Interval Deletion is fixed-parameter tractable

Yixin Cao Dániel Marx

Institute for Computer Science and Control Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

> SODA 2014 January 5, 2014 Portland, OR

Problems on graph classes

For various classes \mathcal{G} of graphs (planar, chordal, interval, etc.), there is a large literature on

- \bullet how to recognize if a graph is a member of ${\cal G}$ and
- how to solve certain problems on \mathcal{G} more efficiently than on general graphs.

Problems on graph classes

For various classes \mathcal{G} of graphs (planar, chordal, interval, etc.), there is a large literature on

- \bullet how to recognize if a graph is a member of ${\cal G}$ and
- how to solve certain problems on \mathcal{G} more efficiently than on general graphs.

Can we ask the same questions about graphs that "almost" belong to ${\cal G}?$

For every class ${\boldsymbol{\mathcal{G}}}$ of graphs, we can study the following type of problems:

\mathcal{G} -graph modification problem

Input: a graph *G* of size *n* and a nonnegative integer *k* **Task:** find $\leq k$ modifications that transform *G* into a graph in *G*

Allowed typical modification operations:

- removing edges,
- adding edges,
- removing vertices.

For every class \mathcal{G} of graphs, we can study the following type of problems:

\mathcal{G} -graph modification problem

Input: a graph *G* of size *n* and a nonnegative integer *k* **Task:** find $\leq k$ modifications that transform *G* into a graph in *G*

In other words, the question is if G belongs to the class

- $\mathcal{G} + ke$: a graph from \mathcal{G} with k extra edges;
- $\mathcal{G} ke$: a graph from \mathcal{G} with k missing edges;
- $\mathcal{G} + kv$: a graph from \mathcal{G} with k extra vertices.

For every class \mathcal{G} of graphs, we can study the following type of problems:

\mathcal{G} -graph modification problem

Input: a graph *G* of size *n* and a nonnegative integer *k* **Task:** find $\leq k$ modifications that transform *G* into a graph in *G*

In other words, the question is if G belongs to the class

- $\mathcal{G} + ke$: a graph from \mathcal{G} with k extra edges;
- $\mathcal{G} ke$: a graph from \mathcal{G} with k missing edges;
- $\mathcal{G} + kv$: a graph from \mathcal{G} with k extra vertices.

For every class \mathcal{G} of graphs, we can study the following type of problems:

\mathcal{G} -graph modification problem

Input: a graph *G* of size *n* and a nonnegative integer *k* **Task:** find $\leq k$ modifications that transform *G* into a graph in *G*

In other words, the question is if G belongs to the class

- $\mathcal{G} + ke$: a graph from \mathcal{G} with k extra edges;
- $\mathcal{G} ke$: a graph from \mathcal{G} with k missing edges;
- $\mathcal{G} + kv$: a graph from \mathcal{G} with k extra vertices.

Theorem [Lewis and Yannakakis 1980]

If the graph class \mathcal{G} is **nontrivial** and **hereditary**, then it is NP-hard to decide if a graph is in $\mathcal{G} + kv$.

Examples

If \mathcal{G} is polynomial-time recognizable, we can test in time $n^{O(k)}$ whether G is in $\mathcal{G} + kv$.

But can we solve it in time $f(k) \cdot n^{O(1)}$, i.e., is it FPT?

\mathcal{F}	Problems	Complexity
dis co n n ec ted graphs	Vertex Connectivity	$\in P$
i e p d e d		
n t n	Vertex Cover	$1.31^k \cdot n^{O(1)}$
rees		
acyclic [‡] graphs	Feedback Vertex Set	$3.83^k \cdot n^{O(1)}$
chørdal graphs	CHORDAL DELETION	$2^{\mathcal{O}(k\log k)} \cdot n^{\mathcal{O}(1)}$
bptt grph iarie as	Odd Cycle Transversal	$2.318^k \cdot n^{O(1)}$

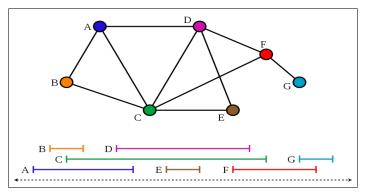
Examples

If \mathcal{G} is polynomial-time recognizable, we can test in time $n^{O(k)}$ whether G is in $\mathcal{G} + kv$.

But can we solve it in time $f(k) \cdot n^{O(1)}$, i.e., is it FPT?

\mathcal{F}	Problems	Complexity
dis connected graphs	Vertex Connectivity	$\in P$
i e p n e d d e e		
n t n	Vertex Cover	$1.31^k \cdot n^{O(1)}$
acyclic ¹ graphs	Feedback Vertex Set	$3.83^k \cdot n^{O(1)}$
chørdal graphs	CHORDAL DELETION	$2^{\mathcal{O}(k \log k)} \cdot n^{\mathcal{O}(1)}$
bptt grph iarie a s	Odd Cycle Transversal	$2.318^k \cdot n^{O(1)}$
INTERVAL GRAPHS	INTERVAL DELETION	$10^k \cdot n^{O(1)}$

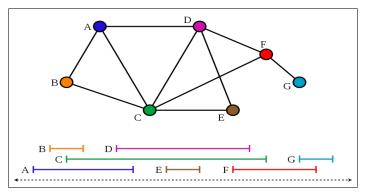
Interval graphs



Definition

There are a set of intervals \mathcal{I} in the real line and $\phi : \mathcal{V} \to \mathcal{I}$ such that $uv \in E(G)$ iff $\phi(u)$ intersects $\phi(v)$.

Interval graphs



Definition

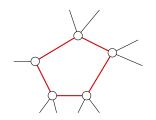
There are a set of intervals \mathcal{I} in the real line and $\phi : \mathcal{V} \to \mathcal{I}$ such that $uv \in E(G)$ iff $\phi(u)$ intersects $\phi(v)$.

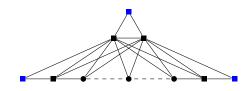
- supersets: chordal graphs, and circular-arc graphs;
- subsets: unit interval graphs.

Characterization by forbidden induced subgraphs

Theorem [Lekkerkerker and Boland 1962]

G is an interval graph iff it contains no holes or asteroidal triples (ATs).

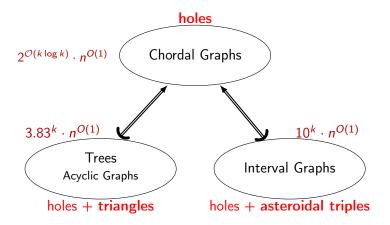




Hole: a chordless cycle of length \geq 4

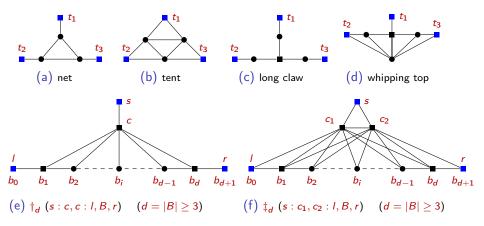
Asteroidal triple: three vertices such that each pair of them is connected by a path avoiding neighbors of the third one.

Holes and others



Minimal chordal asteroidal triples

Completely described by [Lekkerkerker and Boland 1962]:



Reduction 1: small forbidden subgraphs

Standard technique: if the graph class \mathcal{G} can be characterized by forbidden subgraphs of bounded size, then the problem can be solved by branching.

Same approach for the small forbidden subgraphs:

Given an instance (G, k) and a forbidden subgraph X of no more than 10 vertices, we branch into |X| instances, (G - v, k - 1) for each $v \in X$.

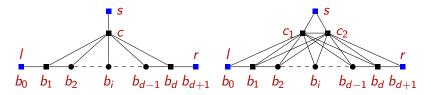
Reduction 1: small forbidden subgraphs

Standard technique: if the graph class \mathcal{G} can be characterized by forbidden subgraphs of bounded size, then the problem can be solved by branching.

Same approach for the small forbidden subgraphs:

Given an instance (G, k) and a forbidden subgraph X of no more than 10 vertices, we branch into |X| instances, (G - v, k - 1) for each $v \in X$.

We are left with long holes (at least 11 vertices) and



Modules

M is a **module** if every vertex in *M* has the same neighborhood outside *M*: $u, v \in M$ and $x \notin M$, $u \sim x$ iff $v \sim x$. Trivial modules: $\{v\}$ and V(G).

Proposition

If *M* is a module and *U* induces a minimal forbidden subgraph of size at least 11, then either $U \subseteq M$, or $|M \cap U| \leq 1$.

The only exception is the 4-hole, whose two nonadjacent vertices form a module.

Modules

M is a **module** if every vertex in *M* has the same neighborhood outside *M*: $u, v \in M$ and $x \notin M$, $u \sim x$ iff $v \sim x$. Trivial modules: $\{v\}$ and V(G).

Proposition

If *M* is a module and *U* induces a minimal forbidden subgraph of size at least 11, then either $U \subseteq M$, or $|M \cap U| \leq 1$.

The only exception is the 4-hole, whose two nonadjacent vertices form a module.

Theorem

Let M be a module in a 4-hole-free graph G and Q be a minimum interval deletion set. Either $M \subset Q$, or $Q \cap M$ is a minimum interval deletion set to G[M].

Reduction 2: nontrivial modules

Instance (G, k) where G is 4-hole-free, and nontrivial module M

- If every MFS U is contained in M, then return (G[M], k).
- ② If no MFS is in M, then insert edges to make G[M] a clique.

Otherwise, we branch into two cases:

- include M in the solution: $I_1 = (G M, k |M|);$
- at least one vertex of M is not deleted: $I_2 = (G[M], k - 1)$ and $I_3 = (G', k - 1)$, where $G' \leftarrow$ replace M with a clique of (k + 1) vertices in G

Reduction 2: nontrivial modules

Instance (G, k) where G is 4-hole-free, and nontrivial module M

- If every MFS U is contained in M, then return (G[M], k).
- ② If no MFS is in M, then insert edges to make G[M] a clique.

Otherwise, we branch into two cases:

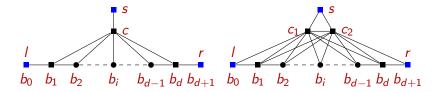
- include *M* in the solution: $I_1 = (G M, k |M|)$;
- at least one vertex of M is not deleted: $I_2 = (G[M], k - 1)$ and $I_3 = (G', k - 1)$, where $G' \leftarrow$ replace M with a clique of (k + 1) vertices in G

Applying the two reductions exhaustively, we get a $\ensuremath{\mathsf{reduced}}$ graph where

- each MFS contains at least 11 vertices; and
- 2 each non-trivial module is a clique.

Shallow terminals

Shallow terminal: the terminal *s* of the AT "close" to the l - r path.



Theorem (Main theorem I)

In a reduced graph, every shallow terminal is simplicial (i.e., its neighborhood induces a clique).

Congenial holes

Definition

Two holes H_1 and H_2 are called **congenial** (to each other) if $H_1 \subseteq N[H_2]$ and $H_2 \subseteq N[H_1]$.

Theorem (Main theorem II)

All holes are pairwise congenial in a reduced graph.

Congenial holes

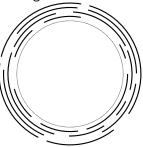
Definition

Two holes H_1 and H_2 are called **congenial** (to each other) if $H_1 \subseteq N[H_2]$ and $H_2 \subseteq N[H_1]$.

Theorem (Main theorem II)

All holes are pairwise congenial in a reduced graph.

Example: All holes are congenial in a circular arc graph.



Congenial holes

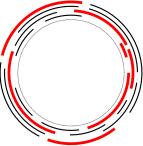
Definition

Two holes H_1 and H_2 are called **congenial** (to each other) if $H_1 \subseteq N[H_2]$ and $H_2 \subseteq N[H_1]$.

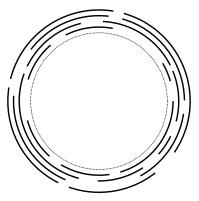
Theorem (Main theorem II)

All holes are pairwise congenial in a reduced graph.

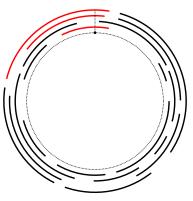
Example: All holes are congenial in a circular arc graph.



How to break holes in a circular arc graph?

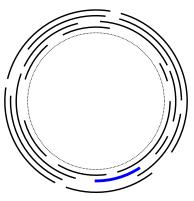


How to break holes in a circular arc graph?



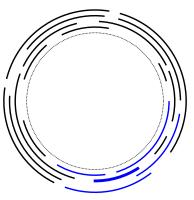
Intuitively, it seem to be a good idea to remove all arcs containing a certain point of the circle.

How to break holes in a circular arc graph?



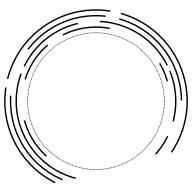
A different way to express this: pick a vertex v, consider the interval graph $G \setminus N[v]$ and remove a minimal separator.

How to break holes in a circular arc graph?



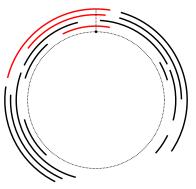
A different way to express this: pick a vertex v, consider the interval graph $G \setminus N[v]$ and remove a minimal separator.

How to break holes in a circular arc graph?



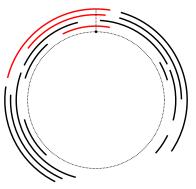
A different way to express this: pick a vertex v, consider the interval graph $G \setminus N[v]$ and remove a minimal separator.

How to break holes in a circular arc graph?



A different way to express this: pick a vertex v, consider the interval graph $G \setminus N[v]$ and remove a minimal separator.

How to break holes in a circular arc graph?



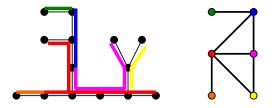
Works also for reduced graphs: in a similar way, we can enumerate $O(n^2)$ sets such that every hole cover fully contains at least one of these sets \Rightarrow branch.

Caterpillar decomposition

At this point

- The graph has no holes, i.e., it is chordal.
- The graph has no small ATs.
- The shallow terminal of each large AT is simplicial.

Chordal graphs can be characterized as the intersection graphs of subtrees of a tree.



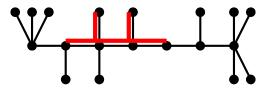
Caterpillar decomposition

At this point

- The graph has no holes, i.e., it is chordal.
- The graph has no small ATs.
- The shallow terminal of each large AT is simplicial.

Theorem

This chordal graph is the intersection graphs of subtrees of a caterpillar.



Caterpillar decomposition

At this point

- The graph has no holes, i.e., it is chordal.
- The graph has no small ATs.
- The shallow terminal of each large AT is simplicial.

Theorem

This chordal graph is the intersection graph of subtrees of a caterpillar.

Proof:

- G ST is an interval graph, where ST is the set of shallow terminals.
- G ST has a clique path decomposition.
- to which we can add the simplicial *ST* back.

Branching rule

Analyzing the way the ATs can appear in the caterpillar decomposition, we obtain the following branching rule.

Theorem

Take the leftmost minimal AT T with shortest base. The minimal interval deletion set to G contains either one of

$$\{s, c_1, c_2, l, r, b_{d-3}, b_{d-2}, b_{d-1}, b_d\},\$$

or the minimum separator of I and b_{d-3} .

Therefore, by branching into 10 directions, we can identify at least one vertex of the solution.

Summary

- A $10^k \cdot n^{O(1)}$ algorithm for INTERVAL DELETION.
- Main steps:
 - Simple reduction rule: branching on small forbidden sets.
 - Preduction rule using modules.
 - Theorem I: Shallow terminals are simplicial.
 - Theorem II: All holes are congenial.
 - **(a)** $O(n^2)$ minimal hole covers.
 - Branching on the leftmost minimal AT in a caterpillar decomposition.