
Approximating fractional hypertree width

Dániel Marx∗

Abstract

Fractional hypertree width is a hypergraph measure similar
to tree width and hypertree width. Its algorithmic importance
comes from the fact that, as shown in previous work [14],
constraint satisfaction problems (CSP) and various problems
in database theory are polynomial-time solvable if the input
contains a bounded-width fractional hypertree decomposi-
tion of the hypergraph of the constraints. In this paper, we
show that for everyw ≥ 1, there is a polynomial-time algo-
rithm that, given a hypergraphH with fractional hypertree
width at mostw, computes a fractional hypertree decompo-
sition of widthO(w3) for H . This means that polynomial-
time algorithms relying on bounded-width fractional hyper-
tree decompositions no longer need to be given a decompo-
sition explicitly in the input, since an appropriate decompo-
sition can be computed in polynomial time. Therefore, ifH

is a class of hypergraphs with bounded fractional hypertree
width, then CSP restricted to instances whose structure is in
H is polynomial-time solvable. This makes bounded frac-
tional hypertree width the most general known hypergraph
property that makes CSP, Boolean Conjuctive Queries, and
Conjunctive Query Containment polynomial-time solvable.

1 Introduction

Constraint satisfaction is a general framework that includes
many standard algorithmic problems such as satisfiability,
graph coloring, database queries, etc. A constraint satisfac-
tion problem (CSP) consists of a setV of variables, a domain
D, and a setC of constraints, where each constraint is a re-
lation on a subset of the variables. The task is to assign a
value fromD to each variable such that every constraint is
satisfied. For example, 3SAT can be interpreted as a CSP
problem where the domain isD = {0, 1} and the constraints
in C correspond to the clauses (thus the arity of each con-
straint is 3). Certain fundamental problems in database the-
ory, such as Boolean Conjunctive Queries and Conjunctive
Query Containment, is equivalent to CSP. For more back-
ground, see e.g., [12, 5, 11, 16].

In general, solving constraint satisfaction problems is
NP-hard if there are no additional restrictions on the in-

∗Budapest University of Technology and Economics, BudapestH-1521,
Hungary (dmarx@cs.bme.hu). Research supported by the Magyary
Zoltán Postdoc Fellowship and the Hungarian National Research Fund
(Grant Number OTKA 67651).

stances. The main goal of the research on CSP is to identify
tractable special cases of the general problem. The theoreti-
cal literature on CSP investigates two main types of restric-
tions. The first type is to restrict theconstraint language,
that is, the type of constraints that is allowed. This direction
inlcudes the classical work of Schaefer [22] and its many
generalizations. The second type is to restrict thestructure
induced by the constraints on the variables. Thehypergraph
of a CSP instance is defined to be a hypergraph on the vari-
ables of the instance such that for each constraintc ∈ C there
is a hyperedgeec that contains all the variables that appear
in c. If the hypergraph of the CSP instance has very simple
structure, then the instance is easy to solve. For example,
it is well-known that a CSP instanceI with hypergraphH
can be solved in time‖I‖O(tw(H)) [7], where tw(H) denotes
the tree width ofH and‖I‖ is the size of the representa-
tion of I in the input. Thus if we restrict the problem to in-
stances where the tree width of the hypergraph is bounded by
some constantw, then the problem is polynomial-time solv-
able. It is the goal of ongoing research to find other prop-
erties (besides bounded tree width) that make the problem
polynomial-time tractable. Formally, for a classH of hy-
pergraphs, let CSP(H) be the restriction of CSP where the
hypergraph of the instance is assumed to be inH. Our goal
is to find and categorize classesH such that CSP(H) can be
solved in polynomial time.

If the constraints have bounded arity (i.e., edge size in
H is bounded by a constant), then the complexity of CSP(H)
is well understood:

THEOREM 1.1. ([13, 15]) Let CSP(H) contain all CSP in-
stances whose underlying hypergraph is inH. If H is a
recursively enumerable class of hypergraphs with bounded
edge size, then (assumingFPT 6= W[1])

CSP(H) is polynomial-time solvable
m

H has bounded tree width.

The assumption FPT6= W[1] is a standard hypothesis of
parameterized complexity. Thus in the bounded-arity case
bounded tree width is the only property of the hypergraph
that can make the problem polynomial-time solvable.

The situation is much less understood in the unbounded
arity case, i.e., when there is no bound on the maximum
edge size inH. First, the complexity in the unbounded-
arity case depends on how the constraints are represented.

In the bounded-arity case, if each constraint contains at most
r variables (r being a fixed constant), then every reasonable
representation of a constraint has size|D|O(r). Therefore,
the size of different representations can differ only by a
polynomial factor. On the other hand, if there is no bound on
the arity, then there can be exponential difference between
the size of succinct representations (e.g., formulas) and
verbose representations (e.g., truth tables). The runningtime
of an algorithm is expressed as a function of the input size,
hence the complexity of the problem can depend on how the
input is represented: longer representation means that it is
potentially easier to obtain a polynomial-time algorithm.

The most well-studied representation of constraints is
listing all the tuples that satisfy the constraint. In this case,
the size of the representation of a constraint relation is pro-
portional to the number of satisfying tuples. This repre-
sentation is very natural in problems involving relational
databases, where the constraints are database relations that
are actually stored as a sequence of tuples. If we want to use
results on CSP in a database-theoretic setting, then we have
to consider this representation.

Unlike in the bounded-arity case, if there is no bound
on the number of variables in a constraint, then bounded tree
width is not the right structural criterion for the tractability of
the problem. It remains true that an instance with hypergraph
H can be solved in time‖I‖O(tw(H)). However, there are
classesH of hypergraphs with unbounded tree width such
that CSP(H) is polynomial-time solvable. A very simple
example is the class that contains those hypergraphs where
one of the edges cover all the vertices. If the hypergraph
H of a CSP instance belongs to this class, then it is easy
to solve: there is a constraint that contains every variable,
thus all we have to do is enumerating the satisfying tuples of
this constraint and checking whether there is a tuple among
them that satisfies every other constraint. This idea can
be generalized: if we restrict the problem to hypergraphs
that can be covered byk edges (for some fixed constant
k), then CSP can be solved by enumerating all the possible
combinations of satisfying tuples fork constraints that cover
all the variables. This observation motivated the definition
of (generalized) hypertree width [9, 1, 8], which is defined
similarly to tree width, but instead of the requirement that
each bag contains a bounded number of vertices, we require
that each bag can be covered by a bounded number of edges
(see Section 2 for the precise definition). As shown in
[9], CSP(H) is polynomial-time solvable ifH has bounded
(generalized) hypertree width.

In [14], new tractable classesH with unbounded hyper-
tree width were identified. It was shown, using Shearer’s
Lemma [4], that a CSP instance has only a polynomial num-
ber of solutions and they can be enumerated efficiently if
the hypergraph of the instance has bounded fractional edge
cover number. Thus CSP(H) is polynomial-time solvable if

H has bounded fractional edge cover number. Fractional hy-
pertree width is defined analogously to generalized hypertree
width, but now we only require that each bag has bounded
fractional edge cover number. As shown in [14], ifH is
a class of hypergraphs with bounded fractional hypertree
width, then CSP(H) can be solved in polynomial time, if the
input contains a tree decomposition of the hypergraph of the
instance with bounded fractional hypertree width. However,
it remained an open question whether it is possible to find
such a tree decomposition in polynomial time and whether
CSP(H) (without any extra input) is polynomial-time solv-
able for suchH.

Our results. The main result of the paper is an algo-
rithm that computes approximately optimal fractional hyper-
tree decompositions. More precisely, we show that for ev-
eryw ≥ 1, there is a polynomial-time algorithm that, given
a hypergraphH with fractional hypertree width at mostw,
computes a tree decomposition ofH with fractional hyper-
tree widthO(w3) (Theorem 4.1). Therefore, if every hy-
pergraph inH has fractional hypertree width at mostw, then
CSP(H) is polynomial-time solvable: For every instance, we
can compute a tree decomposition with fractional hypertree
width O(w3) and then use the algorithm of [14]. Thus our
result makes bounded fractional hypertree width the strictly
most general known hypergraph property that allows CSP
to be solved in polynomial time. Figure 1 shows some of
the known tractable hypergraph properties (note that the el-
ements of this Venn diagram are sets of hypergraphs; e.g.,
the set “bounded tree width” contains every setH of hyper-
graphs with bounded tree width). All the inclusions in the
figure are proper. The tractable classes for CSP translate to
tractable classes for Boolean Conjunctive Queries and Con-
junctive Query Containment [16], thus bounded fractional
hypertree width is the most general known tractability crite-
rion for those problems as well.

Algorithms for finding tree decompositions and charac-
terization theorems for (generalizations of) tree width often
follow a certain pattern. For example, the same high-level
idea is used for tree width [6, Section 11.2], rank width
[21, 19], hypertree width [1], and branch width of matroids
and submodular functions [20]. Simplifying somewhat, this
general pattern can be summarized the following way: We
decompose the problem into two parts by finding a small
balanced separation, a tree decomposition for each part is
constructed using the algorithm recursively, and the tree de-
compositions for the parts are joined in an appropriate way
to obtain a tree decomposition for the original problem. A
balanced separation of a subsetW is a partition(A,B) of
W and a setS separatingA andB, such thatA andB are
both small compared toW (the exact definition of small de-
pends on the actual type of tree decomposition we are look-
ing for). Depending on the approximation ratio and the run-
ning time we are trying to achieve, the problem of finding a

tree width

Bounded

edge cover number

Bounded fractional

hypertree width

Bounded

Bounded fractional hypertree width

Figure 1: Hypergraph properties that make CSP polynomial-time solvable.

balanced separation is either reduced to a sparsest cut prob-
lem or (using brute force) it is reduced to the problem of
finding a small(A,B)-separator, i.e., a set whose deletion
disconnectsA andB.

Can we use a similar approach for constructing frac-
tional hypertree decompositions? With appropriate modifi-
cations, the recursive algorithm works for such decomposi-
tions as well (Section 4). The crucial question is how to find
a balanced separation whereS has small fraction edge cover
number. Using brute force in a not completely trivial way,
the search for a balanced separation can be reduced to finding
an(A,B)-separator with small fractional edge cover number
(Lemma 3.4). The main technical contribution of the paper
is an approximation algorithm for finding such separators: if
there is an(A,B)-separator with fractional edge cover num-
ber at mostw, then the algorithm finds an(A,B)-separator
with fractional edge cover numberO(w3) (Section 3). The
running time is polynomial for every fixedw.

For other types of tree decompositions, the correspond-
ing (A,B)-separation problem can be solved using flow
techniques, brute force, or submodularity. None of these
techniques seem to be relevant when the goal is to minimize
the fractional edge cover number of the separator; we need
completely different techniques. The main idea is the follow-
ing. Suppose we are looking for an(A,B)-separatorS with
fractional edge cover numberw < 2. As the fractional edge
cover number is an upper bound on maximum independent
set size, any two vertices inS are adjacent; i.e.,S induces
a clique. The structure of separating cliques is well under-
stood: every graph has a unique decomposition by clique
separators [23]. Our algorithm for finding a separator with
small fractional edge cover number can be thought of as a
generalization of finding clique separators. A tempting way

of generalizing this idea for largerw would be to suppose
that every separator with fractional edge cover number at
mostw can be covered byf(w) cliques for some function
f . However, this is not true: we might need an unbounded
number of cliques (see Example 2.1). Nevertheless, we man-
age to transform the instance in such a way that it can be as-
sumed that the separator we are looking for can be covered
by w cliques. Then we locate these cliques using a combi-
nation of brute force, clique separator decompositions, and
linear programming.

We finish the paper by proving that it is NP-hard to de-
cide whether the fractional hypertree width of a hypergraph
is at mostw (Section 5). The hardness result assumes that
w is a value given in the input; the much more interesting
question of whether the problem is NP-hard for some fixed
w ≥ 1 remains open.

2 Preliminaries

A hypergraphis a pairH = (V (H), E(H)), consisting of
a setV (H) of verticesand a setE(H) of subsets ofV (H),
the hyperedgesof H . We always assume that hypergraphs
have no isolated vertices, that is, for everyv ∈ V (H)
there exists at least onee ∈ E(H) such thatv ∈ e. Let
‖H‖ := |V (H)|+ |E(H)|, we will express the running time
of the algorithms as a function of‖H‖.

For a hypergraphH and a setX ⊆ V (H), the sub-
hypergraph ofH induced byX is the hypergraphH [X] =
(X, {e ∩X | e ∈ E(H)}). We letH \X = H [V (H) \X].
Theprimal graphof a hypergraphH is the graph

H = (V (H),{{v, u} | v 6= u, there exists an

e ∈ E(H) such that{v, u} ⊆ e}).

A hypergraphH is connectedif H is connected. A setC ⊆
V (H) is connected (inH) if the induced subhypergraph
H [C] is connected, and aconnected componentof H is a
maximal connected subset ofV (H). A sequence of vertices
ofH is apathofH if it is a path ofH . A subsetK ⊆ V (H)
is acliqueof H if K induces a clique inH .

An edge coverof a setS ⊆ V (H) is a setF ⊆
E(H) such that for everyv ∈ S, there is ane ∈ F
with v ∈ e. The size of the smallest edge cover ofS,
denoted by̺H(S), is the edge cover numberof S. A
fractional edge coverof S ⊆ V (H) is a mappingγ :
E(H) → [0, 1] such that for everyv ∈ S, we have
∑

e∈E(H):v∈e γ(e) ≥ 1. The weight of the assignment
γ is weight(γ) :=

∑

e∈E(H) γ(e). The fractional edge
cover numberof S, denoted by̺ ∗

H(S), is the minimum of
weight(γ) taken over every fractional edge cover ofS. It is
well known that̺ ∗

H(S) ≤ ̺H(S) ≤ ̺∗H(S)(1+ ln |V (H)|);
in fact, a simple greedy algorithm can be used to find an
edge cover ofS with size at most̺ ∗

H(S)(1 + ln |V (H)|)
(cf. [24]). Note that determining̺H(S) is NP-hard, while
̺∗H(S) can be determined in polynomial time using linear
programming. We define̺(H) and̺∗(H) to be̺H(V (H))
and̺∗H(V (H)), respectively.

EXAMPLE 2.1. Forn ≥ 1, letHn be the following hyper-
graph:Hn has a vertexvS for every subsetS of {1, . . . , 3n}
of cardinalityn. Furthermore, for everyi ∈ {1, . . . , 3n} the
hypergraphHn has a hyperedgeei = {vS | i ∈ S}. Observe
that the fractional edge cover number̺∗(Hn) is at most3,
because the mappingψ that assigns1/n to every hyperedge
ei is a fractional edge cover of weight3. Actually, it is easy
to see that̺ ∗(Hn) = 3. On the other hand, the edge cover
number cannot be bounded by a constant. Every edge cover
has size at least2n + 1: if ei1 , . . . , ein

aren edgesnot
present in the edge cover, then the vertex corresponding to
the set{i1, . . . , in} is not covered by any edges of the cover.
The primal graph ofHn is the complement of the Kneser
graphKG3n,n. The chromatic number ofKG3n,n is known
to be3n− 2n+ 2 = n+ 2 [17, 18]. Thus the primal graph
Hn cannot be covered by less thann+2 cliques. This shows
that there is no functionf(w) such that every hypergraphH
with ̺∗(H) ≤ w can be covered by at mostf(w) cliques.

A tree decompositionT of a hypergraphH is a tuple
(T, (Bt)t∈V (T)), whereT is a tree and(Bt)t∈V (T) a family
of subsets ofV (H) such that for eache ∈ E(H) there is a
nodet ∈ V (T) such thate ⊆ Bt, and for eachv ∈ V (H)
the set{t ∈ V (T) | v ∈ Bt} is connected inT . The sets
Bt are called thebagsof the decomposition. We denote
by |T| := |V (T)| the number of bags inT. The width of
a tree decomposition(T, (Bt)t∈V (T)) is max

{

|Bt|
∣

∣ t ∈
V (t)} − 1. Thetree widthtw(H) of a hypergraphH is the
minimum of the widths of all tree decompositions ofH . It is
easy to see that tw(H) = tw(H) for all H .

The generalized hypertree widthof a decomposition
(T, (Bt)t∈V (T)) is max

{

̺H(Bt)
∣

∣ t ∈ V (t)} and the
generalized hypertree widthof a hypergraphH , denoted
by ghw(H), is the minimum of the generalized hypertree
widths of all tree decompositions ofH . Fractional hypertree
widthof a tree decomposition and of a hypergraph is defined
analogously, by having̺∗

H(Bt) instead of̺H(Bt) in the
definition. We denote by fhw(H) the fractional hypertree
width ofH .

3 Finding approximate separators

Let A,B ⊆ V (H) be two sets of vertices. An(A,B)-
separatoris a setS ⊆ V (H) such that there is no path
connecting a vertex ofA \ S with a vertex ofB \ S in
the hypergraphH \ S. In particular, such anS has to
contain every vertex ofA ∩ B. The aim of this section
is to give an approximation algorithm for the problem of
finding an(A,B)-separator with minimum fractional edge
cover number.

We say that two nonadjacent verticesu, v of H arew-
attachedfor somew ≥ 1 if ̺∗H(N(v) ∩ N(u)) > w (here
N(v) is the set of neighbors ofv, not includingv itself). If S
is an(A,B)-separator with̺ ∗

H(S) ≤ w covering neitheru
norv, andu, v arew-attached, thenu andv are in the same
connected component ofH \ S. This means thatS remains
an (A,B)-separator even if we add an edge betweenu and
v. Thus adding edges betweenw-attached vertices does
not change the problem significantly. More precisely, the
following lemma shows that the we can reduce the problem
to a situation where nonadjacent vertices are notw-attached.
This property of the hypergraph will play an important role
in the algorithm.

LEMMA 3.1. LetH be a hypergraph,A,B ⊆ V (H) sets of
vertices, andw ≥ 1 a rational number. We can construct in
time polynomial in‖H‖ a hypergraphH+ on the same set
of vertices such that

1. If verticesu and v are not adjacent inH+, then they
are notw-attached.

2. If S is an(A,B)-separator inH with ̺∗H(S) ≤ w, then
S is an(A,B)-separator inH+ with ̺∗

H+(S) ≤ w.

3. IfS is an(A,B)-separator inH+, thenS is an(A,B)-
separator inH with ̺∗H(S) ≤ 2̺∗

H+(S).

Proof. We construct a sequence of hypergraphs. LetH0 =
H . Let(u, v) be an arbitrary pair of nonadjacent vertices that
arew-attached inHi−1. HypergraphHi is the same asHi−1

with an extra edge{u, v}. If there is no such pair(u, v)
in Hi−1, then we stop the construction of the sequence. It
is clear that the sequence has polynomial length (as at most
O(|V (H)|2) new edges can be added) and constructingHi

fromHi−1 can be done in polynomial time. LetH+ = Hk

be the last hypergraph in the sequence. Statement 1 is
immediate from the way the sequence is constructed.

To prove Statement 2, suppose thatS is an (A,B)-
separator inH = H0. Since the edges ofH are a subset
of the edges ofH+, we have̺ ∗

H+(S) ≤ ̺∗H(S) ≤ w. We
prove by induction thatS is an(A,B)-separator in everyHi.
Suppose that this is true forHi−1, but there is a pathP from
a vertex ofA to a vertex ofB in Hi \ S. Let ei = uivi be
the edge that was added toHi−1 to obtainHi. If P does
not useei, thenP is also a path inHi−1, contradicting the
induction hypothesis thatS is an(A,B)-separator inHi−1.
ThusP = P1uiviP2 for some subpathsP1 andP2. By the
definition ofei,

̺∗H(N(vi)∩N(ui)) ≥ ̺∗Hi−1
(N(vi)∩N(ui)) > w ≥ ̺∗H(S),

which means that there is a vertexq ∈ (N(vi)∩N(ui)) \S.
The walkP1uiqviP2 connects a vertex ofA and a vertex of
B in Hi−1 \ S, contradicting the induction hypothesis.

To prove Statement 3, observe first that the edges ofH
are a subset of the edges ofH+, thus if S is an (A,B)-
separator inH+, then it is an(A,B)-separator inH as
well. Consider a fractional edge coverγ of S in H+ with
weight(γ) = w′. Suppose thatγ(e) = x for an edge
e = {u, v} not present inH . In this case, we set the
weight of this edge to 0, and increase byx the weight of two
edges: an arbitrary edgeeu ∈ E(H) that containsu and an
arbitrary edgeev ∈ E(H) that containsv (such edges exist,
since we assumed that there are no isolated vertices in the
hypergraph). It is clear that the resulting weight assignment
is also a fractional edge cover. We repeat this step until the
weight assignment is 0 on every edge not present inH . It is
easy to see that the weight of the assignment increases to at
most2w′, thus̺∗H(S) ≤ 2̺∗

H+(S). �

The following result follows from the fact that a decom-
position of a graph by clique separators can be found in poly-
nomial time [25, 23]. For the convenience of the reader, we
give here a self-contained proof of the main idea in the form
we use.

LEMMA 3.2. Given a graphG, it is possible to construct in
time polynomial in‖G‖ a setC of at most|V (G)| connected
subsets such that

1. ifK is a clique ofG, thenK ⊆ C for someC ∈ C, and

2. ifK is a clique ofG andC ∈ C, thenC\K is contained
in a connected component ofG \K.

Proof. We construct a sequence of graphs as follows. Let
G0 = G. Suppose thatGi−1 has an induced cycleH of
length at least 4; letvi, ui be two nonadjacent vertices of
H . We defineGi to be the same asGi−1, with an extra
edgeei = viui. If Gi−1 has no such cycleH (i.e.,Gi−1

is a chordal graph), then we stop the construction of the
sequence. LetGk be the last graph in the sequence. LetC

be the set of inclusionwise maximal cliques ofGk. It is well
known that chordal graphGk has at most|V (Gk)| = |V (G)|
maximal cliques.

Every clique ofG is a clique ofGk, thus Statement 1
is clear from the definition ofC. To prove Statement 2, for
everyC ∈ C and cliqueK of G, we show thatC \ K is
contained in a connected component ofGi \ K for every
1 ≤ i ≤ k. This is clear forGk, asC is a clique inGk.
Suppose thatC \K is in a connected component ofGi \K
but a, b ∈ C \ K are in different connected components
of Gi−1 \ K. Let P be a path froma to b in Gi \ K.
PathP has to go through the edgeei = viui used in the
definition ofGi, otherwise it would be a path inGi−1 \K as
well. Thus the pathP can be written asP = aP1viuiP2b.
There is a induced cycleH in Gi−1 that containsvi and
ui. Sincevi, ui 6∈ K andH \ K is connected (asK is a
clique), there is a pathR in Gi−1 \ K that connectsvi and
ui. Now aP1viRuiP2b is a walk froma to b in Gi−1 \K, a
contradiction. �

LEMMA 3.3. Let H be a hypergraph,A,B ⊆ V (H) two
sets of vertices, andw ≥ 1 a rational number. There is an
algorithm that, in time‖H‖O(w), either

• correctly concludes that there is no(A,B)-separatorS
with ̺∗H(S) ≤ w, or

• produces an(A,B)-separatorS′ with ̺∗H(S′) ≤ w3 +
4w.

Proof. The algorithm first constructs the hypergraphH+ of
Lemma 3.1 and then tries to find an(A,B)-separator in
H+. By Lemma 3.1(2), ifH has an(A,B)-separatorS with
̺∗H(S) ≤ w, thenS is an(A,B)-separator inH+ as well and
̺∗

H+(S) ≤ w. In this case, our algorithm will be able to find
an(A,B)-separatorS′ in H+ with ̺∗

H+(S′) ≤ w3/2 + 2w.
By Lemma 3.1(3), such anS′ is an(A,B)-separator inH
with ̺∗H(S′) ≤ w3 + 4w.

Suppose that there is an(A,B)-separatorS in H+ with
̺∗

H+(S) ≤ w. In the rest of the proof, we show how
to find the required separatorS′ if we know a maximum
independent setIS of S. Since the fractional edge cover
number ofS is at mostw, the size ofIS is also at mostw.
Thus trying all possible setsIS adds a factor of‖H+‖O(w) =
‖H‖O(w) to the running time.

Suppose thatIS = {v1, . . . , vk} (for somek ≤ w) is a
maximum independent set ofS. By the definition ofH+, we
have̺∗

H+(N(vi) ∩ N(vj)) ≤ w for every1 ≤ i < j ≤ k.
ThusX =

⋃

1≤i<j≤k(N(vi) ∩ N(vj)) has fractional edge

cover number at most
(

k
2

)

w ≤ w3/2. In the rest of the
algorithm, we try to find a setY with ̺∗

H+(Y) ≤ 2w such
thatS′ := X ∪ Y is an(A,B)-separator inH+.

Denote byN(vi) the neighbors ofvi in H+. LetNi =
(N(vi) ∪ {vi}) \ X for i = 1, . . . , k. Let us note first that
Ni ∩ Nj = ∅ if i 6= j: verticesvi andvj are not adjacent
and every vertex ofN(vi) ∩ N(vj) is in X . Sincev1, . . . ,
vk is a maximum independent set ofS, each vertex ofS \X
is in one of theNi’s. Observe thatNi ∩ S is not empty,
since it containsvi (here we use thatvi cannot be inX , since
it is not adjacent to any othervj). Furthermore, for every
1 ≤ i ≤ k,Ni∩S is a clique ofNi. To see this, suppose that
v′i, v

′′
i ∈ Ni ∩ S are nonadjacent vertices. Verticesv′i andv′′i

cannot be adjacent to anyvj with i 6= j: that would imply
that they are inN(vi)∩N(vj) ⊆ X . Thus replacingvi in IS
with v′i andv′′i would give a strictly larger independent set,
contradicting the maximality ofIS .

LetH be the primal graph ofH+. For every1 ≤ i ≤ k,
letCi,1, . . . ,Ci,ci

be the connected sets given by Lemma 3.2
for the graphH [Ni]. By the definition of these sets, for
every1 ≤ i ≤ k there is a value1 ≤ di ≤ ci such that
the cliqueNi ∩ S is fully contained inCi,di

. Furthermore,
the connected setCi,di

\(Ni∩S) is contained in a connected
component ofH [Ni \ (Ni∩S)], which implies thatCi,di

\S
is contained in a connected component ofH \S. Thus either
every vertex ofCi,di

\ S is reachable fromA in H \ S, or
none of these vertices are reachable. Let us defineai = 1 in
the first case andai = 0 in the second case.

We show that if the valuesdi, ai (1 ≤ i ≤ k)
corresponding toS are known, then the required separator
S′ can be found. Thus we have to try all possibilities for
these values, which adds a factor of|V (H)|O(w) · 2O(w) to
the running time.

Suppose that the values ofdi, ai are given. LetZ :=

X ∪
⋃k

i=1 Ci,di
; note thatS ⊆ Z. We say that a vertex

u ∈ Ci,di
is abad vertexif

• ai = 0 and there is a pathPa from A to u with
Pa ∩ Z = {u}, or

• ai = 1 and there is a pathPb from B to u with
Pb ∩ Z = {u}.

(It is possible thatPa or Pb consists of only the vertexu;
in particular, ifu ∈ A ∩ B, thenu is always a bad vertex.)
Observe thatS contains every bad vertexu. Indeed, ifu 6∈ S
and there is a pathPa as above, thenS ∩ Pa = ∅ (since
S ⊆ Z), thusu is reachable fromA, contradictingai = 0.
On the other hand, ifu 6∈ S and there is a pathPb, thenu is
reachable fromB, butai = 1 implies that it is also reachable
fromA, contradicting the fact thatS is an(A,B)-separator.

A pair u ∈ Ci,di
andv ∈ Cj,dj

is abad pair if

• there is a pathP from u to v with P ∩ Z = {u, v} and
ai 6= aj .

In this case,S has to contain at least one ofu and v:
otherwiseP ∩ S = ∅ would mean thatu andv are in the

same connected component ofH+ \ S, implying ai = aj .
Thus every fractional edge cover ofS is a solution of the
following linear program:

min
∑

e∈E(H+)

xe

∑

e∈E(H+)
v∈e

xe ≥ 1 ∀v ∈ Z, v is a bad vertex

∑

e∈E(H+)
u∈e

xe +
∑

e∈E(H+)
v∈e

xe ≥ 1 ∀u, v ∈ Z, u, v is a bad pair

Therefore, the optimum of the linear program is at mostw.
Let (xe)e∈E(H+) be a solution of the linear program with
cost at mostw. Let Y contain those verticesv for which
∑

e∈E(H+):v∈e xe ≥ 1/2; clearly, ̺∗
H+(Y) ≤ 2w. Thus

definingS′ := X∪Y gives a set with̺ ∗
H+(Y) ≤ w3/2+2w.

Observe that the linear program ensures thatS′ contains
every bad vertex and at least one vertex from each bad pair.

We claim thatS′ is an(A,B)-separator inH+. Suppose
that there is a pathP from a ∈ A to b ∈ B in H+ \ S′. This
path contains at least one vertex ofS (sinceS is an(A,B)-
separator), hence it contains at least one vertex ofZ. Let
p1, . . . , pr be the vertices ofP ∩ Z, ordered as the path
is traversed froma to b. Since these vertices cannot be in
X ⊆ S′, they are in

⋃k

i=1 Ci,di
. Suppose first thatp1 is

not reachable fromA in H+ \ S. This means that ifNi is
the set that containsp1, thenai = 0. It follows thatp1 is a
bad vertex (because of the subpath ofP that connectsa with
p1), hencep1 ∈ S′, a contradiction. Let1 ≤ ℓ ≤ r be the
largest value such thatpℓ is reachable fromA in H+ \S and
suppose thatpℓ is in Ni. If ℓ = r, thenpℓ is a bad vertex
(because ofai = 1 and the subpath ofP connectingpℓ and
b), again a contradiction. Finally, ifℓ < r, then letNj be the
set that containspℓ+1. The maximality ofℓ impliesai = 1
andaj = 0. Therefore,pℓ, pℓ+1 is a bad pair (because of the
subpath ofP connecting these two vertices), andS′ contains
at least one of these vertices, a contradiction. ThusS′ is an
(A,B)-separator inH+ with ̺∗

H+ ≤ w3/2 + 2w.
In summary, the algorithm performs the following steps:

1. Construct the hypergraphH+ (Lemma 3.1).

2. Guess the independent setIS .

3. Construct the setX and define the setsNi.

4. Construct the setsCi,j (Lemma 3.2).

5. Guess the valuesdi, ai.

6. ConstructY using an optimum solution of the linear
program.

7. Check ifS′ := X ∪ Y is an(A,B)-separator.

As discussed above, if there is an(A,B)-separatorS with
̺∗H(S) ≤ w, then it is possible to chooseIS and the values
di, ai such that the separatorS′ computed by the algorithm
is an (A,B)-separator with̺ ∗

H(S′) ≤ w3 + 4w. Thus if
we try all possible‖H‖O(w) · ‖H‖O(w) ·2O(w) guesses, then
we will find such a separatorS′ in this case. On the other
hand, if none of the guesses results in the required separator
S′, then we can correctly conclude that there is a no(A,B)-
separatorS in H with ̺∗H(S) ≤ w. The running time of
each step (except the guesses) is polynomial, thus the total
running time is‖H‖O(w). �

In the tree decomposition algorithm of Section 4, we
have to find a balanced separation of a setW : we need a
partition (A,B) of W such that (1)̺ ∗

H(A), ̺∗H(B) are not
too large and (2) there is an(A,B)-separatorS such that
̺∗H(S) is not too large. As we shall see, it follows from the
results of [14] that such a balanced separation always exists if
H has bounded fractional hypertree width. If we want to find
such a separation algorithmically, then the main problem is
how to find the partition(A,B) of W : if (A,B) is given,
then Lemma 3.3 can be used to find an(A,B)-separator
whose fractional edge cover number is bounded. Trying all
possible partitions ofW is not feasible. Fortunately, for the
applications in Lemma 3.4, we can assume that̺∗H(W) is
bounded. Instead of trying all possible partitions ofW , it
turns out that it is sufficient to try all possible partitionsof an
edge cover ofW .

LEMMA 3.4. Let H be a hypergraph with fractional hy-
pertree width at mostw and letW ⊆ V (H) be a sub-
set of vertices with̺∗H(W) ≤ k. It is possible to
find in time‖H‖O(w+k) a partition (A,B) of W and an
(A,B)-separatorS with ̺∗H(S) ≤ w3 + 4w such that
̺∗H(A), ̺∗H(B) ≤ 2

3k + w.

Proof. Since the fractional edge cover number ofW is at
mostk, the greedy algorithm finds an edge coverF ⊆ E(H)
of W with |F | = O(k log |V (H)|). Our algorithm tries
every partition(FA, FB) of F , definesA := W ∩

⋃

FA

andB := W \ A, and checks whether the algorithm of
Lemma 3.3 produces an(A,B)-separatorS with ̺∗H(S) ≤
w3 + 4w. We show that ifH has fractional hypertree width
at mostw, then at least one partition(FA, FB) results in
a partition(A,B) and a separatorS satisfying the condi-
tions. Trying every possible partition(FA, FB) means trying
2O(k log |V (H)|) = ‖H‖O(k) possibilities and the algorithm
of Lemma 3.3 needs‖H‖O(w) time. Thus the total running
time of the algorithm is‖H‖O(k+w).

By [14, Theorem 11, Lemma 12], there is a setS0 with
̺∗H(S0) ≤ w such that̺ ∗

H(C ∩W) ≤ k/2 for every con-
nected componentC of H \ S0; let C1, . . . , Cd be these
connected components. DefineWi := W ∩ Ci and sup-
pose that the connected components are ordered such that

̺∗H(Wi) ≥ ̺∗H(Wj) if i < j. Letℓ be the smallest value such
that ̺∗H(

⋃ℓ

i=1Wi) ≥ 1
3k. Observe that̺ ∗

H(
⋃ℓ

i=1Wi) ≤
2
3k: if ̺∗H(W1) ≥ 1

3k, thenℓ = 1 and̺∗H(W1) ≤ k/2;

if ̺∗H(W1) < 1
3k, then ℓ > 1 and ̺∗H(

⋃ℓ
i=1Wi) ≤

̺∗H(
⋃ℓ−1

i=1 Wi) + ̺∗H(Wℓ) < 1
3k + 1

3k. Furthermore,

̺∗H(
⋃d

i=1Wi) = ̺∗H(
⋃ℓ

i=1Wi) + ̺∗H(
⋃d

i=ℓ+1Wi), since
there is no edge that intersects more than oneWi. From
̺∗H(

⋃d
i=1Wi) ≤ ̺∗H(W) ≤ k, we have̺ ∗

H(
⋃d

i=ℓ+1Wi) ≤
2
3k.

LetFA be the edges ofF fully contained inS0∪
⋃ℓ

i=1 Ci

and letFB be the edges ofF intersecting
⋃d

i=ℓ+1 Ci. Ob-
serve that(FA, FB) is a partition ofF . LetA := W ∩

⋃

FA

andB := W \ A be defined as in the algorithm. Since
A ⊆ S0 ∪ (W ∩

⋃ℓ
i=1 Ci), we have̺ ∗

H(A) ≤ ̺∗H(S0) +

̺∗H(
⋃ℓ

i=1Wi) ≤ w+ 2
3k. Similarly,̺∗H(B) ≤ w+ 2

3k. Ob-
serve thatS0 is an(A,B)-separator with̺ ∗

H(S0) ≤ w, thus
the algorithm of Lemma 3.3 produces an(A,B)-separator
S with ̺∗H(S) ≤ w3 + 4w. Therefore, when the algorithm
considers this particular partition(FA, FB), then it finds the
required partition(A,B) and separatorS. �

4 Finding approximate tree decompositions

We prove the main result of the paper in this section: it
is possible to approximate fractional hypertree width in a
sense that is suitable for the applications. That is, if a class
H of hypergraphs has bounded fractional hypertree width,
then there is a polynomial time algorithm producing a tree
decomposition with bounded fractional hypertree width for
any hypergraph inH. The algorithm uses the balanced
separation algorithm of Lemma 3.4.

THEOREM 4.1. Given a hypergraphH and a rational num-
berw ≥ 1, it is possible in time‖H‖O(w3) to either

• compute a fractional hypertree decomposition ofH
with width at most7w3 + 31w + 7, or

• correctly conclude thatfhw(H) > w.

Proof. We present an algorithm for a more general problem:

Given a hypergraphH with fhw(H) ≤ w and a
setW with ̺∗H(W) ≤ 6w3 + 27w + 6, find a
fractional hypertree decompositionT of width at
most7w3 + 31w + 7 such that some bagB of T

contains the setW .

(Note that this algorithm implies the existenece of the algo-
rithm required by the theorem: if this algorithm is applied to
a hyerpgraphH with fhw(H) > w, then either it produces
a fractional hypertree decomposition ofH with the required
width or if the output is something else, then we can correctly
conclude that fhw(H) > w.) If ̺∗(H) ≤ 7w3 + 31w + 7,

then we are done: a tree decomposition consisting of a sin-
gle bagB = V (H) is sufficient. Thus we can assume that
̺∗(H) ≥ 7w3 +31w+7. By adding arbitrary vertices toW
one by one, we can extendW such that6w3 + 27w + 6 ≤
̺∗H(W) < 6w3 + 27w + 7. Let us use the algorithm of
Lemma 3.4 to find a partition(A,B) of W and an(A,B)-
separatorS. A connected component ofH \ S cannot in-
tersect bothA andB. Let V1 be the union ofS and all the
connected components intersectingA; let V2 be the union of
S and the connected components not intersectingA. LetH1

(resp.,H2) be the subhypergraph ofH induced byV1 (resp.,
V2).

First we verify thatH1 andH2 are proper subhyper-
graphs ofH ; in fact, their fractional edge cover number is
strictly less than̺ ∗(H). Since̺∗H(W) ≤ ̺∗H(W ∩ V1) +
̺∗H(W \ V1) and̺∗H(W ∩ V1) ≤ ̺∗H(A) + ̺∗H(S), we have

(4.1) ̺∗H(W \ V1) ≥ ̺∗H(W) −
2

3
̺∗H(W) − w − ̺∗H(S)

≥ w3 + 4w + 2.

Consider a fractional edge coverγ ofH with weight̺∗(H).
Let γS be a fractional edge cover ofS with weight̺∗H(S).
Let us define

γ′(e) =

{

γ(e) if e ∩ (W \ V1) = ∅,

0 otherwise.

Observe that weight(γ′) ≤ weight(γ) − (w3 + 4w + 2),
since by (4.1),γ has to assign weight at leastw3 + 4w + 2
to the edges intersectingW \ V1. Now γ′ + γS is an
edge cover ofV1 (since edges intersectingW \ V1 cannot
intersectV1 \S), thus̺∗(H1) ≤ weight(γ′)+weight(γS) ≤
̺∗(H) − (w3 + 4w + 2) + ̺∗H(S) ≤ ̺∗(H) − 2. A similar
argument shows̺∗(H2) ≤ ̺∗(H) − 2.

Let W1 := A ∪ S and W2 := B ∪ S; we have
̺∗H(W1), ̺

∗
H(W2) ≤

2
3̺

∗
H(W)+w+̺∗H(S) < 6w3+27w+

6. SinceH1 andH2 are strictly smaller thanH , we can use
the algorithm recursively to obtain a tree decompositionT1

of H1 whereW1 is contained in some bagB1, and a tree
decompositionT2 ofH2 whereW2 is contained in some bag
B2. We connect these two tree decomposition by introducing
a new bagB0 := W ∪ S that is connected toB1 and
B2; note that̺∗H(B0) ≤ 7w3 + 31w + 7. It is easy to
see that the resulting tree decompositionT is a proper tree
decomposition ofH and the bagB0 fully containsW .

Let us estimate the running time of the algorithm. If
̺∗(H) ≤ 7w3 +31w+7, then the algorithm constructs only
a single bag and does not recurse. We prove by induction that
if ̺∗(H) ≥ 7w3 + 31w + 7, then the algorithm constructs
a tree decomposition with at most̺∗(H) − 2w3 − 8w − 1

bags. As the time spent constructing a bag is‖H‖O(w3), this
proves that the running time is‖H‖O(w3).

First we show that

(4.2) ̺∗H(V1) + ̺∗H(V2) ≤ ̺∗(H) + 2w3 + 8w.

To see this, consider a fractional edge coverγ of H with
weight̺∗(H) and letγS be a fractional edge cover ofS with
weightw3 + 4w. Let us define

γ1(e) =

{

γ(e) if e 6⊆ V2

0 otherwise
andγ2(e) =

{

γ(e) if e 6⊆ V1

0 otherwise.

Since every edge is fully contained in eitherV1 or V2, we
have weight(γ1) + weight(γ2) ≤ weight(γ). Furthermore,
γ1 + γS is an edge cover ofV1, andγ2 + γS is an edge cover
of V2. Now (4.2) follows from weight(γS) ≤ w3 + 4w.
Subtracting4w3 + 16w + 2 from both sides of (4.2), we get

(4.3)
(̺∗(H1) − 2w3 − 8w − 1) + (̺∗(H2) − 2w3 − 8w − 1)

≤ (̺∗(H) − 2w3 − 8w − 1) − 1

Suppose that hypergraphH with ̺∗(H) > 7w3+31w+
7 is decomposed intoH1 andH2. The algorithm constructs
a tree decompositionT that is obtained by joining the tree
decompositionsT1 and T2 with a new bag. Thus|T| =
|T1|+|T2|+1. We have to consider different cases depending
on how ̺∗(H1), ̺∗(H2) compare with7w3 + 31w + 7.
If ̺∗(H1), ̺

∗(H2) > 7w3 + 31w + 7, then the induction
hypothesis and (4.3) shows|T| ≤ ̺∗(H) − 2w3 − 8w − 1.
If ̺∗(H1), ̺

∗(H2) ≤ 7w3 + 31w + 7, thenT consists of
only 3 bags. Since̺ ∗(H) − 2w3 − 8w − 1 ≥ 5w3 +
23w + 6 ≥ 3, the induction statement holds in this case
as well. Suppose now that̺∗(H1) > 7w3 + 31w + 7 and
̺∗(H2) ≤ 7w3 + 31w + 7. In this case,|T| = |T1| + 2.
Now |T| ≤ ̺∗(H) − 2w3 − 8w − 1 follows from the
induction hypothesis onH1 and̺∗(H1) ≤ ̺∗(H)−2 proved
earlier. The case when̺∗(H1) ≤ 7w3 + 31w + 7 and
̺∗(H2) > 7w3 + 31w + 7 can be proved similarly. �

5 Hardness result

Gottlob et al. [8] have shown that, given a hypergraphH
and an integerk, it is NP-hard to decide if ghw(H) ≤ k.
The proof is a very simple reduction from SET COVER. This
proof cannot be adapted to prove hardness for fractional hy-
pertree width, since the fractional version of SET COVER is
polynomial-time solvable. Here we prove the hardness of
fractional hypertree width using the fact that given a graph
G and an integerk, it is NP-hard to decide if the tree width
of G is at mostk [3]. Note that for every fixedk, it can be
checked in linear time whether the tree width is at mostk [2],
thus tree width is hard only ifk is part of the input. Conse-
quently, our hardness result for fractional hypertree width as-
sumes that the boundw is given in the input. This means that

the hardness result does not rule out the possibility that for
every fixedw ≥ 1, there is a polynomial-time algorithm for
deciding fhw(H) ≤ w (and for constructing the correspond-
ing decomposition). It remains an interesting open question
whether the approximation algorithm presented in this paper
can be replaced by an optimal polynomial-time algorithm or
the problem is NP-hard already for some fixedw ≥ 1. Note
that for generalized hypertree with, Gottlob et al. [10] gave
a (much more involved) proof that deciding ghw(H) ≤ 3 is
NP-hard.

THEOREM 5.1. Given a hypergraphH and rational num-
berw ≥ 1, it is NP-hard to decide whetherfhw(H) ≤ w.

Proof. Given a graphG and an integerk, we construct a
hypergraphH such that tw(G) ≤ k if and only if fhw(H) ≤
k + 1. Let v1, . . . , vn be the vertices ofG. The hypergraph
H is obtained by adding new vertices and edges toG. Let
ai,j (1 ≤ i ≤ k + 1, 1 ≤ j ≤ 3) be new vertices and letA
be the set of these3(k + 1) vertices. For every1 ≤ x ≤ n,
we addk+ 1 new edgesex,i = {vx, ai,1, ai,2, ai,3}. Finally,
for every paira′, a′′ ∈ A, we add an edge{a′, a′′}. This
completes the description ofH .

Suppose that(T, (Bt)t∈V (T)) is a widthk tree decom-
position ofG. For everyt ∈ V (T), let B′

t = Bt ∪ A. It
is easy to see that(T, (Bt)t∈V (T)) is a tree decomposition
of H . Furthermore,̺ ∗

H(B′
t) ≤ k + 1 for everyt ∈ V (T):

if Bt = {vx1 , . . . , vxk+1
}, then the edgesex1,1, ex2,2, . . . ,

exk+1,k+1 form an edge cover ofBt ∪A.
Suppose now that(T, (B′

t)t∈V (T)) is a tree decomposi-
tion ofH with fractional hypertree width at mostk+1. First
we show that it can be assumed that everyB′

t containsA.
It is well known that every clique is fully contained in some
bag of the decomposition. SinceA is a clique, there is at
least one bag containingA and, by the properties of the tree
decomposition, the bags containingA form a connected sub-
treeT0 of T . We show that if we replaceT with T0, then it
remains a tree decomposition ofH . To see that every vertex
v 6∈ A of H appears in a bag ofT0, observe thatA ∪ {v}
is a clique, thus there is a bag ofT (and hence ofT0) that
fully containsA ∪ {v}. Similarly, if u, v 6∈ A are neighbors,
thenA ∪ {u, v} is a clique, and it follows thatT0 has a bag
containing bothu andv.

Therefore, we can assume thatA ⊆ B′
t for everyt ∈

V (T). LetBt := B′
t \A. It is clear that(T, (Bt)t∈V (T)) is a

tree decomposition ofG. Let us show that|Bt| ≤ k + 1
for every t ∈ V (T). Let γ be a fractional edge cover
of B′

t with weight(γ) ≤ k + 1. Denote byγ(ai,j) :=
∑

e∈E(H):ai,j∈e γ(e) the weight assigned to the edges con-
tainingai,j . As γ is a fractional edge cover ofA, the sum
∑k+1

i=1

∑3
j=1 γ(ai,j) is at least3(k + 1). Each edgeex,i

contributes to 3 terms of this sum, while every other edge
contributes to at most 2 terms. Since the total weight of the
edges isk + 1, this is only possible ifγ is nonzero only on

the edges of the formex,i. Since each such edge covers only
one vertex outsideA, the bagB′

t can contain at mostk + 1
vertices outsideA, proving|Bt| ≤ k + 1. �

6 Conclusions

The algorithm presented in the paper shows that ifH is
a class of hypergraphs with bounded fractional hypertree
width, then there is a polynomial-time algorithm that can
produce a tree decomposition with bounded hypertree width
for each member ofH. It follows that CSP instances
where the constraint structure has bounded fractional hyper-
tree width are polynomial-time solvable; in fact, this con-
dition is the strictly most general known tractability crite-
rion. It remains an important open question whether there
are further tractable cases not covered by bounded frac-
tional hypertree width. As our algorithm computes only
an approximately optimal tree decomposition, another open
question is whether it can be made an exact algorithm, i.e.,
7w3 + 31w + 7 in Theorem 4.1 can be replaced withw. We
expect that this turns out to be NP-hard, similarly as in the
case of generalized hypertree width [10].

References

[1] I. Adler, G. Gottlob, and M. Grohe. Hypertree width
and related hypergraph invariants.European J. Combin.,
28(8):2167–2181, 2007.

[2] H. L. Bodlaender. A linear-time algorithm for finding
tree-decompositions of small treewidth.SIAM J. Comput.,
25(6):1305–1317, 1996.

[3] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks.
Approximating treewidth, pathwidth, frontsize, and shortest
elimination tree.J. Algorithms, 18(2):238–255, 1995.

[4] F. R. K. Chung, R. L. Graham, P. Frankl, and J. B. Shearer.
Some intersection theorems for ordered sets and graphs.J.
Combin. Theory Ser. A, 43(1):23–37, 1986.

[5] T. Feder and M. Y. Vardi. The computational structure
of monotone monadic SNP and constraint satisfaction: a
study through Datalog and group theory.SIAM J. Comput.,
28(1):57–104, 1999.

[6] J. Flum and M. Grohe.Parameterized Complexity Theory.
Texts in Theoretical Computer Science. An EATCS Series.
Springer, Berlin, 2006.

[7] E. C. Freuder. Complexity of k-tree structured constraint
satisfaction problems. InProc. of AAAI-90, pages 4–9,
Boston, MA, 1990.

[8] G. Gottlob, M. Grohe, N. Musliu, M. Samer, and F. Scar-
cello. Hypertree decompositions: structure, algorithms,and
applications. InGraph-theoretic concepts in computer sci-
ence, volume 3787 ofLecture Notes in Comput. Sci., pages
1–15. Springer, Berlin, 2005.

[9] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompo-
sitions and tractable queries.Journal of Computer and System
Sciences, 64:579–627, 2002.

[10] G. Gottlob, Z. Miklós, and T. Schwentick. Generalized
hypertree decompositions: NP-hardness and tractable vari-
ants. In PODS ’07: Proceedings of the twenty-sixth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 13–22, New York, NY, USA, 2007.
ACM.

[11] G. Gottlob and S. Szeider. Fixed-parameter algorithmsfor ar-
tificial intelligence, constraint satisfaction and database prob-
lems.The Computer Journal, 51(3):303–325, 2008.

[12] M. Grohe. The structure of tractable constraint satisfaction
problems. InMFCS 2006, pages 58–72, 2006.

[13] M. Grohe. The complexity of homomorphism and constraint
satisfaction problems seen from the other side.J. ACM,
54(1):1, 2007.

[14] M. Grohe and D. Marx. Constraint solving via fractional
edge covers. InSODA ’06: Proceedings of the 17th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 289–
298, New York, NY, USA, 2006. ACM Press.

[15] M. Grohe, T. Schwentick, and L. Segoufin. When is the
evaluation of conjunctive queries tractable? InSTOC ’01:
Proceedings of the thirty-third annual ACM symposium on
Theory of computing, pages 657–666, New York, NY, USA,
2001. ACM Press.

[16] P. G. Kolaitis and M. Y. Vardi. Conjunctive-query con-
tainment and constraint satisfaction.J. Comput. Syst. Sci.,
61(2):302–332, 2000.

[17] L. Lovász. Kneser’s conjecture, chromatic number, and
homotopy.J. Combin. Theory Ser. A, 25(3):319–324, 1978.

[18] J. Matoušek. A combinatorial proof of Kneser’s conjecture.
Combinatorica, 24(1):163–170, 2004.

[19] S. Oum. Approximating rank-width and clique-width
quickly. In Proceedings of the 31st International Workshop
on Graph-Theoretic Concepts in Computer Science, pages
49–58, 2005.

[20] S. Oum and P. Seymour. Testing branch-width.J. Combin.
Theory Ser. B, 97(3):385–393, 2007.

[21] S.-i. Oum and P. Seymour. Approximating clique-width and
branch-width. J. Combin. Theory Ser. B, 96(4):514–528,
2006.

[22] T. J. Schaefer. The complexity of satisfiability problems. In
Conference Record of the Tenth Annual ACM Symposium on
Theory of Computing (San Diego, Calif., 1978), pages 216–
226. ACM, New York, 1978.

[23] R. E. Tarjan. Decomposition by clique separators.Discrete
Math., 55(2):221–232, 1985.

[24] V. Vazirani. Approximation algorithms. Springer-Verlag,
2004.

[25] S. H. Whitesides. An algorithm for finding clique cut-sets.
Inform. Process. Lett., 12(1):31–32, 1981.

