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Abstract stances. The main goal of the research on CSP is to identify

Fractional hypertree width is a hypergraph measure similggctable special cases of the general problem. The theoret
to tree width and hypertree width. Its algorithmic impoxtan €@l literature on CSP investigates two main types of restric
comes from the fact that, as shown in previous work [14}0ns. The first type is to restrict theonstraint language,
constraint satisfaction problems (CSP) and various proslethat is, the type of constraints that is allowed. This diggct

in database theory are polynomial-time solvable if the tnpiflcudes the classical work of Schaefer [22] and its many
contains a bounded-width fractional hypertree decompcggnerahzatlons. The s_econd type is to restrictdtracture

tion of the hypergraph of the constraints. In this paper, wduced by the constraints on the variables. Tjigergraph
show that for everyy > 1, there is a polynomial-time aIgo-Of a CSP instance is defined to be a hypergraph on the vari-
rithm that, given a hypergrapH with fractional hypertree ables of the instance such that for each constradnt” there
width at mostw, computes a fractional hypertree decompés & hyperedge, that contains all the variables that appear
sition of width O(w?) for H. This means that polynomial-in ¢- If the hypergra.ph of the.CSP instance has very simple
time algorithms relying on bounded-width fractional hypegtructure, then the instance is easy to solve. For example,
tree decompositions no longer need to be given a decomibds Well-known that a CSP instandewith hypergraphi
sition explicitly in the input, since an appropriate decampCan be solved in timg|| (1) [7], where tw(H) denotes
sition can be computed in polynomial time. Thereforgyif the tree width ofH and ||I]] is the size of the representa-

is a class of hypergraphs with bounded fractional hypertf#@h of 7 in the input. Thus if we restrict the problem to in-
width, then CSP restricted to instances whose structure i${ances where the tree width of the hypergraph is bounded by
H is polynomial-time solvable. This makes bounded fra9Me constant, then the problem is polynomial-time solv-
tional hypertree width the most general known hypergraphle. It is the goal of ongoing research to find other prop-
property that makes CSP, Boolean Conjuctive Queries, SHtes (besides bounded tree width) that make the problem

Conjunctive Query Containment polynomial-time solvablg?0lynomial-time tractable. Formally, for a cla3s of hy-
pergraphs, let CSP() be the restriction of CSP where the

1 Introduction hypergraph of the instance is assumed to b&inOur goal

Constraint satisfaction is a general framework that inetud” to f|n_d and categorl_ze classissuch that CSP() can be
olved in polynomial time.

many stand_ard algorithmic pr(_)blems such as S"?“'Sf'a*?"& " If the constraints have bounded arity (i.e., edge size in
graph coloring, database queries, etc. A constraint aatlsfg{ is bounded by a constant), then the complexity of GEP(
tion problem (CSP) consists of a §ébf variables, a domain; y } ' plexity
. o is well understood:
D, and a setC of constraints, where each constraint is a re- . .
lation on a subset of the variables. The task is to assigl @EOREM 1.1. ([13, 15]) Let CSP(K) contain all CSP in-
value fromD to each variable such that every constraint &ances whose underlying hypergraph isjin If { is a
satisfied. For example, 3SAT can be interpreted as a O8pursively enumerable class of hypergraphs with bounded

problem where the domain 8 = {0, 1} and the constraintsedge size, then (assumiRgT # W[1])

in C' correspond to the clauses (thus the arity of each con- CSP(K) is polynomial-time solvable

straint is 3). Certain fundamental problems in database the

ory, such as Boolean Conjunctive Queries and Conjunctive K has bounded tree width.

Query Containment, is equivalent to CSP. For more back- . ) .
ground, see e.g., [12, 5, 11, 16]. The assumption FPE WI1] is a standard hypothesis of

In general, solving constraint satisfaction problems p@rameterized complexity. Thus in the bounded-arity case

NP-hard if there are no additional restrictions on the jfounded tree width is the only property of the hypergraph
that can make the problem polynomial-time solvable.
The situation is much less understood in the unbounded
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In the bounded-arity case, if each constraint contains at m&( has bounded fractional edge cover number. Fractional hy-
r variables { being a fixed constant), then every reasonalpertree width is defined analogously to generalized hypertr
representation of a constraint has sjzg®("). Therefore, width, but now we only require that each bag has bounded
the size of different representations can differ only by feactional edge cover number. As shown in [14],Hf is
polynomial factor. On the other hand, if there is no bound @nclass of hypergraphs with bounded fractional hypertree
the arity, then there can be exponential difference betweeidth, then CSPX() can be solved in polynomial time, if the
the size of succinct representations (e.g., formulas) angdut contains a tree decomposition of the hypergraph of the
verbose representations (e.g., truth tables). The rurimigg instance with bounded fractional hypertree width. Howgver
of an algorithm is expressed as a function of the input sizeremained an open question whether it is possible to find
hence the complexity of the problem can depend on how thech a tree decomposition in polynomial time and whether
input is represented: longer representation means that ICEP(H) (without any extra input) is polynomial-time solv-
potentially easier to obtain a polynomial-time algorithm. able for suchK.

The most well-studied representation of constraints is Our results. The main result of the paper is an algo-
listing all the tuples that satisfy the constraint. In thise, rithm that computes approximately optimal fractional hype
the size of the representation of a constraint relationads ptree decompositions. More precisely, we show that for ev-
portional to the number of satisfying tuples. This repreryw > 1, there is a polynomial-time algorithm that, given
sentation is very natural in problems involving relationa hypergraphd with fractional hypertree width at most,
databases, where the constraints are database relatainsctimputes a tree decomposition Efwith fractional hyper-
are actually stored as a sequence of tuples. If we want to tree width O(w?) (Theorem 4.1). Therefore, if every hy-
results on CSP in a database-theoretic setting, then we hamegraph iri{ has fractional hypertree width at mast then
to consider this representation. CSPK) is polynomial-time solvable: For every instance, we

Unlike in the bounded-arity case, if there is no bourchn compute a tree decomposition with fractional hypertree
on the number of variables in a constraint, then bounded tvéieith O(w?) and then use the algorithm of [14]. Thus our
width is not the right structural criterion for the tractitiyiof result makes bounded fractional hypertree width the $trict
the problem. It remains true that an instance with hypetgrapost general known hypergraph property that allows CSP
H can be solved in tim¢I||°™(1) However, there areto be solved in polynomial time. Figure 1 shows some of
classesH of hypergraphs with unbounded tree width sudhe known tractable hypergraph properties (note that the el
that CSP{() is polynomial-time solvable. A very simpleements of this Venn diagram are sets of hypergraphs; e.g.,
example is the class that contains those hypergraphs whbkeeset “bounded tree width” contains every $eof hyper-
one of the edges cover all the vertices. If the hypergragtaphs with bounded tree width). All the inclusions in the
H of a CSP instance belongs to this class, then it is edigure are proper. The tractable classes for CSP translate to
to solve: there is a constraint that contains every varjahti@ctable classes for Boolean Conjunctive Queries and Con-
thus all we have to do is enumerating the satisfying tuplesjofctive Query Containment [16], thus bounded fractional
this constraint and checking whether there is a tuple amdngertree width is the most general known tractabilityecrit
them that satisfies every other constraint. This idea adon for those problems as well.
be generalized: if we restrict the problem to hypergraphs Algorithms for finding tree decompositions and charac-
that can be covered by edges (for some fixed constanterization theorems for (generalizations of) tree widttenf
k), then CSP can be solved by enumerating all the possifdlow a certain pattern. For example, the same high-level
combinations of satisfying tuples férconstraints that coveridea is used for tree width [6, Section 11.2], rank width
all the variables. This observation motivated the definitig21, 19], hypertree width [1], and branch width of matroids
of (generalized) hypertree width [9, 1, 8], which is definesihd submodular functions [20]. Simplifying somewhat, this
similarly to tree width, but instead of the requirement thgeneral pattern can be summarized the following way: We
each bag contains a bounded number of vertices, we reqdieeompose the problem into two parts by finding a small
that each bag can be covered by a bounded number of edg#anced separation, a tree decomposition for each part is
(see Section 2 for the precise definition). As shown @onstructed using the algorithm recursively, and the teee d
[9], CSP(K) is polynomial-time solvable if{ has bounded compositions for the parts are joined in an appropriate way
(generalized) hypertree width. to obtain a tree decomposition for the original problem. A

In [14], new tractable classé&s$ with unbounded hyper- balanced separation of a sub$gtis a partition(A, B) of
tree width were identified. It was shown, using Shearefg and a setS separatingd and B, such thatd and B are
Lemma [4], that a CSP instance has only a polynomial nubwth small compared td” (the exact definition of small de-
ber of solutions and they can be enumerated efficientlypiénds on the actual type of tree decomposition we are look-
the hypergraph of the instance has bounded fractional edggfor). Depending on the approximation ratio and the run-
cover number. Thus CSR() is polynomial-time solvable if ning time we are trying to achieve, the problem of finding a
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Figure 1: Hypergraph properties that make CSP polynoria-tolvable.

balanced separation is either reduced to a sparsest cut poblgeneralizing this idea for larger would be to suppose
lem or (using brute force) it is reduced to the problem diat every separator with fractional edge cover number at
finding a small(A, B)-separator, i.e., a set whose deletiomostw can be covered by (w) cliques for some function
disconnectsd andB. f. However, this is not true: we might need an unbounded
Can we use a similar approach for constructing fracumber of cliqgues (see Example 2.1). Nevertheless, we man-
tional hypertree decompositions? With appropriate modiéige to transform the instance in such a way that it can be as-
cations, the recursive algorithm works for such decomposismed that the separator we are looking for can be covered
tions as well (Section 4). The crucial question is how to fifoy w cliques. Then we locate these cliques using a combi-
a balanced separation whefdas small fraction edge covemnation of brute force, clique separator decompositiond, an
number. Using brute force in a not completely trivial wayinear programming.
the search for a balanced separation can be reduced to findingWe finish the paper by proving that it is NP-hard to de-
an(A, B)-separator with small fractional edge cover numbeide whether the fractional hypertree width of a hypergraph
(Lemma 3.4). The main technical contribution of the paperat mostw (Section 5). The hardness result assumes that
is an approximation algorithm for finding such separatdrs:i is a value given in the input; the much more interesting
there is an(A, B)-separator with fractional edge cover numguestion of whether the problem is NP-hard for some fixed
ber at mostw, then the algorithm finds af¥, B)-separator w > 1 remains open.
with fractional edge cover numbér(w?) (Section 3). The
running time is polynomial for every fixed. 2 Preliminaries

For other types of tree decompositions, the COfreSpOWhypergraphis apairH = (V(H), E(H)), consisting of
ing (4, B)-separation problem can be solved using flow sety () of verticesand a sef?(H) of subsets of/ (H),
techniques, brute force, or submodularity. None of thegg hyperedgesf H. We always assume that hypergraphs
techniques seem to be relevant when the goal is to minimigg&e no isolated vertices, that is, for everyc V(H)
the fractional edge cover number of the separator; we ngggre exists at least one E(H) such thatv € e. Let
completely different techniques. The main idea s the f@llo |H| := |V (H)|+|E(H)|, we will express the running time
ing. Suppose we are looking for A, B)-separatolS with  f the algorithms as a function o |-
fractional edge cover number < 2. As the fractional edge For a hypergrapt and a setX C V(H), the sub-
cover number is an upper bound on maximum independﬁpbergraph offf induced byX is the hypergrapti/ [X] =
set size, any two vertices ifi are adjacent; i.e.$ induces (X, {enX | ec E(H)}). WeletH \ X = H[V(H) \ X].

stood: every graph has a unique decomposition by clique

separators [23]. Our algorithm for finding a separator with

small fractional edge cover number can be thought of as a )

generalization of finding clique separators. A temptingway £ = (V(H).{{v,u} [ v # u, there exists an
e € E(H) such thafv,u} C e}).



A hypergraphH is connectedf H is connected. A sef’ C The generalized hypertree widtbf a decomposition

V(H) is connected (inH) if the induced subhypergraph(T, (B:)icv (1)) is max {ou(B;) | t € V(t)} and the

H[C] is connected, and eonnected componenf H is a generalized hypertree widtbf a hypergraphH, denoted

maximal connected subset B /). A sequence of verticesby ghw(H), is the minimum of the generalized hypertree

of H is apathof H ifitis a path of H. A subsetk’ C V(H) widths of all tree decompositions &f. Fractional hypertree

is acliqgueof H if K induces a clique itH. width of a tree decomposition and of a hypergraph is defined
An edge coverof a setS C V(H) is a setF' C analogously, by havingj; (B;) instead ofoy(B;) in the

E(H) such that for everw € S, there is ane € F definition. We denote by fhiH) the fractional hypertree

with v € e. The size of the smallest edge cover $f width of H.

denoted byopy(S), is the edge cover numbeof S. A

fractional edge covenof S C V(H) is a mappingy : 3 Finding approximate separators

E(H) — [0,1] such that for everyy € S, we have | et 4 B C V(H) be two sets of vertices. AfA, B)-
>cen(mywee 1(€) = 1. The weight of the assignment separatoris a setS C V(H) such that there is no path
v is weightly) = 3 .cpp v(e). The fractional edge connecting a vertex oft \ S with a vertex of B\ S in
cover numbenof S, denoted byp;(S), is the minimum of the hypergraphH \ S. In particular, such art has to
weight(y) taken over every fractional edge cover&fltis contain every vertex ofA N B. The aim of this section
well known thato}; (S) < ou(S) < 03, (S)(1+In|V(H)|); is to give an approximation algorithm for the problem of
in fact, a simple greedy algorithm can be used to find §inding an (A, B)-separator with minimum fractional edge
edge cover ofS with size at most},(S)(1 + In|V(H)|) cover number.
(cf. [24]). Note that determiningz (.S) is NP-hard, while We say that two nonadjacent verticesy of H arew-
03(S) can be determined in polynomial time using lineattachedfor somew > 1 if o}, (N(v) N N(u)) > w (here
programming. We defing(H) ando*(H) to beoy (V(H)) N(v)is the set of neighbors ef, not includingu itself). If S
ando3, (V(H)), respectively. is an (A, B)-separator wittp%;(S) < w covering neithem

. norv, andu, v arew-attached, them andv are in the same
ExaMPLE 2.1. Forn > 1, let H,, be the following hyper- o, qcteq component &f \ S. This means tha$ remains
graph: 1, has a vertexs for every subse§ of {1,....3n} 54 B)-separator even if we add an edge betweemd
of cardinalityn. Furthermore, for everye'{l,...,Bn} the Thus adding edges betweenattached vertices does
hypergraptti,, has a hyperedge = {vs | i € 5}. Observe 4 change the problem significantly. More precisely, the

that the fractional edge cover numbe€i(#,,) is at most3, ¢415ing lemma shows that the we can reduce the problem
because the mappingthat assigns /n to every hyperedge,, . iy ation where nonadjacent vertices arenattached.

e; is a fractional edge cover of weigBt Actually, it is easy This propertv of the hvpergraph will plav an important role
to see thap*(H,,) = 3. On the other hand, the edge covef, hepalgorit)rqm ypergrap Py P

number cannot be bounded by a constant. Every edge covér
has size at leastn + 1: if e;,, ..., e;, aren edgesnot LemmA 3.1. Let H be a hypergraphd, B C V(H) sets of
present in the edge cover, then the vertex correspondingégtices, andv > 1 a rational number. We can construct in
the set{is, ..., i, } is not covered by any edges of the covetime polynomial in|| H|| a hypergraph+ on the same set
The primal graph of,, is the complement of the Knesebf vertices such that

graphK Gs,, . The chromatic number df G, ,, is known ) . )

to be3n — 2n + 2 = n + 2 [17, 18]. Thus the primal graph 1. If verticesu andv are not adjacent ini +, then they
H,, cannot be covered by less thar- 2 cliques. This shows are notw-attached.

that there is no functiorfi(w) such that every hypergragh 5 |fgis an(A, B)-separator inH with %, (S) < w, then

with o*(H) < w can be covered by at mogfw) cliques. Sis an (A, B)-separator inH* with g3, (5) < w.
A tree decompositio_ﬂ‘ of a hypergrapl¥ is a tuple 3. If Sis an(A, B)-separatorinH+, thenS is an(A, B)-
(T, (Bt)tev (), WhereT is a tree and By )cv (1) a family separator inH with o7 (S) < 20%,. (S).

of subsets oV (H) such that for each € E(H) there is a

nodet € V(T) such that C By, and for eachv € V(H) Proof. We construct a sequence of hypergraphs. Het=

the set{t € V(T') | v € B} is connected irf". The sets H. Let(u,v) be an arbitrary pair of nonadjacent vertices that
B, are called theébagsof the decomposition. We denoterew-attached inH;_;. HypergraphH; is the same a#l;_;

by |T| := |V(T)| the number of bags iff. Thewidth of with an extra edgdu,v}. If there is no such paifu,v)

a tree decompositiof’, (B;).cv (1)) is max {|B;| | t € in H;_1, then we stop the construction of the sequence. It
V(t)} — 1. Thetree widthtw(H) of a hypergraptH is the is clear that the sequence has polynomial length (as at most
minimum of the widths of all tree decompositions#éf Itis O(|V (H)|?) new edges can be added) and constructiig
easy to see that ) = tw(H) forall H. from H;_1 can be done in polynomial time. L&+ = Hj,



be the last hypergraph in the sequence. Statement Isis chordal graph), then we stop the construction of the
immediate from the way the sequence is constructed.  sequence. Let/; be the last graph in the sequence. Ret

To prove Statement 2, suppose titatis an (A, B)- be the set of inclusionwise maximal cliques@f. It is well
separator inH = Hj. Since the edges off are a subset known that chordal grapfi;, has at mostV (G)| = |V (G)|
of the edges off ™, we havep?; . (S) < 0};(S) < w. We maximal cliques.
prove by induction tha$ is an(A, B)-separator in every;. Every clique ofG is a clique ofGy, thus Statement 1
Suppose that this is true féf; 1, but there is a pati from is clear from the definition o€. To prove Statement 2, for
a vertex ofA to a vertex ofB in H; \ S. Lete; = u;v; be everyC € € and cliqueK of G, we show thatC \ K is
the edge that was added f6,_, to obtainH,. If P does contained in a connected component®@f\ K for every
not usee;, then P is also a path in;_;, contradicting the 1 < ¢ < k. This is clear forGy, asC is a clique inGj.
induction hypothesis theff is an(A, B)-separator ind;_;. Suppose that’ \ K is in a connected component@f \ K
ThusP = Pyu,v; P, for some subpath®, andP,. By the buta,b € C \ K are in different connected components
definition ofe;, of G;—1 \ K. Let P be a path fromz to b in G; \ K.

Path P has to go through the edgge = wv;u; used in the

0r (N (vi)NN (ui)) > of, , (N(vi)NN(u;)) > w > 0(S), definition of Gy, otherwise it would be a path ifi;_; \ K as

) ) well. Thus the pathP can be written a$® = aPv;u; P2b.
which means that there is a vert@x: (N (vi) NN (ui))\ S. There is a induced cycléf in G;_; that containsy; and
The walk Py u;qu; P> connects a vertex ofl and a vertex of u;. Sincevi,u; ¢ K andH \ K is connected (a% is a
Bin H,_; \ S, contradicting the induc_:tion hypothesis. clique), there is a pat® in G;_; \ K that connects; and

To prove Statement 3, observe flrgt thf_:lt the edged ofui. Now aPyv; Ru; Psb is a walk froma to bin G;_; \ K, a
are a subset of the edges Hff, thus if S is an (4, B)- ontradiction. 0

separator inH™*, then it is an(A, B)-separator inH as

well. Consider a fractional edge coverof S in H* with | emma 3.3. Let H be a hypergraphA, B C V(H) two

weight(y) = w’. Suppose that/(e) = = for an edge sets of vertices, and > 1 a rational number. There is an
e = {u,v} not present inH. In this case, we set thez|gorithm that, in time]| 2 || ©(«), either

weight of this edge to 0, and increase:bthe weight of two
edges: an arbitrary edge € E(H) that containg: and an e correctly concludes that there is rid, B)-separatorS
arbitrary edge, € E(H) that contains (such edges exist, with o3;(S) < w, or

since we assumed that there are no isolated vertices in the ) .
hypergraph). It s clear that the resulting weight assignime ® Produces ar(4, B)-separators’ with ¢, (") < w® +
is also a fractional edge cover. We repeat this step until the

weight assignment is 0 on every edge not presef.irt is

easy to see that the weight of the assignment increases {;rgpf. The algorithm first. constrgcts the hypergrafiit OT
most2u’, thuso’, (S) < 207, () emma 3.1 and then tries to find dd, B)-separator in
1 H -~ H+ .

HT.ByLemma3.1(2), iff has anA4, B)-separatols with

The following result follows from the fact that a decomgzq(s) < w, thenSisan(A, B)-separator i * as well and
position of a graph by clique separators can be found in pog+ (5) < w. In this E:_ase, Eur_algo*rlthm/wnl b% able to find
nomial time [25, 23]. For the convenience of the reader, 8 (4, B)-separatots” in H™ with ¢}, () < w?/2 + 2w.

give here a self-contained proof of the main idea in the fofgy Lemma 3.1(3), such af’ is an (4, B)-separator inf
we use. with o3, (S") < w? + 4w.

Suppose that there is &d, B)-separatofS in H+ with
LEMMA 3.2. Given a graph, it is possible to constructin o, (S) < w. In the rest of the proof, we show how
time polynomial in| G|| a setC of at mosiV'(G)| connected to find the required separatd’ if we know a maximum
subsets such that independent sefg of S. Since the fractional edge cover
o ) number ofS is at mostw, the size oflg is also at mosty.
1. if K is aclique ofG, thenK C C for someC € €, and Thus trying all possible sefs adds a factor of H+([0(®) =
g IH°) to the running time.
Suppose thats = {v1,...,v;} (for somek < w)is a
maximum independent set 8f By the definition of  *, we

Proof. We construct a sequence of graphs as follows. L@veoy (N (vi) N N(v;)) < w foreveryl <i < j < k.
Go = G. Suppose tha€;_; has an induced cycl& of ThusX = U;<; ;<;(IN(vi) N N(v;)) has fractional edge
length at least 4; let;, u; be two nonadjacent vertices otover number at mosti)w < w?/2. In the rest of the
H. We defineG; to be the same a&';_1, with an extra algorithm, we try to find a set” with o7, (Y') < 2w such
edgee; = wvu;. If G;_1 has no such cycléf (i.e.,, G;_; thatS’:= X UY is an(A, B)-separator ind +.

4w.

2. if K isaclique ofG andC € €, thenC\ K is containe
in a connected component@f\ K.



Denote byN (v;) the neighbors of; in H+. Let N; = same connected componentift \ S, implying a; = aj;.
(N(vi) U{v;})\ X fori = 1,...,k. Let us note first that Thus every fractional edge cover §fis a solution of the
N;NN; = 0if i # j: verticesv; andv; are not adjacent following linear program:
and every vertex olN (v;) N N(v;) is in X. Sincev, ...,

vy, is @ maximum independent set§f each vertex of \ X min Z Te

is in one of theN;’s. Observe thatV; N S is not empty, ecE(HT)

since it con.talnszi (here we use that; cannot be inX, since Z o> 1 Yo € Z,v is a bad vertex
it is not adjacent to any other;). Furthermore, for every .

1<i <k, N;nSisaclique ofN;. To see this, suppose that ree

/ "

vj,vi € N;N S are nonadjacent vertices. Vertiegsandv;’ Z — Z 2. >1 Yu,v€ Z,u,vis abad pair
cannot be adjacent to any with i # j: that would imply = ‘ = ‘= ’ o
ecE(H e€E(H

that they are inV(v;) NN (v;) C X. Thus replacing; in Is uce vee
with v} andv!’ would give a strictly larger independent se
contradicting the maximality of s.

Let H be the primal graph off . For everyl < i < k,

tI“herefore, the optimum of the linear program is at most
Let (zc)ccp(m+) be a solution of the linear program with

letC; 1, ..., C;... be the connected sets given by Lemma 3 st at mostw. Let Y contain those vertices for which
for the graphH[N,]. By the definition of these sets, for~ecE(H+)wee Te = 1/2; clearly, o, (V) < 2w. Thus
everyl < i < k there is a valud < d; < ¢; such that definings” := XUY givesasetwithy,, (Y) < w®/2+2uw.
the cliqueN; N S is fully contained inC; 4,. Furthermore, Observe that the linear program ensures thatontains .
the connected sét; 4, \ (N; N S) is contained in a connectecEVery bad vertex an_d at least one vertex fr_om each bad pair.
component of[N; \ (V; N.5)], which implies that?; 4, \ S We cla_|m thatS” is an(A4, B)-separat(_)r i+, Suppo_se
is contained in a connected componentb S. Thus either thatthere s a patl? froma € Atob € Bin H™\ 5. This
every vertex ofC; 4, \ S is reachable fromd in H \ S, or path contains at Iegst one yertex,fb(smces isan(A, B)-
none of these vertices are reachable. Let us defire 1 in separator), hence it contains at least one verteX.ofLet
the first case and; = 0 in the second case. p1, --., pr b€ the vertices of° N Z, ordered as the path
We show that if the values;, a; (1 < i < k) is traversed fronu to b. Since these vertices cannot be in

corresponding tcs are known, then the required separatef < S’ they are inUJ_, Ci.q,. Suppose first tha is
S can be found. Thus we have to try all possibilities fdtot reachable frond in 7 \ S. This means that ifV; is
these values, which adds a factor| 6T H)|O() . 20(w) 1o the set that containg,, thena; = 0. It follows thatp, is a
the running time. bad vertex (because of the subpattPothat connecta with
Suppose that the values df, a; are given. LetZ := P1), hencep, € S', a contradiction. Lel < ¢ < r be the

X U Ule C;q,; note thatS C Z. We say that a vertexlargeSt value sgch that is reachable fromﬁl_m H*\ S and

we C,y isabad vertexf suppose thap, is in N;. If £ = r, thenp, is a b_ad vertex
o (because ofi; = 1 and the subpath aP connectingy, and

e a; = 0 and there is a pattP, from A to v with b), again a contradiction. Finally, #f < r, then letV; be the
P,NZ={u},or set that containg,;. The maximality of¢ impliesa; = 1

) _ anda; = 0. Thereforep,, pe41 is a bad pair (because of the
e a; = 1 and there is a patth, from B to u with  gyppath ofP connecting these two vertices), afiicontains
BN Z = {u}. at least one of these vertices, a contradiction. T$uis an
(A, B)-separator inf ™ with ¢}, < w®/2+ 2w.

(It is possible thatP, or P, consists of only the vertex; . .
In summary, the algorithm performs the following steps:

in particular, ifu € AN B, thenu is always a bad vertex.)

Observe thab contains every bad vertex Indeed, ifu ¢ S 1. Construct the hypergraghi* (Lemma 3.1).

and there is a patt, as above, thei$ N P, = ) (since

S C Z), thusu is reachable fromd, contradictingz; = 0. 2. Guess the independent get

On the other hand, ifi ¢ S and there is a path,, thenu is

reachable fronB, buta; = 1 implies that it is also reachable

from A, contradicting the fact thaf is an(A, B)-separator. 4
A pairu € C; 4, andv € Cj 4, is abad pairif

3. Construct the seX and define the sefys;.
. Construct the setS; ; (Lemma 3.2).

. ) 5. Guess the valueg, a;.
e there is a pathP from » to v with PN Z = {u,v} and

a; # aj;. 6. Constructy” using an optimum solution of the linear

) ) program.
In this case,S has to contain at least one af and v:

otherwiseP N S = () would mean that: andv are in the 7. CheckifS’ := X UY is an(A, B)-separator.



As discussed above, if there is @A, B)-separatotS with o}, (W;) > o3, (W;) if ¢ < j. Let/ be the smallest value such

0%(S) < w, then it is possible to choode and the values that QE(Ule W;) > lk. Observe tha’@’h(Ule W;) <

d;, a; such that the separatéf computeq by the aIgorithm%k; it 0%, (W) > %k then¢ = 1 and o%,(W1) < k/2;

is an (A, B)-separator withp}; (") < w’® + dw. Thusif o (W1) < Lk then¢ > 1 and oy (U, Wi) <

we try all possible| H || O . | H||©() . 20() guesses, then , " ;1 3 L | '

we will find such a separatas’ in this case. On the otherQH(Ujfl Wi) + QH(Wf,) < sk + 5’2 Furthermore,

hand, if none of the guesses results in the required separéio(Ui—1 Wi) = €5 (Ui Wi) + 03 (Ui—¢41 Wi), since

S’, then we can correctly conclude that there is 4 AoB)- there Is no edge that intersects more thar; tne From

separatorS in H with ¢%(S) < w. The running time of 05 (Ui—y Wi) < 03(W) < k, we haveoy; (U;—p Wi) <

each step (except the guesses) is polynomial, thus the tél{al

running time isf| £ ). m Let 4 be the edges df fully contained inSyUUJ’_, C;
and letF'z be the edges of’ intersectinqﬁ:Hl C;. Ob-

In the tree decomposition algorithm of Section 4, wg, o thatF4, Fip) is a partition ofF. Let A .= W N |J Fa
have to find a balanced separation of a¥ét we need a ;45 ._ 11 \ A be defined as in the algorithm, Since

partition (A, B) of W such that (1%, (A), o3;(B) are not ¢ Ny .

too large and (2) there is aM, B)-separatorS such that A* < ‘20 Uwn Ui:21 Ci)’_ W_e have*gH(A) = QHQ(SO) +

0%;(S) is not too large. As we shall see, it follows from th@r (Ui=y Wi) < w+ 5k. Similarly, QH_(B?k < w+ 5k. Ob-

results of [14] that such a balanced separation alwaysskisBeTVe thatSo is an(4, B)-separator withyy,; (So) < w, thus

H has bounded fractional hypertree width. If we want to firfj€ @lgorithm of L(gmma 3.3 produces @A, B)-separator

such a separation algorithmically, then the main problem3sVith ¢7;(5) < w” + 4w. Therefore, when the algorithm

how to find the partitior( A, B) of W: if (A, B) is given, cons_lders thl'.s.partlcular partitiqi¥'a, Fig), then it finds the

then Lemma 3.3 can be used to find @, B)-separator 'eduired partitior(4, 5) and separatof. =

whose fractional edge cover number is bounded. Trying all = . o

possible partitions ofV” is not feasible. Fortunately, for the Finding approximate tree decompositions

applications in Lemma 3.4, we can assume #jatW) is We prove the main result of the paper in this section: it

bounded. Instead of trying all possible partitionsl&f it is possible to approximate fractional hypertree width in a

turns out that it is sufficient to try all possible partitionfsan  sense that is suitable for the applications. That is, if ascla

edge cover ofV. H of hypergraphs has bounded fractional hypertree width,
then there is a polynomial time algorithm producing a tree

LEMMA 3.4. Let H be a hypergraph with fractional hy-decomposition with bounded fractional hypertree width for

pertree width at most and letW C V(H) be a sub- any hypergraph iff{. The algorithm uses the balanced

set of vertices withoy, (W) < k. It is possible t0 separation algorithm of Lemma 3.4.

find in time || H||°(*+*) a partition (A, B) of W and an

(A, B)-separator S with ¢3;(S) < w® + 4w such that THEOREM4.1. Given a hypergraplt/ and a rational num-

031(A), 03 (B) < 2k + w. berw > 1, itis possible in time| 7 ||°(*") to either

Proof. Since the fractional edge cover numberigfis at ~ ® compute a fractional hypertree decomposition /f
mostk, the greedy algorithm finds an edge cofiet. E(H) with width at mostw?® + 31w + 7, or

of W with |F| = O(klog|V(H)|). Our algorithm tries
every partition(F4, Fp) of F, definesd := W n|JFa
and B := W \ A, and checks whether the algorithm o
Lemma 3.3 produces g, B)-separatorS with g%, (S) <
w? + 4w. We show that i has fractional hypertree width Given a hypergraptil with fhw(H) < w and a

e correctly conclude thafthw(H) > w.

Igroof. We present an algorithm for a more general problem:

at mostw, then at least one partitio¥4, F'z) results in setW with 0% (W) < 6w’ + 27w + 6, find a

a partition (4, B) and a separato$ satisfying the condi-  fractional hypertree decompositighof width at

tions. Trying every possible partitiqi#’s, Fz) means trying most7w? + 31w + 7 such that some bag of T

20Wklog [VIH)D) = || F7||9%) possibilities and the algorithm  <ontains the satl.

of Lemma 3.3 need$H ||°(*) time. Thus the total running

time of the algorithm ig| F || O (k+w), (Note that this algorithm implies the existenece of the algo

By [14, Theorem 11, Lemma 12], there is a §gtwith  rithm required by the theorem: if this algorithm is applied t
057(So) < w such thate};(C N W) < k/2 for every con- a hyerpgraptf with fhw(H) > w, then either it produces
nected componer® of H \ Sp; let C4, ..., Cy4 be these a fractional hypertree decomposition Bfwith the required
connected components. Defilg;, := W N C; and sup- width or if the outputis something else, then we can coryectl
pose that the connected components are ordered such ¢batlude that fhwH) > w.) If o*(H) < Tw? + 31w + 7,



then we are done: a tree decomposition consisting of a sin- First we show that

gle bagB = V(H) is sufficient. Thus we can assume that

o*(H) > Tw3 + 31w+ 7. By adding arbitrary vertices td” (4.2) o) + 05 (V2) < 0" (H) + 2w® + 8w,

one by one, we can extel such tha6w? + 27w + 6 < ) ) ) _

05, (W) < 6wd + 27w + 7. Let us use the algorithm of TO see this, consider a fractlon_al edge coyeof H w!th

Lemma 3.4 to find a partition4, B) of W and an(A, B)- we!ghtg*(H) and letys begfractlonal edge cover Sfwith

separatotS. A connected component df \ S cannot in- weightw® + 4w. Let us define

tersect bothd and B. Let V; be the union ofS and all the _ _

connected components intersectiiglet V5 be the union of () = {’Y(e) ifeZV, andys(e) = {’7(6) ifeZ Vs

S and the connected components not intersectinget A, 0 otherwise 0 otherwise.

(resp.,H>) be the subhypergraph éf induced byV; (resp.,

Va). Since every edge is fully contained in eithiér or V5, we
First we verify thatH; and H, are proper subhyper-have weighty:) + weighty2) < weighty). Furthermore,

graphs ofH; in fact, their fractional edge cover number ig1 + 7s is an edge cover dfi, andy,; + v is an edge cover

strictly less thano*(H). Sinceo}; (W) < o5 (W nV;) + of V. Now (4.2) follows from weighttys) < w?® + 4w.

o (W \ V1) andos, (W NV < ok (A) + 0%(S), we have Subtractingtw?® + 16w + 2 from both sides of (4.2), we get

(4.1) og(WAV1) = o (W) — gQH(W) —w— op(5) (0" (Hy) — 2uw® — 8w — 1) + (0" (Hy) — 2uw® — 8w — 1)
> w’ + 4w + 2. < (o"(H) —2u® —8w—1) —1
Consider afractiqnal edge coveof H with we_ightg* (H). Suppose that hypergraphwith o* (H) > 7w®+ 31w+
Let ys be a fractional edge cover of with weight o3;(S). 7 is decomposed intéf, and H,. The algorithm constructs
Let us define a tree decompositiofi that is obtained by joining the tree
. decompositiong; and 7> with a new bag. ThusT| =
+(e) = v(e) ifen(WA\Vi) =0, |T1|+|T2|+1. We have to consider different cases depending
0 otherwise. on how o*(H;), o*(H2) compare with7w® + 31w + 7.

If o*(H1),0*(H2) > Tw® 4+ 31w + 7, then the induction

Observe that weight’) < weighty) — (w® + 4w + 2), hypothesis and (4.3) shoW3| < o*(H) — 2w? — 8w — 1.
since by (4.1);y has to assign weight at least + 4w + 2 If o*(H1), 0*(H2) < Tw® + 31w + 7, thenT consists of
to the edges intersecting’ \ Vi. Now 4/ + ~g is an only 3 bags. Since*(H) — 2u® — 8w — 1 > 5w’ +
edge cover ofl; (since edges intersectiid \ Vi cannot 23w + 6 > 3, the induction statement holds in this case
intersectl; \ 9), thuse* (H;) < weight(y/) +weightys) < as well. Suppose now that (H;) > 7w® + 31w + 7 and
0" (H) — (w® + 4w + 2) + 05(5) < o*(H) — 2. Asimilar ¢*(Hz) < 7w® + 31w + 7. In this case|T| = |T1| + 2.
argument shows™(Hs) < o*(H) — 2. Now |T] < o*(H) — 2w® — 8w — 1 follows from the

Let W; = AU S andW, := B U S; we have induction hypothesis oy andp*(H;) < ¢*(H)—2 proved
o5 (W), 05 (W2) < %Q}I(W)—i-w—i—g}{(S) < 6w?+27w+ earlier. The case whep*(H;) < Tw® + 31w + 7 and
6. SinceH, and H, are strictly smaller thaif, we can use ¢*(Hz) > Tw® + 31w + 7 can be proved similarly. O
the algorithm recursively to obtain a tree decomposifign
of H; whereW; is contained in some baf;, and a tree 5 Hardnessresult

decompositiorT; of H, wherel, is contained in some baggottiob et al. [8] have shown that, given a hypergrdph

Bs. We connect these two tree decomposition by introduciggg an integet;, it is NP-hard to decide if ghwH) < k.

a new bagB, := W U S that is connected B, and The proofis a very simple reduction fronE$ Cover. This

By; note thatoj; (Bo) < Tw® + 31w + 7. It is easy t0 proof cannot be adapted to prove hardness for fractional hy-

see that the resulting tree decompositibfs a proper tree pertree width, since the fractional version &1SCOVER is

decomposition off and the bag3, fully containsi¥’. polynomial-time solvable. Here we prove the hardness of
Let us estimate the running time of the algorithm. Hactional hypertree width using the fact that given a graph

0" (H) < 7w’ + 31w+ 7, then the algorithm constructs only; and an integek, it is NP-hard to decide if the tree width

asingle bag and does not recurse. We prove by induction t§g¢; is at mostk [3]. Note that for every fixed:, it can be

if o*(H) = Tw® + 31w + 7, then the algorithm constructschecked in linear time whether the tree width is at mdé,

a tree decomposition with at most(H) — 2w® — 8w — 1 thys tree width is hard only i is part of the input. Conse-

bags. As the time spent constructing a bagf&| ("), this quently, our hardness result for fractional hypertree igt-

proves that the running time jp*{||0(w3>. sumes that the boundis given in the input. This means that



the hardness result does not rule out the possibility that tbe edges of the form, ;. Since each such edge covers only
every fixedw > 1, there is a polynomial-time algorithm forone vertex outsidel, the bagB; can contain at most + 1
deciding fhwH) < w (and for constructing the correspondvertices outsided, proving|B;| < k + 1. O

ing decomposition). It remains an interesting open quastio

whether the approximation algorithm presented in this pafie Conclusions

can be replaged by an optimal polynomial-.time algorithm g, algorithm presented in the paper shows that(ifis

the problem is NP-hard already for some fixed> 1. Note 3 class of hypergraphs with bounded fractional hypertree
that for generalized hypertree with, Gottlob et al. [10] @ayyigth, then there is a polynomial-time algorithm that can
a (much more involved) proof that deciding ght) < 3is produce a tree decomposition with bounded hypertree width
NP-hard. for each member of{. It follows that CSP instances
where the constraint structure has bounded fractionaltype
tree width are polynomial-time solvable; in fact, this con-
dition is the strictly most general known tractability erit
Proof. Given a graphG and an integek, we construct a rion. It remains an important open question whether there
hypergraphf such that twG) < k if and only if fhw(H) < are further tractable cases not covered by bounded frac-
k+ 1. Letvy, ..., v, be the vertices ofi. The hypergraph tional hypertree width. As our algorithm computes only
H is obtained by adding new vertices and edge&'toLet an approximately optimal tree decomposition, another open
a;; (1 <i<k+1,1<j<3)benew vertices and let question is whether it can be made an exact algorithm, i.e.,
be the set of thes&(k + 1) vertices. For every < z < n, 7Tw3 4 31w + 7 in Theorem 4.1 can be replaced with We

we addk + 1 new edges.. ; = {v.,ai1,a;2,a;3}. Finally, expect that this turns out to be NP-hard, similarly as in the
for every paira’,a” € A, we add an edgéa’,a”}. This case of generalized hypertree width [10].

completes the description &f.

Suppose thatT, (B;):cv (7)) is a widthk tree decom-
position of G. For everyt € V(T'), let B = B; U A. It
is easy to see thdfl’, (B:):cv (1)) is a tree decomposition
of H. Furthermorepj;(B;) < k + 1 for everyt € V(T):
if By = {Vay,-- -, Vo }, then the edges,, 1, ea, 2, - -, and related hypergraph invariantsEuropean J. Combip.
€ary,k+1 fOFM an edge cover aBy U A. _ 28(8):2167—-2181, 2007.

Suppose now thall’, (Bt).cv (1)) IS a tree decomposi- 51 'L Bodlaender. A linear-time algorithm for finding

THEOREMS.1. Given a hypergraph{ and rational num-
berw > 1, itis NP-hard to decide whethénw(H) < w
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