A subexponential parameterized algorithm for Subset TSP on planar graphs

Philip N. Klein <u>Dániel Marx</u>

http://xkcd.com/399/

SODA 2014 January 7, 2014 Portland, OR

TSP

TSP

Input: A set T of cities and a distance function d on T*Output:* A tour on T with minimum total distance

Theorem [Held and Karp 1962]

TSP with *n* cities can be solved in time $2^n \cdot n^2 \cdot \log D$, where *D* is the maximum (integer) distance.

Dynamic programming:

Let x(v, T') be the minimum length of path from v_{start} to v visiting all the cities $T' \subseteq T$.

c-change TSP

- *c*-change operation: removing *c* steps of the tour and connecting the resulting *c* paths in some other way.
- A solution is *c*-OPT if no *c*-change can improve it.
- We can find a *c*-OPT solution in $n^{O(c)} \cdot D$ time, where *D* is the maximum (integer) distance.

c-change TSP

- *c*-change operation: removing *c* steps of the tour and connecting the resulting *c* paths in some other way.
- A solution is *c*-OPT if no *c*-change can improve it.
- We can find a *c*-OPT solution in $n^{O(c)} \cdot D$ time, where *D* is the maximum (integer) distance.

c-change TSP

- *c*-change operation: removing *c* steps of the tour and connecting the resulting *c* paths in some other way.
- A solution is **c**-OPT if no **c**-change can improve it.
- We can find a *c*-OPT solution in $n^{O(c)} \cdot D$ time, where *D* is the maximum (integer) distance.

TSP on planar graphs

Assume that the cities correspond to the set of all vertices of a (weighted) planar graph and distance is measured in this (weighted) planar graph.

TSP on planar graphs

Assume that the cities correspond to the set of all vertices of a (weighted) planar graph and distance is measured in this (weighted) planar graph.

- Can be solved in time $n^{O(\sqrt{n})}$.
- Admits a PTAS.

Assume that the cities correspond to a subset T of vertices of a planar graph and distance is measured in this planar graph.

Assume that the cities correspond to a subset T of vertices of a planar graph and distance is measured in this planar graph.

- Can be solved in time $n^{O(\sqrt{n})}$.
- Can be solved in time $2^k \cdot n^{O(1)}$.
- Question: Can we restrict the exponential dependence to *k* and exploit planarity?

Assume that the cities correspond to a subset T of vertices of a planar graph and distance is measured in this planar graph.

Theorem

SUBSET TSP for k cities in a unit-weight planar graph can be solved in time $2^{O(\sqrt{k} \log k)} \cdot n^{O(1)}$.

Assume that the cities correspond to a subset T of vertices of a planar graph and distance is measured in this planar graph.

Theorem

SUBSET TSP for k cities in a weighted planar graph can be solved in time $(2^{O(\sqrt{k}\log k)} + W) \cdot n^{O(1)}$ if the weights are integers not more than W.

Partial solutions

General idea: build larger and larger partial solutions.

Held-Karp algorithm: the partial solutions are $v_{\text{start}} - v$ paths visiting a subset T' of cities.

Partial solutions

General idea: build larger and larger partial solutions.

Held-Karp algorithm: the partial solutions are $v_{\text{start}} - v$ paths visiting a subset T' of cities.

Generalization: a partial solution is a set of at most d pairwise disjoint paths with specified cities as endpoints.

The type of a partial solution can be described by

- the set of endpoints of the paths,
- a matching between the endpoints, and
- the subset T' of visited cities.

Merging partial solutions

Two compatible partial solutions can be merged in an obvious way:

Merging partial solutions

Two compatible partial solutions can be merged in an obvious way:

Merging partial solutions

Two compatible partial solutions can be merged in an obvious way:

Algorithm

- Start with an initial set of trivial partial solutions.
- Combine two partial solutions as long as possible.
- Keep at most one partial solution from each type: the best one encountered so far.
- Return the best partial solution that consists of a single path (cycle) visiting all vertices.

Running time

Algorithm

- Start with an initial set of trivial partial solutions.
- Combine two partial solutions as long as possible.
- Keep at most one partial solution from each type: the best one encountered so far.
- Return the best partial solution that consists of a single path (cycle) visiting all vertices.

Running time

Algorithm

- Start with an initial set of trivial partial solutions.
- Combine two partial solutions as long as possible.
- Keep at most one partial solution from each type: the best one encountered so far.
- Return the best partial solution that consists of a single path (cycle) visiting all vertices.

With careful implementation, the running time is dominated by the number of types, whose number has two factors:

- endpoints described by at most *d* pairs of vertices $\Rightarrow k^{2d}$ possibilities,
- describing the subset T' of visited cities
 - $\Rightarrow 2^k$ possibilities.

We can increase d up to $O(\sqrt{k})$, but we need to reduce somehow the number of possible subsets of cities!

Restricting the subset of cities

We restrict attention to a collection \mathcal{T} of subsets of cities and consider only partial solutions that visit a subset in \mathcal{T} .

We need: a collection \mathcal{T} of size $k^{O(\sqrt{k})}$ that guarantees finding an optimum solution.

Restricting the subset of cities

We restrict attention to a collection \mathcal{T} of subsets of cities and consider only partial solutions that visit a subset in \mathcal{T} .

We need: a collection \mathcal{T} of size $k^{O(\sqrt{k})}$ that guarantees finding an optimum solution.

Definition of \mathcal{T} :

• Find a 4-OPT tour.

Restricting the subset of cities

We restrict attention to a collection \mathcal{T} of subsets of cities and consider only partial solutions that visit a subset in \mathcal{T} .

We need: a collection \mathcal{T} of size $k^{O(\sqrt{k})}$ that guarantees finding an optimum solution.

Definition of \mathcal{T} :

- Find a 4-OPT tour.
- A subset is in \mathcal{T} if and only if it induces $O(\sqrt{k})$ consecutive intervals on the 4-OPT tour.

Main result

Definition of \mathcal{T} :

- Find a 4-OPT tour.
- A subset is in \mathcal{T} if and only if it induces $O(\sqrt{k})$ consecutive intervals on the 4-OPT tour.

Theorem

After setting \mathcal{T} as above and $d = O(\sqrt{k})$, the Algorithm finds an optimum solution for SUBSET TSP on planar graphs.

Corollary

SUBSET TSP for k cities in a planar graph can be solved in time $(2^{O(\sqrt{k}\log k)} + W) \cdot n^{O(1)}$ if the weights are integers at most W.

The treewidth bound

Consider the union of an optimum solution and a 4-OPT solution as a graph on k vertices:

Lemma

For every 4-OPT solution, there is an optimum solution such that their union has treewidth $O(\sqrt{k})$.

The treewidth bound

Lemma

For every 4-OPT solution, there is an optimum solution such that their union has treewidth $O(\sqrt{k})$.

- The union has separators of size $O(\sqrt{k})$.
- In each component, the set of cities visited by the optimum solution is nice: it is the same as what $O(\sqrt{k})$ segments of the 4-OPT tour visited.
- We can use this tree decomposition to prove that the Algorithm finds an optimum solution.

Consider the closed walk corresponding to the 4-OPT solution and pick an optimum solution and a closed walk representing that.

The union is a planar graph (we ignore degree-2 vertices now):

Select the optimum solution and the closed walk such that the two tours cross each other the minimum number of times.

Consider the closed walk corresponding to the 4-OPT solution and pick an optimum solution and a closed walk representing that.

The union is a planar graph (we ignore degree-2 vertices now):

We give an $O(\sqrt{k})$ bound on the treewidth of this planar graph \downarrow A $O(\sqrt{k})$ bound follows for the *k*-vertex graph, as it is a minor of this graph after duplicating the vertices.

Consider the closed walk corresponding to the 4-OPT solution and pick an optimum solution and a closed walk representing that.

The union is a planar graph (we ignore degree-2 vertices now):

We give an $O(\sqrt{k})$ bound on the treewidth of this planar graph \downarrow A $O(\sqrt{k})$ bound follows for the *k*-vertex graph, as it is a minor of this graph after duplicating the vertices.

Consider the closed walk corresponding to the 4-OPT solution and pick an optimum solution and a closed walk representing that.

The union is a planar graph (we ignore degree-2 vertices now):

We prove that every 3-connected component of the planar graph has O(k) vertices of degree > 2

 $O(\sqrt{k})$ treewidth bound on the 3-connected components \Downarrow

same bound for the whole graph.

Grids

A grid is a 16-vertex subgraph of the union of the 4-OPT solution and the optimum solution:

Grids

A **grid** is a 16-vertex subgraph of the union of the 4-OPT solution and the optimum solution:

Lemma

If a 3-connected component of the union has size $\Omega(k)$, then there is a grid.

Proof idea: 4-regular and O(k) faces have length < 4 \Rightarrow Euler's formula implies that most of the faces have length 4 \Rightarrow a 4-face surrounded by 4-faces should be a grid.

${\sf Grids}$

Suppose that the grid is used like this by two tours:

Grids

Suppose that the grid is used like this by two tours:

• Let us exchange these two sets of edges between the two tours.

Grids

Suppose that the grid is used like this by two tours:

- Let us exchange these two sets of edges between the two tours.
- The 4-OPT tour cannot improve.
- The optimum tour cannot improve.
- We get another optimum tour that has fewer crossings with the 4-OPT tour.

C type + S type:

C type + S type:

C type + S type:

S type + S type:

S type + S type:

S type + S type:

S type + inverted S type:

S type + inverted S type:

S type + inverted S type:

Overview

- Algorithm:
 - Find a 4-OPT tour.
 - Partial solutions: $O(\sqrt{k})$ disjoint paths, visiting $O(\sqrt{k})$ consecutive intervals on the 4-OPT tour.
 - Merge partial solutions until the optimum solution is found.
- Treewidth bound: the union of the 4-OPT tour and some optimum tour is a k-vertex graph with treewidth $O(\sqrt{k})$.
 - Study the union in the planar graph.
 - Every 3-connected component has O(k) vertices of degree
 2, otherwise there is a grid and an exchange argument could be used.
 - Union in the planar graph has treewidth $O(\sqrt{k}) \Rightarrow$ the *k*-vertex graph has treewidth $O(\sqrt{k})$.