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Problems on graph classes

For various classes G of graphs (planar, chordal, interval, etc.),
there is a large literature on

how to recognize if a graph is a member of G and
how to solve certain problems on G more efficiently than on
general graphs.

Can we ask the same questions about graphs that “almost” belong
to G?
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Graph modification problems

For every class G of graphs, we can study the following type of
problems:

G-graph modification problem
Input: a graph G of size n and a nonnegative integer k
Task: find ≤ k modifications that transform G into a graph in G

Allowed typical modification operations:
removing edges,
adding edges,
removing vertices.

Theorem [Lewis and Yannakakis 1980]

If the graph class G is nontrivial and hereditary, then it is
NP-hard to decide if a graph is in G + kv .
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Examples
If G is polynomial-time recognizable, we can test in time nO(k)

whether G is in G + kv .

But can we solve it in time f (k) · nO(1), i.e., is it FPT?

F Problems Complexity
dis co n n ec ted graphs Vertex Connectivity ∈ P

Vertex Cover 1.31k · nO(1)

Feedback Vertex Set 3.83k · nO(1)

Chordal Deletion 2O(k log k) · nO(1)

Odd Cycle Transversal 2.318k · nO(1)
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Interval graphs

Definition
There are a set of intervals I in the real
line and φ : V → I such that
uv ∈ E (G ) iff φ(u) intersects φ(v).

supersets:
chordal graphs, and
circular-arc graphs;

subsets:
unit interval graphs.
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Characterization by forbidden induced subgraphs

Theorem [Lekkerkerker and Boland 1962]

G is an interval graph iff it contains no holes or asteroidal triples
(ATs).

Hole: a chordless cycle of
length ≥ 4

Asteroidal triple: three vertices
such that each pair of them is
connected by a path avoiding
neighbors of the third one.
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Holes and others

Chordal Graphs

Trees
Interval GraphsAcyclic Graphs

holes

holes + triangles holes + asteroidal triples

2O(k log k) · nO(1)

3.83k · nO(1) 10k · nO(1)
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Minimal chordal asteroidal triples

Completely described by [Lekkerkerker and Boland 1962]:

t1

t2 t3

(a) net

t1

t2 t3

(b) tent

t1

t2 t3

(c) long claw

t1t2 t3

(d) whipping top

s

l

b0 b1 b2 bi bd−1 bd

r

bd+1

c

(e) †d (s : c, c : l ,B, r) (d = |B| ≥ 3)

s

l

b0 b1 b2 bi bd−1 bd

r

bd+1

c1 c2

(f) ‡d (s : c1, c2 : l ,B, r) (d = |B| ≥ 3)
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Reduction 1: small forbidden subgraphs
Standard technique: if the graph class G can be characterized by
forbidden subgraphs of bounded size, then the problem can be
solved by branching.
Same approach for the small forbidden subgraphs:

Given an instance (G , k) and a forbidden subgraph X of no more
than 10 vertices, we branch into |X | instances, (G − v , k − 1) for
each v ∈ X .

We are left with long holes (at least 11 vertices) and

s

l

b0 b1 b2 bi bd−1 bd

r

bd+1

c
s

l

b0 b1 b2 bi bd−1 bd

r

bd+1

c1 c2
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Modules

M is a module if every vertex in M has the same neighborhood
outside M: u, v ∈ M and x 6∈ M, u ∼ x iff v ∼ x .
Trivial modules: {v} and V (G ).

Proposition
If M is a module and U induces a minimal forbidden subgraph of
size at least 11, then either U ⊆ M, or |M ∩ U| ≤ 1.

The only exception is the 4-hole, whose two nonadjacent vertices form a module.

Theorem
Let M be a module in a 4-hole-free graph G and Q be a minimum
interval deletion set. Either M ⊂ Q, or Q ∩M is a minimum
interval deletion set to G [M].
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Reduction 2: nontrivial modules

Instance (G , k) where G is 4-hole-free, and nontrivial module M
1 If every MFS U is contained in M, then return (G [M], k).
2 If no MFS is in M, then insert edges to make G [M] a clique.
3 Otherwise, we branch into two cases:

1 include M in the solution: I1 = (G −M, k − |M|);
2 at least one vertex of M is not deleted:

I2 = (G [M], k − 1) and I3 = (G ′, k − 1),
where G ′ ⇐ replace M with a clique of (k + 1) vertices in G

Applying the two reductions exhaustively, we get a reduced graph
where

1 each MFS contains at least 11 vertices; and
2 each non-trivial module is a clique.
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Shallow terminals

Shallow terminal: the terminal s of the AT “close” to the l − r
path.

s

l

b0 b1 b2 bi bd−1 bd

r

bd+1

c
s

l

b0 b1 b2 bi bd−1 bd

r

bd+1

c1 c2

Theorem (Main theorem I)
In a reduced graph, every shallow terminal is simplicial
(i.e., its neighborhood induces a clique).
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Congenial holes

Definition
Two holes H1 and H2 are called congenial (to each other) if
H1 ⊆ N[H2] and H2 ⊆ N[H1].

Theorem (Main theorem II)
All holes are pairwise congenial in a reduced graph.

Example: All holes are congenial in a circular arc graph.
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Hole covers

How to break holes in a circular arc graph?

14



Hole covers

How to break holes in a circular arc graph?

Intuitively, it seem to be a good idea to remove all arcs containing a
certain point of the circle.
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Hole covers

How to break holes in a circular arc graph?

A different way to express this: pick a vertex v , consider the interval
graph G \ N[v ] and remove a minimal separator.
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Hole covers

How to break holes in a circular arc graph?

Works also for reduced graphs: in a similar way, we can enumerate
O(n2) sets such that every hole cover fully contains at least one of
these sets ⇒ branch.
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Caterpillar decomposition
At this point

The graph has no holes, i.e., it is chordal.
The graph has no small ATs.
The shallow terminal of each large AT is simplicial.

Chordal graphs can be characterized as the intersection graphs of
subtrees of a tree.
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Caterpillar decomposition
At this point

The graph has no holes, i.e., it is chordal.
The graph has no small ATs.
The shallow terminal of each large AT is simplicial.

Theorem
This chordal graph is the intersection graph of subtrees of a
caterpillar.

Proof:
G − ST is an interval graph, where ST is the set of shallow
terminals.
G − ST has a clique path decomposition.
to which we can add the simplicial ST back.
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Branching rule

Analyzing the way the ATs can appear in the caterpillar
decomposition, we obtain the following branching rule.

Theorem
Take the leftmost minimal AT T with shortest base. The minimal
interval deletion set to G contains either one of

{s, c1, c2, l , r , bd−3, bd−2, bd−1, bd},

or the minimum separator of l and bd−3.

Therefore, by branching into 10 directions, we can identify at least
one vertex of the solution.
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Summary

A 10k · nO(1) algorithm for Interval Deletion.
Main steps:

1 Simple reduction rule: branching on small forbidden sets.
2 Reduction rule using modules.
3 Theorem I: Shallow terminals are simplicial.
4 Theorem II: All holes are congenial.
5 O(n2) minimal hole covers.
6 Branching on the leftmost minimal AT in a caterpillar

decomposition.
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