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Counting problems

Instead of finding one solution, we
need to count the number of solutions.

Applications: probability, statistical physics, pattern frequency. . .

Reliability: If each edge fails with probability 1
2 independently,

what is the probability that the graph remains connected?

= counting the number of connected subgraphs
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Finding vs. counting

Finding a perfect matching in a bipartite
graph is polynomial-time solvable.

[Ford and Fulkerson 1956]

vs.

Counting the number of perfect matchings
in a bipartite graph is #P-hard.

[Valiant 1979]
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This talk

Counting problems in the area of parameterized algorithms.

Quick intro to parameterized algorithms.
Connection between counting homomorphisms and subgraphs.
Algorithmic applications.
Complexity applications.

Main message

Parameterized subgraph counting problems can be
understood via homomorphism counting problems.

. . .and this connection gives both algorithmic and complexity
results!

4



This talk

Counting problems in the area of parameterized algorithms.

Quick intro to parameterized algorithms.
Connection between counting homomorphisms and subgraphs.
Algorithmic applications.
Complexity applications.

Main message

Parameterized subgraph counting problems can be
understood via homomorphism counting problems.

. . .and this connection gives both algorithmic and complexity
results!

4



Parameterized problems

Main idea
Instead of expressing the running time as a function T (n) of n, we
express it as a function T (n, k) of the input size n and some
parameter k of the input.

In other words: we do not want to be efficient on all inputs of size
n, only for those where k is small.

What can be the parameter k?
The size k of the solution we are looking for.
The maximum degree of the input graph.
The dimension of the point set in the input.
The length of the strings in the input.
The length of clauses in the input Boolean formula.
. . .
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Parameterized complexity

Problem: Vertex Cover Independent Set
Input: Graph G , integer k Graph G , integer k
Question: Is it possible to cover

the edges with k vertices?
Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete

Brute force: O(nk) possibilities O(nk) possibilities

O(2kn2) algorithm No no(k) algorithm
exists known
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Example: Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

7



Example: Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

u1 v1

7



Example: Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

u1 v1

e2 = u2v2

7



Example: Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

u1 v1

e2 = u2v2

u2 v2

7



Example: Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

u1 v1

e2 = u2v2

u2 v2
≤ k

Height of the search tree ≤ k ⇒ at most 2k leaves ⇒ 2k · nO(1)

time algorithm.

7



Fixed-parameter tractability

Main definition
A parameterized problem is fixed-parameter tractable (FPT) if
there is an f (k)nc time algorithm for some constant c .

Examples of NP-hard problems that are FPT:
Finding a vertex cover of size k .
Finding a path of length k .
Finding k disjoint triangles.
Drawing the graph in the plane with k edge crossings.
Finding disjoint paths that connect k pairs of points.
. . .
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FPT techniques

Treewidth

Color coding

Iterative compression

Kernelization

Algebraic techniques

Bounded-depth search trees
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W[1]-hardness

Negative evidence similar to NP-completeness. If a problem is
W[1]-hard, then the problem is not FPT unless FPT=W[1].

Some W[1]-hard problems:
Finding a clique/independent set of size k .
Finding a dominating set of size k .
Finding k pairwise disjoint sets.
. . .
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Parameterized Algorithms

Marek Cygan, Fedor V. Fomin,
Lukasz Kowalik, Daniel Lokshtanov,
Dániel Marx, Marcin Pilipczuk,
Michał Pilipczuk, Saket Saurabh

Springer 2015
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Example: Win/Win for k-Path
Simple 2O(k) · nO(1) time algorithm for finding a path of length k .

1 Compute a DFS tree.

2 If DFS tree has height > k :
we can find a k-path.

3 If DFS tree has height ≤ k :
treewidth is ≤ k ⇒ Use an algorithm with running time
2O(tw) · nO(1) for finding the longest path.
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Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f
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hgfe
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A subtree communicates with the outside world
only via the root of the subtree.
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Counting complexity

W[1]-hardness: “as hard as finding a k-clique”
#W[1]-hardness: “as hard as counting k-cliques”

What can happen to the counting version of an FPT problem?

1 (easy) The same algorithmic technique shows that the
counting problem is FPT.

2 (easy, but different) New algorithmic techniques are needed
to show that the counting version is FPT.

3 (hard) New lower bound techniques are needed to show that
the counting version is #W[1]-hard.
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Finding vs. counting
Generalization to counting:

WORKS for the Vertex Cover branching algorithm

⇒ #Vertex Cover is FPT.

DOES NOT WORK for the #k-Path win/win algorithm

What is the parameterized complexity of #k-Path?

Even more troubling question:

What is the parameterized complexity of
the (even simpler) #k-Matching?

#k-Matching ⇒ #k-Path
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Counting k-paths and k-matchings

Colorful history:

#k-Path is #W[1]-hard
[Flum and Grohe, FOCS 2002]

Weighted #k-Matching is #W[1]-hard
[Bläser and Curticapean, IPEC 2012]

Unweighted #k-Matching is #W[1]-hard
[Curticapean, ICALP 2013] — complicated proof.
Unweighted #k-Matching is #W[1]-hard
[Curticapean and M, FOCS 2014] — simpler proof.
Unweighted #k-Matching is #W[1]-hard
[Curticapean and M, unpublished] — even simpler proof.
Unweighted #k-Matching is #W[1]-hard
[Curticapean, Dell, and M, STOC 2017] — tells the real story.
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Counting patterns

Main question
Which type of subgraph patterns are easy to count?

biclique clique complete multipartite graph matching

star subdivided star windmillpath double star
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Counting patterns

Patterns with small vertex cover number are is easy to count:

Theorem [multiple references]

#Sub(H) can be solved in time nvc(H)+O(1).

But what about patterns with large vertex cover number?

We will understand the complexity of counting any class of
patterns, not just paths or matchings!

Main message

Parameterized subgraph counting problems can be
understood via homomorphism counting problems.

18
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Homomorphisms
A homomorphism from H to G is a mapping f : V (H)→ V (G )
such that if ab is an edge of H, then f (a)f (b) is an edge of G .

43

2 1

1 2

34

Which pattern graphs H are easy for counting homomorphisms?

Theorem (trivial)
For every fixed H, the problem #Hom(H) (count homomorphisms
from H to the given graph G ) is polynomial-time solvable.

. . . because we can try all |V (G )||V (H)| possible mappings
f : V (H)→ V (G ).
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Counting homomorphisms
Better questions:

Which classes H (e.g., paths, stars, matchings) of patterns
can be counted in polynomial time?
What is the best exponent for Hom(H)?

Fact
#Hom(H) can be solved in time O(ntw(H)+1).

Difference between finding and counting:

Finding:
Hom(Kk,k) is trivial vs. Counting:

#Hom(Kk,k) is W[1]-hard
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Partitioned homomorphism

Partitioned Homomorphism
Input: H, G , and partition Π of V (G ) into |V (H)| classes.
Task: Find a homomorphism φ that maps the vertices of H to
different classes.

1 2

34
4

3

21

Theorem [M 2010]

There is a universal constant γ > 0 such that if for some H there is
an O(nγ·tw(H)/ log tw(H)) time algorithm for PartHom(H), then
ETH fails.

21



Counting partitioned homomorphisms

#PartHom(H) ⇒ #Hom(H)

GP for P ⊆ class(Π): subgraph of G induced by the classes P .

Simple application of the inclusion-exclusion principle:

#part-hom(H,G ) =
∑

P⊆class(Π)

(−1)|class(P)|−|P| ·#hom(H,GP)

Theorem [Dalmau and Jonsson 2004][M 2010]

There is a universal constant γ > 0 such that if for some H there is
an O(nγ·tw(H)/ log tw(H)) time algorithm for #Hom(H), then ETH
fails.
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Counting homomorphisms — summary

Treewidth of H determines the complexity of the problem:
O(ntw(H)+1) upper bound.
Ω(nγ·tw(H)/ log tw(H)) lower bound (assuming ETH).

If we restrict the problem to a class H of patterns:
If H has bounded treewidth (e.g, stars, paths, . . .), then the
problem is polynomial-time solvable.
If H has unbounded treewidth (e.g, cliques, bicliques, grids,
. . .), then the problem is not polynomial-time solvable
(assuming ETH).
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Subgraphs ⇔ homomorphisms
Easy to check:

hom( ,G ) = 8sub( ,G ) + 4sub( ,G ) + 2sub( ,G )

43

2 1

1 2

34

Not completely obvious:

The formula can be reversed by inclusion-exclusion.

sub( ,G ) =
1
8
hom( ,G )− 1

4
hom( ,G ) +

1
8
hom( ,G )
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Subgraphs ⇔ homomorphisms

Definition
surj(H,G ): number of surjective homomorphisms from H to G
(every vertex and edge of G appears in the image).

Homomorphisms can be counted by classifying according to the
image F :

hom( ,G ) = 8sub( ,G ) + 4sub( ,G ) + 2sub( ,G )

⇓
hom(H,G ) =

∑
F surj(H,F )sub(F ,G )

Which of the terms can be nonzero?
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Spasm

Part0(H): set of partitions of V (H) where each class is an
independent set.
For Π ∈ Part0(H), H|Π is obtained by contracting each class of
Π to a single vertex.

Spasm = {H|Π | Π ∈ Part0(H)}

Spasm( ) =
{

, , , , , , ,
}
26



Subgraphs ⇔ homomorphisms

From subgraphs to homomorphisms:

hom(H,G ) =
∑
F

surj(H,F )sub(F ,G )

where surj(H,F ) 6= 0 if and only if F ∈ Spasm(H).

. . . useless.

From homomorphisms to subgraphs: [Lovász 1967]

sub(H,G ) =
∑
F

βF · hom(F ,G )

where βF 6= 0 if and only if F ∈ Spasm(H).

Extremely useful for applications in algorithms and complexity!
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Algorithmic applications

sub(H,G ) =
∑

F∈Spasm(H)

βF · hom(F ,G )

⇓

Max. treewidth in Spasm(H) gives an upper bound on complexity:

Corollary
If every graph in Spasm(H) has treewidth at most c , then
sub(H,G ) can be computed in time O(nc+1).

28



Algorithmic applications

Corollary
If every graph in Spasm(H) has treewidth at most c , then
sub(H,G ) can be computed in time O(nc+1).

Observe: If H has k edges, then every graph in Spasm(H) has at
most k edges.

Theorem [Scott and Sorkin 2007]

Every graph with ≤ k edges has treewidth at most 0.174k + O(1).

Corollary
If H has k edges, then sub(H,G ) can be computed in time
n0.174k+O(1).
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Counting k-paths

Corollary
If H has k edges, then sub(H,G ) can be computed in time
n0.174k+O(1).

Example: Counting k-paths

Brute force: O(nk).
Meet in the middle: O(n0.5k)
[Björklund et al., ESA 2009],[Koutis and Williams, ICALP 2009]

[Björklund et al., SODA 2014]: n0.455k+O(1).
New! by counting homomorphisms in the spasm: n0.174k+O(1).
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Counting small cycles
Counting triangles using matrix multiplication:

sub(C3,G ) =
1
6
tr Adj3(G )

Theorem [Alon, Yuster, and Zwick, ESA 1994]

For k ≤ 7, we can compute sub(Ck ,G ) in time nω (where
ω < 2.373 is the matrix-multiplication exponent).

We can recover this result:
Check: if k ≤ 7, then every graph in Spasm(Ck ,G ) has
treewidth at most 2.
For treewidth 2, the O(n2+1) homomorphism algorithm can be
improved to O(nω) with fast matrix multiplication.
⇒ O(nω) algorithm for sub(Ck ,G ) if k ≤ 7.
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Complexity applications

sub(H,G ) =
∑

F∈Spasm(H)

βF · hom(F ,G )

Note: Every βF is nonzero.

Reductions:

Obvious:
if we can compute hom(F ,G ) for any F ∈ Spasm(H)
⇒ we can compute sub(H,G ).
Highly nontrivial:
if we can compute sub(H,G )
⇒ we can compute hom(F ,G ) for any F ∈ Spasm(H).

Complexity of hom(F ,G ) for any F ∈ Spasm(H) is a lower bound
on the complexity of sub(H,G ).
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Matrices
Fix an enumeration of graphs with ≤ k edges with nondecreasing
number of edges.

Hom matrix: row i , column j is hom(Hi ,Hj).
Sub matrix: row i , column j is sub(Hi ,Hj).
Surj matrix: row i , column j is surj(Hi ,Hj).

hom(H,G ) =
∑

F surj(H,F )sub(F ,G )
⇓

Hom = Surj · Sub

The Hom matrix is invertible!
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Categorical product

One of the standard graph products:

Definition
G1 × G2 has vertex set V (G1)× V (G2) and (v1, v2) and (v ′1, v

′
2)

adjacent in G1 × G2 ⇐⇒ v1v
′
1 ∈ E (G1) and v2v

′
2 ∈ E (G2).

[missing figure]

Exercise:

hom(H,G1 × G2) = hom(H,G1) · hom(H,G2)
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Extracting a term
Lemma
Given an algorithm for sub(H,G ) =

∑
F∈Spasm(H) βF · hom(F ,G )

(with βF 6= 0), we can compute hom(F ,G ) for any F ∈ Spasm(H).

Use the algorithm on Z × G for every Z with ≤ k = |E (H)| edges.

sub(H,Z × G ) = bZ

HomT · =

bZ1βF1 · hom(F1,G )

βFt · hom(Ft ,G ) bZt

...
...

The Hom matrix is invertible, so we can solve this system of equations!
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Extracting a term

Lemma
Given an algorithm for sub(H,G ) =

∑
F∈Spasm(H) βF · hom(F ,G )

(with βF 6= 0), we can compute hom(F ,G ) for any F ∈ Spasm(H).

Bottom line:

complexity of
#Sub(H)

=
hardest #Hom(F ) for

F ∈ Spasm(F )

Complexity depends on the maximum treewidth in Spasm(H)!
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Complexity of counting patterns

What is the best exponent for counting occurrences of this
46-vertex graph H?

Answer: Compute Spasm(H) and find the best exponent for each
of the resulting homomorphism problems!
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Hardness results for #k-Matching
Not FPT:

Theorem
Counting k-matchings is #W[1]-hard.

Proof: As Kk ∈ Spasm(M(k2)
), counting k-cliques can be reduced

to counting
(k
2

)
-matchings.

More precise bound:

Spasm(Mk) contains every graph with k edges
⇓

Spasm(Mk) contains graphs with treewidth Ω(k)
⇓

no f (k)no(k/ log k) time algorithm for #k-Matching,
assuming ETH.
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Role of vertex cover number

What property of H determines the max. treewidth in Spasm(H)?

The vertex cover number of H:
Upper bound:
For every F ∈ Spasm(H), we have tw(F ) ≤ vc(F ) ≤ vc(H).
Lower bound:
H contains a matching of size vc(H)/2. We can show that for
any F with at most vc(H)/2 edges, there is a graph in
Spasm(H) that contains F as a minor ⇒ there is a graph in
Spasm(H) with treewidth Ω(vc(H)).
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Counting subgraphs — summary

Vertex cover number of H determines the complexity of Sub(H):

nvc(H)+O(1) upper bound.
Ω(nγ·vc(H)/ log vc(H)) lower bound.

If we restrict the problem to a class H of patterns:
If H has bounded vertex cover number (e.g, stars, double
stars, . . .), then the problem is polynomial-time solvable.
If H has unbounded vertex cover number (e.g, cliques, paths,
matchings, disjoint triangles, . . .), then the problem is not
polynomial-time solvable (assuming ETH).
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Conclusions

Main message

Parameterized subgraph counting problems can be
understood via homomorphism counting problems.

. . .and this connection gives both algorithmic and complexity
results!

Working on counting problems is fun:
You can revisit fundamental, “well-understood” problems.
Requires a new set of lower bound techniques.
Requires new algorithmic techniques.
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