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Permutations
Different interpretations:

Bijective mapping σ : [n]→ [n]:
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Ordering of [n]:

3 2 7 8 4 6 1 5
n points in the plane “in general position”:
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Subpermutations

There is a natural way of defining the meaning of σ being a
subpermutation of π (or a “permutation pattern” in π).

Example:

σ π

1 4 2 3 3 2 7 8 4 6 1 5

is a subpermutation of
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Excluding subpermutations

There are n! permutations of length n, but their number is much
smaller if we exclude a fixed permutation:

Theorem [Marcus and Tardos 2004]

For every fixed permutation σ, the number of permutations of
length n avoiding σ is at most cn for some constant c depending
on σ.

Example:

The number of permutations of length n avoiding 231 is exactly the
Catalan number Cn = 1

n+1

(2n
n

)
< 4n.
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Finding patterns in permutations

Permutation Pattern
Input: Two permutations σ and π.

Decide: Is σ a subpattern of π?

NP-hard in general [Bose, Buss, and Lubiw 1998].
Can be solved in time n`+O(1) by brute force, where ` = |σ|
and n = |π|.
Can be solved in time n0.47`+o(`) [Ahal and Rabinovich 2008].

Main result:

Theorem

Permutation Pattern can be solved in time 2O(`2 log `) · n,
where ` = |σ| and n = |π|.
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Decompositions

We define the notion of d-wide decomposition and solve the
problem using the following win/win strategy:
(` = |σ|, n = |π|)

1 There is an algorithm that either
finds σ in π or
finds a 2O(` log `)-wide decomposition of π.

2 There is an algorithm that, given σ and a d -wide
decomposition of π, decides if σ is a subpattern of π in time
(d`)O(`) · n.

These two algorithms together give a 2O(`2 log `) · n time algorithm
for Permutation Pattern.
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Decompositions
Starting with a set of points (degenerate rectangles), the
decomposition is a sequence of merges, where a merge consists of
replacing two rectangles with their bounding box:

1
2

3 4

5

6

7

8

(3, 4)

→ 9

(9, 12)

→ 13

(1, 2)

→ 10

(13, 11)

→ 14

(6, 7)

→ 11

(10, 14)

→ 15

(5, 8)

→ 12
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Decompositions
Starting with a set of points (degenerate rectangles), the
decomposition is a sequence of merges, where a merge consists of
replacing two rectangles with their bounding box:

15

R1 sees R2 horizontally (resp., vertically) if there is a
horizontal (resp., vertical) line intersecting both.
A rectangle family is d-wide if every rectangle sees less than d
other rectangles horizontally and less than d other rectangles
vertically.
The decomposition is d-wide if it is d -wide in every step.
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Grids
r × r -grid: partitioning the rows and the columns into r classes
such that every cell contains a point.

Observation: If a point set has an r × r -grid, then it contains
every permutation of length r .

Fact
If π has an r × r -grid, then every decomposition of π is Ω(r)-wide.
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Finding decompositions
Large grids imply large width:

Fact
If π contains an r × r -grid, then every decomposition of π is
Ω(r)-wide.

Large width implies large grids:

Theorem
There is an O(n) time algorithm that finds either an r × r grid in π
or a 2O(r log r)-wide decomposition of π.

The algorithm relies on the following previous result:

Theorem (essentially [Marcus and Tardos 2004])

If M is a point set in [p]× [q] with |M| > r4(r2

r

)
(p + q), then we

can find an r × r -grid in M.
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Finding decompositions
We maintain a partition of rows and columns that is compatible
with every current rectangle and satisfies that

every row/column contains < r ′ rectangles and
every two adjacent rows/columns contain ≥ r ′ rectangles.

< r ′

≥ r ′

p rows

q columns
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Finding decompositions
We maintain a partition of rows and columns that is compatible
with every current rectangle and satisfies that

every row/column contains < r ′ rectangles and
every two adjacent rows/columns contain ≥ r ′ rectangles.

< r ′

≥ r ′

p rows

q columns

Case 2: Every cell contains at most one rectangle
⇒ There are Ω((p + q)r ′) nonempty cells
⇒ Result of [Marcus and Tardos 2004] implies that there is an r×r -grid
(if r ′ is sufficiently large).
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Finding patterns
We would like to design a dynamic programming algorithm to solve
Permutation Pattern using a given decomposition.

Problem:

The decomposition does not break the problem into independent
subproblems.

R

The interaction between the points in R1 and R2 can be arbitrary!
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Connected components
Visibility graph: two rectangles are adjacent if they see each other
horizontally or vertically.

Observation: The degree of the visibility graph is less than 2d if
the rectangle family is d -wide. Therefore, there are dO(`) · n sets K
of size ≤ ` that are connected in the visibility graph.
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Connected components
Visibility graph: two rectangles are adjacent if they see each other
horizontally or vertically.

Subproblems defined by
step i of the decomposition,
a connected set K of size ≤ ` in the visibility graph,
a subpermutation σ′ if σ, and
a mapping of σ′ into the rectangles of K .
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Connected components
How to solve a subproblem at step i using the subproblems at step
i − 1?

If a rectangle R of K was created at step i by merging R1 and
R2, then we have to distribute the points assigned to R in
every possible way between R1 and R2.
In step i − 1, set K falls apart into some number of connected
sets, but the interaction between them is completely
understood.
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Algorithm summary

Theorem

Permutation Pattern can be solved in time 2O(`2 log `) · n,
where ` = |σ| and n = |π|.

Win/win strategy:

1 There is an algorithm that either
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finds a 2O(` log `)-wide decomposition of π.
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(d`)O(`) · n.

14



Hardness

Partitioned Permutation Pattern: for every i ∈ σ, a
subset Si ⊆ π is given where it can be mapped.

Theorem
Partitioned Permutation Pattern is W[1]-hard
parameterized by |σ|.

3-Dimensional Permutation Pattern: natural
generalization to 3-dimensional points in general position.

Theorem
3-Dimensional Permutation Pattern is W[1]-hard
parameterized by |σ|.
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Conclusions

Finding patterns in permutations is fixed-parameter tractable.
Algorithm is based on a novel width measure for permutations.
Win/win situation similar to certain algorithms based on
minors and bidimensionality.
But our decomposition is strictly speaking not a
decomposition.
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