk − 1. Suppose for contradiction that Gk has a tree de-
composition (T, (Bt)t∈V (T)) of width less than qkk − 1, i.e., the size of every bag is smaller
than qkk. By Lemma 2.6, it can be assumed that for every v ∈ V (Hk) and bag Bt of

8 D. MARX

the decomposition, either Bt fully contains Kv or disjoint from it. Let us construct a tree
decomposition (T, (B′

t)t∈V (T)) of Hk such that B′
t contains v if and only if Bt fully contains

Kv. It is easy to see that this is a tree decomposition of Hk: for every E ∈ E(Hk), the set
⋃

v∈E Kv is a clique in Gk, hence there is a bag Bt containing
⋃

v∈E Kv, i.e, B′
t contains

E. Furthermore, φk(B
′
t) < k for every bag B′

t: if φk(B
′
t) ≥ k, then |⋃v∈E Kv| ≥ qkk,

contradicting the assumption that every bag Bt has size strictly less than qkk. This would
contradict the assumption adw(Hk) ≥ k, thus tw(Gk) ≥ qkk − 1.

Simulating Gk by Hk. We present an algorithm for CSP(G) violating Conjecture 1.3.
We show how a binary CSP(G) instance I1 with graph Gk can be reduced to a CSPtt(H)
instance I2 with hypergraph Hk ∈ H. Then I2 can be solved with the assumed algorithm for
CSPtt(H). Let G ∈ G be the graph of the CSP instance I1. By enumerating the hypergraphs
in H, we can find the first value k such that G = Gk. We construct a CSPtt(H) instance I2

with hypergraph Hk where every variable v ∈ V (Hk) simulates the variables in Kv.

The domain Dom(v) of v is D|Kv|, i.e., Dom(v) is the set of |Kv |-tuples of D. For
every v ∈ V (Hk), there is a natural bijection between the elements of Dom(v) and the

|D||Kv| possible assignments f : Kv → D. For each edge E = (v1, . . . , vr) ∈ E(Hk), we
add a constraint cE = 〈(v1, . . . , vr), RE〉 to I2 as follows. Let (x1, . . . , xr) ∈

∏r
i=1 Dom(vi).

For 1 ≤ i ≤ r, let gi be the assignment of Kvi
corresponding to xi ∈ Dom(vi). These r

assignments together define an assignment g :
⋃r

i=1 Kvi
→ D on the union of their domains.

We define the relation RE such that (x1, . . . , xr) is a member of RE if and only if the
corresponding assignment g satisfies every constraint of I1 whose scope is contained in
⋃r

i=1 Kvi
.

Assume that I1 has a solution f1 : V (Gk) → D. For every v ∈ V (Hk), define f2(v) to
be the member of Dom(v) corresponding to the assignment f1 restricted to Kv. Now f2 is a
solution of I2: for every edge E of Hk, assignment f1 restricted to

⋃

v∈E Kv clearly satisfies
every constraint of I1 whose scope is in

⋃

v∈E Kv.
Assume now that I2 has a solution f2 : V2 → D2. For every v ∈ V (Hk), there is an

assignment fv : Kv → D corresponding to the value f2(v). These assignments together
define an assignment f1 : V (Gk) → D. We claim that f1 is a solution of I1. Let c =
〈(u′, v′), R〉 be an arbitrary constraint of I1. Assume that u′ ∈ Ku and v′ ∈ Kv for some
u, v ∈ V (Hk). Since u′v′ ∈ E(Gk), there is an edge E ∈ E(Hk) with u, v ∈ E. The
definition of cE in I2 ensures that f1 restricted to Ku ∪ Kv satisfies every constraint of I1

whose scope is contained in Ku ∪ Kv; in particular, f1 satisfies constraint c.
Running time. Assume that an instance I1 of CSP(G) is solved by first reducing it to

an instance I2 as above and then applying the algorithm for CSPtt(H). Let us determine
the running time of this algorithm. The first step of the algorithm is to enumerate the
hypergraphs in H until the correct value of k is found. The time required by this step
depends only on the graph G ∈ G; denote it by h2(G). Let us determine the time required
to construct instance I2 and the size of the representation of I2. As defined above, for
each constraint cE in I2, we have to enumerate every tuple (x1, . . . , xr) ∈

∏r
i=1 Dom(v) and

check whether the corresponding assignment g is a solution of the instance I1[
⋃r

i=1 Kvi
].

Checking a vector (x1, . . . , xr) can be done in time polynomial in ‖I1‖. Moreover,
∣

∣

∣

∣

∣

r
∏

i=1

Dom(v)

∣

∣

∣

∣

∣

=
r

∏

i=1

|D||Kv| =
r

∏

i=1

|D|qk·φk(v) = |D|qk

∑r
i=1

φk(v) ≤ |D|qk ,

TRACTABLE STRUCTURES FOR CONSTRAINT SATISFACTION WITH TRUTH TABLES 9

since φk is a fractional independent set and {x1, . . . , xr} is an edge of Hk. Every other step
is polynomial in ‖I1‖, hence the reduction can be done in time h2(G)‖I1‖O(qk), which is

also a bound on ‖I2‖. Thus the algorithm for CSPtt(H) requires h1(Hk)(h2(G)‖I1‖)O(qkc)

time, yielding a total time of h3(G)‖I1‖O(qkc) for some computable function h3.

We show that ‖I1‖O(qkc) is ‖I1‖o(tw(Gk)), violating Conjecture 1.3. Let s(w) be the
smallest k such that tw(Gk) is greater than w (as tw(Gk) ≥ qkk − 1, this is well defined).
Observe that s(w) is nondecreasing and unbounded. We have

‖I1‖O(qkc) ≤ ‖I1‖O(c(tw(Gk)+1)/k) ≤ ‖I1‖O(c(tw(G)+1)/s(tw(G))) = ‖I1‖o(tw(G)).

Thus the total running time is h3(G)‖I1‖o(tw(G)), violating Conjecture 1.3.

5. Relation of bounded fractional hypertree width and bounded adaptive

width

We show that the class of sets of hypergraphs with bounded adaptive width strictly in-
cludes the class of sets with bounded fractional hypertree width. First, fractional hypertree
width is an upper bound for adaptive width.

Proposition 5.1. For every hypergraph H, adw(H) ≤ fhw(H).

Proof. Let (T,Bt∈V (T)) be a tree decomposition of H whose ρ∗H-width is fhw(H). If φ
is a fractional independent set, then φ(Bt) ≤ ρ∗H(Bt) ≤ fhw(H) for every bag Bt of the
decomposition, i.e., φ-width(H) ≤ fhw(H). This is true for every fractional independent
set φ, hence adw(H) ≤ fhw(H).

This implies that if a set of hypergraphs has bounded fractional hypertree width, then it
has bounded adaptive width as well. The converse is not true: the main result of this section
is a set of hypergraphs with bounded adaptive width (Corollary 5.11) that has unbounded
fractional hypertree width (Corollary 5.8).

Definition 5.2. The hypergraph H(d, c) has 2d+1 − 1 vertices vi,j (0 ≤ i ≤ d, 0 ≤ j < 2i)
and the following edges:

• For every 0 ≤ k < 2d, there is a large edge Ek of size d + 1 that contains vi,⌊k/2d−i⌋

for every 0 ≤ i ≤ d.
• For every i, j1, j2 with |j1 − j2| ≤ c, there is a small edge {vi,j1, vi,j2}.

We say that vertex vi,j is on level i. We define χ(vi,j) = j2d−i. The set Hc contains
every hypergraph H(d, c) for d ≥ 1.

Definition 5.3. If vi,j and vi′,j′ are covered by the same large edge Ek and i ≤ i′, then vi,j

is an ancestor of vi′,j′; and vi′,j′ is a descendant of vi,j.

Proposition 5.4. If vi,j is an ancestor of vi′,j′, then χ(vi,j) ≤ χ(vi′,j′) < χ(vi,j) + 2d−i.

Proof. The ancestor of vi′,j′ on level i is vi,⌊j′/2i′−i⌋. Therefore,

χ(vi,j) = ⌊j′/2i′−i⌋ · 2d−i ≤ j′/2d−i′ = χ(vi′,j′)

and

χ(vi,j) = ⌊j′/2i′−i⌋ · 2d−i > (j′/2i′−i − 1) · 2d−i = j′ · 2d−i′ − 2d−i = χ(vi′,j′) − 2d−i.

10 D. MARX

5.1. Lower bound on fractional hypertree width

Fractional hypertree width has various other characterizations that are equivalent up
to a constant factor [8]. Here we use the characterization by balanced separators to prove
a lower bound on the fractional hypertree width of H(d, c).

For a function γ : E(H) → R
+, we define weight(γ) :=

∑

E∈E(H) γ(E). For a set

W ⊆ V (H), we let weight(γ|W) =
∑

e∈EW
γ(e), where EW is the set of all edges intersecting

W . For λ > 0, a set S ⊆ V (H) is a λ-balanced separator for γ if weight(γ|C) ≤ λ ·weight(γ)
for every component C of H \ S.

Theorem 5.5 ([8]). Let H be a hypergraph and γ : E(H) → R
+. There is a 1

2-balanced
separator S for γ such that ρ∗H(S) ≤ fhw(H).

Theorem 5.5 can be generalized to λ-separators with arbitrary λ > 0 (proof is omitted):

Corollary 5.6. Let H be a hypergraph and γ : E(H) → R
+. For every λ > 0, there is a

λ-balanced separator S for γ such that ρ∗H(S) ≤ 2 fhw(H)/λ.

Proposition 5.7. For every c ≥ 5 and d > 2 log2 c, fhw(H(d, c)) ≥
√

d/(2c).

Proof. Let γ be a weight function on the edges that assigns 1 to each large edge and 0 to
the small edges. We show that every 1

2c -balanced separator of H(d, c) for γ has fractional

cover number at least
√

d/2. By Corollary 5.6, fhw(H(d, c)) ≥
√

d/(8c) follows.
Suppose that S is a 1

2c -balanced separator of H(d, c) for γ. Observe that on level d/2,

there are at least c vertices: 2d/2 ≥ c. We claim that there is a d/2 ≤ i ≤ d for which there
is no 0 ≤ ai ≤ 2i − c such that vi,j ∈ S for every ai ≤ j < ai + c. Suppose that there is such
an ai for every d/2 ≤ i ≤ d. Let bi = ai + c − 1. It follows from the definition of ai that
vi,ai

, vi,bi
∈ S for every d/2 ≤ i ≤ d. We claim that the set X = {vi,ai

, vi,bi
: d/2 ≤ i ≤ d}

contains an independent set of size at least
√

d/2, contradicting the assumption that the

fractional cover number ρ∗(S) is less than
√

d/2 (recall that αH(S) ≤ ρ∗H(S) holds). First
we show that if a large edge Ek covers vi,ai

and vi′,ai′
then vi,bi

and vi′,bi′
are independent.

Assume without loss of generality that i < i′. By Prop. 5.4, |χ(vi,ai
) − χ(vi′,ai′

)| < 2d−i.

Since χ(vi,bi
) = χ(vi,ai

) + (c − 1)2d−i and χ(vi′,bi′
) = χ(vi′,ai′

) + (c − 1)2d−i′ ,

|χ(vi,bi
) − χ(vi′,bi′

)| > (c − 1)2d−i − (c − 1)2d−i′ − 2d−i

≥ (c − 1)2d−i − c − 1

2
· 2d−i − 2d−i = (c/2 − 3/2)2d−i ≥ 2d−i,

if c ≥ 5. Therefore, vi,bi
and vi′,bi′

are independent (Prop. 5.4). Similarly, if a large edge Ek

covers both vbj ,j and vbj′ ,j
′ then vaj ,j and vaj′ ,j

′ are independent.

If X can be covered with weight less than
√

d/2, then there is an edge that covers at

least |X|/(
√

d/2) = 2
√

d vertices of X. Denote by Y ⊆ X this set of vertices, and let

Ya = {vi,ai
∈ Y : d/2 ≤ i ≤ d} and Yb = {vi,bi

∈ Y : d/2 ≤ i ≤ d}. Now either |Ya| ≥
√

d

or |Yb| ≥
√

d. For each vertex vi,ai
, we call the vertex vi,bi

the pair of vi,ai
and vice versa.

If |Ya| ≥
√

d, then we have seen that the pairs of the vertices in Ya form an independent

set of size |Ya|, thus X cannot be covered with weight less than
√

d. Similarly, if |Yb| ≥
√

d,

then the pairs of the vertices in Yb give an independent set of size
√

d. This contradicts the
assumption that S can be covered with weight strictly less than

√
d/2.

TRACTABLE STRUCTURES FOR CONSTRAINT SATISFACTION WITH TRUTH TABLES 11

Thus there is a d/2 ≤ i ≤ d such that for every 0 ≤ j ≤ 2i − c, at least one of
vi,j, . . . , vi,j+c−1 is not in S. It is not difficult to see that the set Ci of vertices on level
i not in S is connected and intersects more than 1/(2c) fraction of the large edges. Thus
weight(γ|C) > weight(γ)/2c for the component C of H(d, c)\S containing Ci, contradicting
the assumption that S is a 1

2c -balanced separator for γ.

Corollary 5.8. Hc has unbounded fractional hypertree width for every c ≥ 5.

5.2. Upper bound on adaptive width

We use the following lemma to give an upper bound for f -width (proof is omitted):

Lemma 5.9. Let H be a hypergraph, 0 < λ < 1, w > 0 constants, and f : 2V (H) → R
+

a function such that f(X) ≤ f(Y) for every X ⊆ Y and f(X ∪ Y) ≤ f(X) + f(Y) for
arbitrary X,Y . Assume that for every subset W ⊆ V (H) there is a subset S ⊆ V (H) with
f(S) ≤ w such that every component C of H \S has f(C∩W) ≤ λf(W). Then the f -width
of H is at most 2w/(1 − λ) + w.

To obtain the upper bound on adaptive width, we have to show that the required
separator S exists for every fractional independent set. We say that a set S is closed if the
set S contains every ancestor of every vertex of S. For future use, we show that even a
closed separator exists for H(d, c).

Lemma 5.10. Let φ be a fractional independent set of H(d, c) and let W be a subset of
vertices. Then there is a closed set S with φ(S) ≤ 4c(c+1)+5 such that for every component
C of H(d, c) \ S we have φ(C ∩ W) ≤ 3φ(W)/4.

Proof. Let M(a, b) be the set of vertices vi,j with a ≤ χ(vi,j) < b. Let x and y be integers
such that φ(M(x, x+y)∩W) ≥ φ(W)/4 and y is as small as possible. Let d0 = d−⌈log2 y⌉;
clearly, we have y ≤ 2d−d0 ≤ 2y. Let A(t) := {vi,j : χ(vi,j) ≥ t and i ≥ d0}. Denote by S(t)
the set of those vertices v that have a descendant vi,j with χ(vi,j) < t such that vi,j has a
neighbor in A(t). We show that φ(S(t1)) ≤ 2c(c + 1) + 1 for some x − y < t1 ≤ y.

Let S1(t) be those vertices of S(t) that are on level less than d0 and let S2(t) be those
vertices that are on level at least d0. First we bound φ(S1(t)). Observe that every v ∈ S1(t)
has a descendant vi,j with χ(vi,j) ≥ t − c2d−d0 : if descendant vi,j has a neighbor u ∈ A(t),
then either vi,j and u are connected by a large edge (in this case u is also a descendant of

v) or vi,j and u are connected by a small edge (in this case χ(vi,j) ≥ t− c2d−i ≥ t− c2d−d0).

Let X be the set of vertices vd0,j with t − c2d0 ≤ χ(vd0,j) < t, we have |X| ≤ c. By the
observation above, every v ∈ S1(t) has a descendant in X. The vertices in X and the
ancestors of X can be covered by |X| ≤ c large edges. Thus φ(S1(t)) ≤ c, as S1(t) can be
covered with at most c large edges and φ(Ek) ≤ 1 for every large edge Ek.

We show that φ(S2(t)) is small on average. We claim that

x
∑

t=x−y+1

φ(S2(t)) ≤ c

min{2d,x+2d−d0−1}
∑

t=max{0,(x−y−c2d−d0)}

φ(Et) ≤ c(c + 1)2d−d0 + y ≤ 2c(c + 1)y + y.

holds, implying that φ(S2(t)) ≤ 2c(c + 1) + 1 for at least one t. To see the first inequality,
observe that vi,j with i ≥ d0 is in S2(t) only if t − c2d−i ≤ χ(vi,j) < t. Thus such a vertex
contributes to the first sum for at most c2d−i values of t. However, if vi,j contributes at all

12 D. MARX

to the first sum, then it contributes to the second sum for exactly 2d−i values of t, as every
large edge containing vi,j is counted. Thus vi,j contributes φ(vi,j) at most c times more to
the first sum than to the second, which is taken care by the factor c before the second sum.

Similarly, we can show that there is a value x + y ≤ t2 < x + 2y such that φ(S2(t2)) ≤
2c(c + 1) + 1. Denote by T (t1, t2) the vertices of M(t1, t2) on level less than d0. We
claim that φ(T (t1, t2)) ≤ 3. First, T (t1, t2) can contain at most 3 vertices on each level: if
vi,j, vi,j′ ∈ T (t1, t2) and j′ ≥ j+3, then |χ(vi,j)−χ(vi,j′)| ≥ 3·2d−i > 3·2d−d0 ≥ 3y ≥ t2−t1,
contradicting the assumption on the χ-values. Every vi,j ∈ T (t1, t2) has a descendant

vi′,j′ ∈ T (t1, t2) for every i < i′ < d0, namely vi′,j′ with j′ = j2i′−i. Thus by covering the at
most 3 vertices of T (t1, t2) on level d0 − 1 by at most 3 large edges, we can cover T (t1, t2),
and φ(T (t1, t2)) ≤ 3 follows.

Define S := S(t1)∪S(t2)∪T (t1, t2). Clearly, φ(S) ≤ 2(2c(c+1)+1)+3 = 4c(c+1)+5. We
show that S separates M(t1, t2) from the rest of the vertices. Suppose that vi,j , vi′,j′ 6∈ S are
adjacent vertices such that vi,j ∈ M(t1, t2) and vi′,j′ 6∈ M(t1, t2). We have i ≥ d0 (otherwise
vi,j ∈ T (t1, t2)), hence vi,j ∈ A(t1). If χ(vi′,j′) < t1, then vi′,j′ ∈ S(t1) ⊆ S, a contradiction.
Moreover, if χ(vi′,j′) > t2, then i′ ≥ d0 as vi,j and vi′,j′ are not neighbors if χ(vi,j) < χ(vi′,j′)
and i > i′. Thus vi′,j′ ∈ A(t2) and vi,j ∈ S(t2) ⊆ S, a contradiction.

By the definition of x and y, we have φ(M(t1, t2)∩W) ≥ φ(M(x, x+y)∩W) ≥ φ(W)/4.
To complete the proof that φ(W ∩ C) ≤ 3φ(W)/4 for every component C of H(d, c) \ S,
we show that φ(M(t1, t2) ∩W) ≤ 3φ(W)/4: as we have seen that every such component C
is fully contained in either M(t1, t2) or V \M(t1, t2), this means that no component C can
have φ(W ∩C) > 3φ(W)/4. Since x−t1 < y, the minimality of y implies φ(M(t1, x)∩W) ≤
φ(W)/4. Similarly, it follows from t2−(x+y) < y that φ(M(x+y, t2)∩W) ≤ φ(W)/4. Now
φ(M(t1, t2)∩W) = φ(M(t1, x)∩W)+φ(M(x, x+y)∩W)+φ(M(x+y, t2)∩W) ≤ 3

4φ(W).

By Lemma 5.10, the requirements of Lemma 5.9 hold for H(d, c) with w := 4c(c+1)+5
and λ := 3/4, hence adw(H(d, c)) ≤ 9w = 36c(c + 1) + 45.

Corollary 5.11. The class Hc has bounded adaptive width for every fixed c ≥ 1.

References

[1] I. Adler. Width functions for hypertree decompositions. PhD thesis, 2006.
[2] H. Chen and M. Grohe. Constraint satisfaction problems with succinctly specified relations, 2006.
[3] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
[4] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, Berlin, 2006.
[5] E. C. Freuder. Complexity of k-tree structured constraint satisfaction problems. In Proc. of AAAI-90,

4–9, Boston, MA, 1990.
[6] G. Gottlob, F. Scarcello, and M. Sideri. Fixed-parameter complexity in AI and nonmonotonic reasoning.

Artificial Intelligence, 138(1-2):55–86, 2002.
[7] M. Grohe. The complexity of homomorphism and constraint satisfaction problems seen from the other

side. J. ACM, 54(1):1, 2007.
[8] M. Grohe and D. Marx. Constraint solving via fractional edge covers. In SODA ’06, 289–298, 2006.
[9] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity? J.

Comput. System Sci., 63(4):512–530, 2001.
[10] D. Marx. Approximating fractional hypertree width. In SODA ’09, 902–911, 2009.
[11] D. Marx. Can you beat treewidth? In FOCS ’07, 169–179, 2007.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

