An exact characterization of tractable demand patterns for maximum disjoint path problems

Dániel Marx¹ Paul Wollan²

¹Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

> ²Department of Computer Science, University of Rome, Rome, Italy

> > SODA 2015 San Diego, CA January 4, 2015

Disjoint paths

```
DISJOINT PATHS

Input: graph G, two sets of vertices S and T, integer k.

Task: find k pairwise vertex-disjoint S - T paths.
```


Well-known to be polynomial-time solvable.

Disjoint paths

DISJOINT PATHS **Input:** graph *G*, two sets of vertices *S* and *T*, integer *k*. **Task:** find *k* pairwise vertex-disjoint S - T paths.

Well-known to be polynomial-time solvable.

Disjoint paths - specified endpoints

k-DISJOINT PATHS **Input:** graph *G* and pairs of vertices $(s_1, t_1), \ldots, (s_k, t_k)$. **Task:** find pairwise vertex-disjoint paths P_1, \ldots, P_k such that P_i connects s_i and t_i .

NP-hard, but FPT parameterized by k:

Theorem [Robertson and Seymour]

The *k*-DISJOINT PATHS problem can be solved in time $f(k)n^3$.

Disjoint paths - specified endpoints

k-DISJOINT PATHS **Input:** graph *G* and pairs of vertices $(s_1, t_1), \ldots, (s_k, t_k)$. **Task:** find pairwise vertex-disjoint paths P_1, \ldots, P_k such that P_i connects s_i and t_i .

NP-hard, but FPT parameterized by k:

Theorem [Robertson and Seymour]

The *k*-DISJOINT PATHS problem can be solved in time $f(k)n^3$.

Maximization version

We consider now a maximization version of the problem.

MAXIMUM DISJOINT PATHS

Input: graph G, pairs of vertices $(s_1, t_1), \ldots, (s_m, t_m)$, integer k. **Task:** find k pairwise vertex-disjoint paths, each of them connecting some pair (s_i, t_i) .

Can be solved in time $n^{O(k)}$, but W[1]-hard in general.

Maximization version

A different formulation:

MAXIMUM DISJOINT PATHS

Input: supply graph G, set $T \subseteq V(G)$ of terminals and a demand graph H on T.

Task: find k pairwise vertex-disjoint paths such that the two endpoints of each path are adjacent in H.

Can be solved in time $n^{O(k)}$, but W[1]-hard in general.

Maximization version

A different formulation:

MAXIMUM DISJOINT PATHS

Input: supply graph G, set $T \subseteq V(G)$ of terminals and a demand graph H on T.

Task: find k pairwise vertex-disjoint paths such that the two endpoints of each path are adjacent in H.

Can be solved in time $n^{O(k)}$, but W[1]-hard in general.

MAXIMUM DISJOINT \mathcal{H} -Paths

Maximum Disjoint \mathcal{H} -Paths:

special case when H restricted to be a member of \mathcal{H} .

Maximum Disjoint \mathcal{H} -Paths

Questions:

- Algorithmic: FPT vs. W[1]-hard.
 - complete multipartite graphs: FPT.
 - union of two bicliques: FPT.
 - what else is FPT?

MAXIMUM DISJOINT \mathcal{H} -Paths

Questions:

- Algorithmic: FPT vs. W[1]-hard.
 - complete multipartite graphs: FPT.
 - union of two bicliques: FPT.
 - what else is FPT?
- Combinatorial (Erdős-Pósa): is there a function f such that there is either a set of k vertex-disjoint good paths of a set of f(k) vertices covering every good path?
 - bicliques: tight Erdős-Pósa property with f(k) = k 1 (Menger's Theorem)
 - cliques: Erdős-Pósa property with f(k) = 2k 2
 - but false in general.

Erdős-Pósa property does not hold in general:

Maximum number of disjoint valid paths is 1, but we need n vertices to cover every valid path.

Main result

Theorem

Let \mathcal{H} be a hereditary class of graphs.

- If *H* does not contain every matching and every skew biclique, then MAXIMUM DISJOINT *H*-PATHS is FPT and has the Erdős-Pósa Property.
- If H does not contain every matching, but contains every skew biclique, then MAXIMUM DISJOINT H-PATHS is W[1]-hard, but has the Erdős-Pósa Property.
- If *H* contains every matching, then MAXIMUM DISJOINT *H*-PATHS is W[1]-hard, and does not have the Erdős-Pósa Property.

Main result

Theorem

If \mathcal{H} is a hereditary class, then MAXIMUM DISJOINT \mathcal{H} -PATHS has the Erdős-Pósa Property if and only \mathcal{H} contains every matching.

A standard first step:

If there is small set ${\color{black}{S}}$ separating two valid paths, then we can do recursion.

Theorem

If \mathcal{H} is a hereditary class, then MAXIMUM DISJOINT \mathcal{H} -PATHS has the Erdős-Pósa Property if and only \mathcal{H} contains every matching.

We arrive to a large set T of terminals such that

- T has a perfect matching in the demand graph and
- *T* is highly connected in the supply graph: for any *X*, *Y* ⊆ *T* with |*X*| = |*Y*|, there exists |*X*| disjoint *X* − *Y* paths.

Theorem

If \mathcal{H} is a hereditary class, then MAXIMUM DISJOINT \mathcal{H} -PATHS has the Erdős-Pósa Property if and only \mathcal{H} contains every matching.

We arrive to a large set T of terminals such that

- T has a perfect matching in the demand graph and
- T is highly connected in the supply graph: for any $X, Y \subseteq T$ with |X| = |Y|, there exists |X| disjoint X Y paths.

What is this good for?

Observation

If a graph H on n vertices has a perfect matching, then either

- *H* contains an **induced** matching of size $\Omega(\log n)$ or
- *H* has two sets *X*, *Y* of size Ω(log *n*) that are completely connected to each other.

Observation

If a graph H on n vertices has a perfect matching, then either

- *H* contains an **induced** matching of size $\Omega(\log n)$ or
- *H* has two sets *X*, *Y* of size Ω(log *n*) that are completely connected to each other.

Observation

If a graph H on n vertices has a perfect matching, then either

- *H* contains an **induced** matching of size $\Omega(\log n)$ or
- *H* has two sets *X*, *Y* of size Ω(log *n*) that are completely connected to each other.

- For every i < j, there are 2⁴ possibilities for the 4 edges between {a_i, b_i} and {a_j, b_j}.
- If there is a large matching, then there is a large matching that is homogeneous with respect to these 16 possibilities.

Observation

If a graph H on n vertices has a perfect matching, then either

- *H* contains an **induced** matching of size $\Omega(\log n)$ or
- *H* has two sets *X*, *Y* of size Ω(log *n*) that are completely connected to each other.

- For every i < j, there are 2⁴ possibilities for the 4 edges between {a_i, b_i} and {a_j, b_j}.
- If there is a large matching, then there is a large matching that is homogeneous with respect to these 16 possibilities.
- In each of the 16 cases, we find a matching, clique, or biclique as induced subgraph.

Observation

If a graph H on n vertices has a perfect matching, then either

- *H* contains an **induced** matching of size $\Omega(\log n)$ or
- *H* has two sets *X*, *Y* of size Ω(log *n*) that are completely connected to each other.

- For every i < j, there are 2⁴ possibilities for the 4 edges between {a_i, b_i} and {a_j, b_j}.
- If there is a large matching, then there is a large matching that is homogeneous with respect to these 16 possibilities.
- In each of the 16 cases, we find a matching, clique, or biclique as induced subgraph.

Observation

If a graph H on n vertices has a perfect matching, then either

- *H* contains an **induced** matching of size $\Omega(\log n)$ or
- *H* has two sets *X*, *Y* of size Ω(log *n*) that are completely connected to each other.

- For every i < j, there are 2⁴ possibilities for the 4 edges between {a_i, b_i} and {a_j, b_j}.
- If there is a large matching, then there is a large matching that is homogeneous with respect to these 16 possibilities.
- In each of the 16 cases, we find a matching, clique, or biclique as induced subgraph.

Observation

If a graph H on n vertices has a perfect matching, then either

- *H* contains an **induced** matching of size $\Omega(\log n)$ or
- *H* has two sets *X*, *Y* of size Ω(log *n*) that are completely connected to each other.

- For every i < j, there are 2⁴ possibilities for the 4 edges between {a_i, b_i} and {a_j, b_j}.
- If there is a large matching, then there is a large matching that is homogeneous with respect to these 16 possibilities.
- In each of the 16 cases, we find a matching, clique, or biclique as induced subgraph.

Observation

If a graph H on n vertices has a perfect matching, then either

- *H* contains an **induced** matching of size $\Omega(\log n)$ or
- *H* has two sets *X*, *Y* of size Ω(log *n*) that are completely connected to each other.

Ramsey's Theorem: There is a monochromatic *r*-clique in every *c*-coloring of the edges of a clique with at least c^{cr} vertices.

- For every i < j, there are 2⁴ possibilities for the 4 edges between {a_i, b_i} and {a_j, b_j}.
- If there is a large matching, then there is a large matching that is homogeneous with respect to these 16 possibilities.
- In each of the 16 cases, we find a matching, clique, or biclique as induced subgraph.

 $a_1 \bullet b_1$

 $a_2 \bullet b_2$

an 🗕 📥 bn

a3 🗕

a4 🖝

a5 🔸

🔸 b3

 $-b_5$

We arrive to a large set T of terminals such that

- T has a perfect matching in the demand graph and
- *T* is highly connected in the supply graph: for any *X*, *Y* ⊆ *T* with |*X*| = |*Y*|, there exists |*X*| disjoint *X* − *Y* paths.

We arrive to a large set T of terminals such that

- T has a perfect matching in the demand graph and
- *T* is highly connected in the supply graph: for any *X*, *Y* ⊆ *T* with |*X*| = |*Y*|, there exists |*X*| disjoint *X* − *Y* paths.

If H has no large induced matching, then the observation shows that the there are two large sets $X, Y \subseteq T$ that are completely connected in the demand graph.

We arrive to a large set T of terminals such that

- T has a perfect matching in the demand graph and
- *T* is highly connected in the supply graph: for any *X*, *Y* ⊆ *T* with |*X*| = |*Y*|, there exists |*X*| disjoint *X* − *Y* paths.

If H has no large induced matching, then the observation shows that the there are two large sets $X, Y \subseteq T$ that are completely connected in the demand graph.

Connectedness condition implies that there are many disjoint X - Y paths, which are valid paths.

Approximation

The Erdős-Pósa result can be stated algorithmically, giving an approximation algorithm as a byproduct:

Theorem

Let \mathcal{H} be a hereditary class of graph not containing every matching. Given an instance of MAXIMUM DISJOINT \mathcal{H} -PATHS, in time $2^{2^{O(k)}} \cdot n^{O(1)}$ we can either

- find k disjoint valid paths or
- find a set of $2^{O(k)}$ vertices covering every valid path.

Approximation

The Erdős-Pósa result can be stated algorithmically, giving an approximation algorithm as a byproduct:

Theorem

Let \mathcal{H} be a hereditary class of graph not containing every matching. Given an instance of MAXIMUM DISJOINT \mathcal{H} -PATHS, in time $2^{2^{O(k)}} \cdot n^{O(1)}$ we can either

- find k disjoint valid paths or
- find a set of $2^{O(k)}$ vertices covering every valid path.

A standard consequence:

Theorem

If \mathcal{H} is a hereditary class of graphs not containing every matching, then there is a polynomial-time algorithm for MAXIMUM DISJOINT \mathcal{H} -PATHS that finds a solution of size $O(\log \log OPT)$.

From approximation to exact

Theorem

If \mathcal{H} is a hereditary class of graphs that does not contain every matching and every skew biclique, then MAXIMUM DISJOINT \mathcal{H} -PATHS is FPT.

We use the approximation algorithm to find a small set $\frac{S}{S}$ covering every valid path.

Goal: reduce the number of terminals to f(k).

Then brute force + the Robertson-Seymour algorithm gives an FPT algorithm.

From approximation to exact

Theorem

If \mathcal{H} is a hereditary class of graphs that does not contain every matching and every skew biclique, then MAXIMUM DISJOINT \mathcal{H} -PATHS is FPT.

We use the approximation algorithm to find a small set $\frac{S}{S}$ covering every valid path.

Main argument: we can mark f(k) terminals in each component of G - S and show that every solution can be modified to use only marked terminals.

Main argument: we can mark f(k) terminals in each component of G - S and show that every solution can be modified to use only marked terminals.

Bad news: seems impossible to do in general without looking at the other components.

Example: Suppose that the demand graph contains only the edges $a_i b_i$.

We cannot decide which a_i to mark without knowing which b_i is on the other side.

Main argument: we can mark f(k) terminals in each component of G - S and show that every solution can be modified to use only marked terminals.

Good news: much easier if we exclude induced matchings and induced skew bicliques from the demand graph.

Example: Suppose that the demand graph contains only the edges $a_i b_j$ with $i \neq j$.

It is sufficient to mark, say, a_1 and a_2 : no matter which b_j is reachable, one of them is compatible.

Main argument: we can mark f(k) terminals in each component of G - S and show that every solution can be modified to use only marked terminals.

Good news: much easier if we exclude induced matchings and induced skew bicliques from the demand graph.

Example: Suppose that the demand graph contains only the edges $a_i b_j$ with $i \neq j$.

It is sufficient to mark, say, a_1 and a_2 : no matter which b_j is reachable, one of them is compatible.

Main argument: we can mark f(k) terminals in each component of G - S and show that every solution can be modified to use only marked terminals.

Good news: much easier if we exclude induced matchings and induced skew bicliques from the demand graph.

Example: Suppose that the demand graph contains only the edges $a_i b_j$ with $i \neq j$.

It is sufficient to mark, say, a_1 and a_2 : no matter which b_j is reachable, one of them is compatible.

Main argument: we can mark f(k) terminals in each component of G - S and show that every solution can be modified to use only marked terminals.

If we exclude induced matchings and induced skew bicliques, then we can compute a **representative set** of f(k) partial solutions for each component such that every solution can be modified to use only these partial solutions.

∜

We can mark f(k) terminals in each component of G - S.

Conceptually similar to other FPT applications of representative sets, but here works only if there are no induced matchings and induced skew bicliques (again some Ramsey statement behind this).

Summary

- Complete characterization of classes \mathcal{H} for which MAXIMUM DISJOINT \mathcal{H} -PATHS is FPT or has the Erdős-Pósa properties.
- Interesting collection of technical tools: Ramsey's Theorem, tangles, important separators, representative sets, ...
- **Open:** FPT-approximation for MAXIMUM DISJOINT PATHS for arbitrary patterns?

