
Finding small patterns in permutations in linear
time

Sylvain Guillemot Dániel Marx

Institute for Computer Science and Control
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary

SODA 2014
January 5, 2014
Portland, OR

1

Permutations
Different interpretations:

Bijective mapping σ : [n]→ [n]:
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Ordering of [n]:

3 2 7 8 4 6 1 5
n points in the plane “in general position”:

2

Subpermutations

There is a natural way of defining the meaning of σ being a
subpermutation of π (or a “permutation pattern” in π).

Example:

σ π

1 4 2 3 3 2 7 8 4 6 1 5

is a subpermutation of

3

Subpermutations

There is a natural way of defining the meaning of σ being a
subpermutation of π (or a “permutation pattern” in π).

Example:

σ π

1 4 2 3 3 2 7 8 4 6 1 5

is a subpermutation of

3

Excluding subpermutations

There are n! permutations of length n, but their number is much
smaller if we exclude a fixed permutation:

Theorem [Marcus and Tardos 2004]

For every fixed permutation σ, the number of permutations of
length n avoiding σ is at most cn for some constant c depending
on σ.

Example:

The number of permutations of length n avoiding 231 is exactly the
Catalan number Cn = 1

n+1

(2n
n

)
< 4n.

4

Finding patterns in permutations

Permutation Pattern
Input: Two permutations σ and π.

Decide: Is σ a subpattern of π?

NP-hard in general [Bose, Buss, and Lubiw 1998].
Can be solved in time n`+O(1) by brute force, where ` = |σ|
and n = |π|.
Can be solved in time n0.47`+o(`) [Ahal and Rabinovich 2008].

Main result:

Theorem

Permutation Pattern can be solved in time 2O(`2 log `) · n,
where ` = |σ| and n = |π|.

5

Finding patterns in permutations

Permutation Pattern
Input: Two permutations σ and π.

Decide: Is σ a subpattern of π?

NP-hard in general [Bose, Buss, and Lubiw 1998].
Can be solved in time n`+O(1) by brute force, where ` = |σ|
and n = |π|.
Can be solved in time n0.47`+o(`) [Ahal and Rabinovich 2008].

Main result:

Theorem

Permutation Pattern can be solved in time 2O(`2 log `) · n,
where ` = |σ| and n = |π|.

5

Decompositions

We define the notion of d-wide decomposition and solve the
problem using the following win/win strategy:
(` = |σ|, n = |π|)

1 There is an algorithm that either
finds σ in π or
finds a 2O(` log `)-wide decomposition of π.

2 There is an algorithm that, given σ and a d -wide
decomposition of π, decides if σ is a subpattern of π in time
(d`)O(`) · n.

These two algorithms together give a 2O(`2 log `) · n time algorithm
for Permutation Pattern.

6

Decompositions
Starting with a set of points (degenerate rectangles), the
decomposition is a sequence of merges, where a merge consists of
replacing two rectangles with their bounding box:

1
2

3 4

5

6

7

8

(3, 4)

→ 9

(9, 12)

→ 13

(1, 2)

→ 10

(13, 11)

→ 14

(6, 7)

→ 11

(10, 14)

→ 15

(5, 8)

→ 12

7

Decompositions
Starting with a set of points (degenerate rectangles), the
decomposition is a sequence of merges, where a merge consists of
replacing two rectangles with their bounding box:

1
2

3 4

5

6

7

8

(3, 4)

→ 9 (9, 12)

→ 13

(1, 2)

→ 10

(13, 11)

→ 14

(6, 7)

→ 11

(10, 14)

→ 15

(5, 8)

→ 12

7

Decompositions
Starting with a set of points (degenerate rectangles), the
decomposition is a sequence of merges, where a merge consists of
replacing two rectangles with their bounding box:

1
2

5

6

7

9

8

(3, 4)→ 9

(9, 12)

→ 13

(1, 2)

→ 10

(13, 11)

→ 14

(6, 7)

→ 11

(10, 14)

→ 15

(5, 8)

→ 12

7

Decompositions
Starting with a set of points (degenerate rectangles), the
decomposition is a sequence of merges, where a merge consists of
replacing two rectangles with their bounding box:

1
2

5

6

7

9

8

(3, 4)→ 9

(9, 12)

→ 13

(1, 2)

→ 10 (13, 11)

→ 14

(6, 7)

→ 11

(10, 14)

→ 15

(5, 8)

→ 12

7

Decompositions
Starting with a set of points (degenerate rectangles), the
decomposition is a sequence of merges, where a merge consists of
replacing two rectangles with their bounding box:

5

6

7
10

9

8

(3, 4)→ 9

(9, 12)

→ 13

(1, 2)→ 10

(13, 11)

→ 14

(6, 7)

→ 11

(10, 14)

→ 15

(5, 8)

→ 12

7

Decompositions
Starting with a set of points (degenerate rectangles), the
decomposition is a sequence of merges, where a merge consists of
replacing two rectangles with their bounding box:

5

6

7
10

9

8

(3, 4)→ 9

(9, 12)

→ 13

(1, 2)→ 10

(13, 11)

→ 14

(6, 7)

→ 11 (10, 14)

→ 15

(5, 8)

→ 12

7

Decompositions
Starting with a set of points (degenerate rectangles), the
decomposition is a sequence of merges, where a merge consists of
replacing two rectangles with their bounding box:

5

10

9

11

8

(3, 4)→ 9

(9, 12)

→ 13

(1, 2)→ 10

(13, 11)

→ 14

(6, 7)→ 11

(10, 14)

→ 15

(5, 8)

→ 12

7

Decompositions
Starting with a set of points (degenerate rectangles), the
decomposition is a sequence of merges, where a merge consists of
replacing two rectangles with their bounding box:

5

10

9

11

8

(3, 4)→ 9

(9, 12)

→ 13

(1, 2)→ 10

(13, 11)

→ 14

(6, 7)→ 11

(10, 14)

→ 15

(5, 8)

→ 12

7

Decompositions
Starting with a set of points (degenerate rectangles), the
decomposition is a sequence of merges, where a merge consists of
replacing two rectangles with their bounding box:

10

9

11
12

(3, 4)→ 9

(9, 12)

→ 13

(1, 2)→ 10

(13, 11)

→ 14

(6, 7)→ 11

(10, 14)

→ 15

(5, 8)→ 12

7

Decompositions
Starting with a set of points (degenerate rectangles), the
decomposition is a sequence of merges, where a merge consists of
replacing two rectangles with their bounding box:

10

9

11
12

(3, 4)→ 9 (9, 12)

→ 13

(1, 2)→ 10

(13, 11)

→ 14

(6, 7)→ 11

(10, 14)

→ 15

(5, 8)→ 12

7

Decompositions
Starting with a set of points (degenerate rectangles), the
decomposition is a sequence of merges, where a merge consists of
replacing two rectangles with their bounding box:

10
11

13

(3, 4)→ 9 (9, 12)→ 13
(1, 2)→ 10

(13, 11)

→ 14

(6, 7)→ 11

(10, 14)

→ 15

(5, 8)→ 12

7

Decompositions
Starting with a set of points (degenerate rectangles), the
decomposition is a sequence of merges, where a merge consists of
replacing two rectangles with their bounding box:

10
11

13

(3, 4)→ 9 (9, 12)→ 13
(1, 2)→ 10 (13, 11)

→ 14

(6, 7)→ 11

(10, 14)

→ 15

(5, 8)→ 12

7

Decompositions
Starting with a set of points (degenerate rectangles), the
decomposition is a sequence of merges, where a merge consists of
replacing two rectangles with their bounding box:

10

14

(3, 4)→ 9 (9, 12)→ 13
(1, 2)→ 10 (13, 11)→ 14
(6, 7)→ 11

(10, 14)

→ 15

(5, 8)→ 12

7

Decompositions
Starting with a set of points (degenerate rectangles), the
decomposition is a sequence of merges, where a merge consists of
replacing two rectangles with their bounding box:

10

14

(3, 4)→ 9 (9, 12)→ 13
(1, 2)→ 10 (13, 11)→ 14
(6, 7)→ 11 (10, 14)

→ 15

(5, 8)→ 12

7

Decompositions
Starting with a set of points (degenerate rectangles), the
decomposition is a sequence of merges, where a merge consists of
replacing two rectangles with their bounding box:

15

(3, 4)→ 9 (9, 12)→ 13
(1, 2)→ 10 (13, 11)→ 14
(6, 7)→ 11 (10, 14)→ 15
(5, 8)→ 12

7

Decompositions
Starting with a set of points (degenerate rectangles), the
decomposition is a sequence of merges, where a merge consists of
replacing two rectangles with their bounding box:

15

R1 sees R2 horizontally (resp., vertically) if there is a
horizontal (resp., vertical) line intersecting both.
A rectangle family is d-wide if every rectangle sees less than d
other rectangles horizontally and less than d other rectangles
vertically.
The decomposition is d-wide if it is d -wide in every step.

7

Grids
r × r -grid: partitioning the rows and the columns into r classes
such that every cell contains a point.

Observation: If a point set has an r × r -grid, then it contains
every permutation of length r .

Fact
If π has an r × r -grid, then every decomposition of π is Ω(r)-wide.

8

Finding decompositions
Large grids imply large width:

Fact
If π contains an r × r -grid, then every decomposition of π is
Ω(r)-wide.

Large width implies large grids:

Theorem
There is an O(n) time algorithm that finds either an r × r grid in π
or a 2O(r log r)-wide decomposition of π.

The algorithm relies on the following previous result:

Theorem (essentially [Marcus and Tardos 2004])

If M is a point set in [p]× [q] with |M| > r4(r2

r

)
(p + q), then we

can find an r × r -grid in M.

9

Finding decompositions
Large grids imply large width:

Fact
If π contains an r × r -grid, then every decomposition of π is
Ω(r)-wide.

Large width implies large grids:

Theorem
There is an O(n) time algorithm that finds either an r × r grid in π
or a 2O(r log r)-wide decomposition of π.

The algorithm relies on the following previous result:

Theorem (essentially [Marcus and Tardos 2004])

If M is a point set in [p]× [q] with |M| > r4(r2

r

)
(p + q), then we

can find an r × r -grid in M.

9

Finding decompositions
We maintain a partition of rows and columns that is compatible
with every current rectangle and satisfies that

every row/column contains < r ′ rectangles and
every two adjacent rows/columns contain ≥ r ′ rectangles.

< r ′

≥ r ′

p rows

q columns

10

Finding decompositions
We maintain a partition of rows and columns that is compatible
with every current rectangle and satisfies that

every row/column contains < r ′ rectangles and
every two adjacent rows/columns contain ≥ r ′ rectangles.

< r ′

≥ r ′

p rows

q columns

Case 1: If a cell contains two rectangles, merge them. If two adja-
cent rows/columns contain < r ′ rectangles, then merge them.

10

Finding decompositions
We maintain a partition of rows and columns that is compatible
with every current rectangle and satisfies that

every row/column contains < r ′ rectangles and
every two adjacent rows/columns contain ≥ r ′ rectangles.

< r ′

< r ′
!!! p rows

q columns

Case 1: If a cell contains two rectangles, merge them. If two adja-
cent rows/columns contain < r ′ rectangles, then merge them.

10

Finding decompositions
We maintain a partition of rows and columns that is compatible
with every current rectangle and satisfies that

every row/column contains < r ′ rectangles and
every two adjacent rows/columns contain ≥ r ′ rectangles.

< r ′

≥ r ′ p rows

q columns

Case 1: If a cell contains two rectangles, merge them. If two adja-
cent rows/columns contain < r ′ rectangles, then merge them.

10

Finding decompositions
We maintain a partition of rows and columns that is compatible
with every current rectangle and satisfies that

every row/column contains < r ′ rectangles and
every two adjacent rows/columns contain ≥ r ′ rectangles.

< r ′

≥ r ′

p rows

q columns

Case 2: Every cell contains at most one rectangle
⇒ There are Ω((p + q)r ′) nonempty cells
⇒ Result of [Marcus and Tardos 2004] implies that there is an r×r -grid
(if r ′ is sufficiently large).

10

Finding patterns
We would like to design a dynamic programming algorithm to solve
Permutation Pattern using a given decomposition.

Problem:

The decomposition does not break the problem into independent
subproblems.

R

The interaction between the points in R1 and R2 can be arbitrary!

11

Finding patterns
We would like to design a dynamic programming algorithm to solve
Permutation Pattern using a given decomposition.

Problem:

The decomposition does not break the problem into independent
subproblems.

R1

R2

The interaction between the points in R1 and R2 can be arbitrary!

11

Finding patterns
We would like to design a dynamic programming algorithm to solve
Permutation Pattern using a given decomposition.

Problem:

The decomposition does not break the problem into independent
subproblems.

R1

R2

The interaction between the points in R1 and R2 can be arbitrary!

11

Finding patterns
We would like to design a dynamic programming algorithm to solve
Permutation Pattern using a given decomposition.

Problem:

The decomposition does not break the problem into independent
subproblems.

R1

R2

The interaction between the points in R1 and R2 can be arbitrary!

11

Connected components
Visibility graph: two rectangles are adjacent if they see each other
horizontally or vertically.

Observation: The degree of the visibility graph is less than 2d if
the rectangle family is d -wide. Therefore, there are dO(`) · n sets K
of size ≤ ` that are connected in the visibility graph.

12

Connected components
Visibility graph: two rectangles are adjacent if they see each other
horizontally or vertically.

Subproblems defined by
step i of the decomposition,
a connected set K of size ≤ ` in the visibility graph,
a subpermutation σ′ if σ, and
a mapping of σ′ into the rectangles of K .

12

Connected components
How to solve a subproblem at step i using the subproblems at step
i − 1?

If a rectangle R of K was created at step i by merging R1 and
R2, then we have to distribute the points assigned to R in
every possible way between R1 and R2.
In step i − 1, set K falls apart into some number of connected
sets, but the interaction between them is completely
understood.

13

Connected components
How to solve a subproblem at step i using the subproblems at step
i − 1?

R

If a rectangle R of K was created at step i by merging R1 and
R2, then we have to distribute the points assigned to R in
every possible way between R1 and R2.
In step i − 1, set K falls apart into some number of connected
sets, but the interaction between them is completely
understood.

13

Connected components
How to solve a subproblem at step i using the subproblems at step
i − 1?

R1 R2

If a rectangle R of K was created at step i by merging R1 and
R2, then we have to distribute the points assigned to R in
every possible way between R1 and R2.
In step i − 1, set K falls apart into some number of connected
sets, but the interaction between them is completely
understood.

13

Algorithm summary

Theorem

Permutation Pattern can be solved in time 2O(`2 log `) · n,
where ` = |σ| and n = |π|.

Win/win strategy:

1 There is an algorithm that either
finds σ in π or
finds a 2O(` log `)-wide decomposition of π.

2 There is an algorithm that, given σ and a d -wide
decomposition of π, decides if σ is a subpattern of π in time
(d`)O(`) · n.

14

Hardness

Partitioned Permutation Pattern: for every i ∈ σ, a
subset Si ⊆ π is given where it can be mapped.

Theorem
Partitioned Permutation Pattern is W[1]-hard
parameterized by |σ|.

3-Dimensional Permutation Pattern: natural
generalization to 3-dimensional points in general position.

Theorem
3-Dimensional Permutation Pattern is W[1]-hard
parameterized by |σ|.

15

Conclusions

Finding patterns in permutations is fixed-parameter tractable.
Algorithm is based on a novel width measure for permutations.
Win/win situation similar to certain algorithms based on
minors and bidimensionality.
But our decomposition is strictly speaking not a
decomposition.

16

	Permutations
	Subpermutations
	Subpermutations
	Excluding subpermutations
	Finding patterns in permutations
	Finding patterns in permutations
	Decompositions
	Decompositions
	Decompositions
	Decompositions
	Decompositions
	Decompositions
	Decompositions
	Decompositions
	Decompositions
	Decompositions
	Decompositions
	Decompositions
	Decompositions
	Decompositions
	Decompositions
	Decompositions
	Decompositions
	Grids
	Finding decompositions
	Finding decompositions
	Finding decompositions
	Finding decompositions
	Finding decompositions
	Finding decompositions
	Finding decompositions
	Finding patterns
	Finding patterns
	Finding patterns
	Finding patterns
	Connected components
	Connected components
	Connected components
	Connected components
	Connected components
	Algorithm summary
	Hardness
	Conclusions

