

Constraint Solving via Fractional Edge Covers

Martin Grohe and <u>Dániel Marx</u>

Humboldt-Universität zu Berlin Institut für Informatik

Symposium on Discrete Algorithms (SODA) 2006 January 22, 2006

Constraint Satisfaction Problems (CSP)

Many natural problems can be expressed as a **Constraint Satisfaction Problem**, where a conjunction of clauses has to be satisfied.

$$I = C_1(x_1, x_2, x_3) \wedge C_2(x_2, x_4) \wedge C_3(x_1, x_3, x_4)$$

A CSP instance is given by describing the

- variables,
- domain of the variables,
- constraints on the variables.

Task: Find an assignment that satisfies every constraint.

Constraint Satisfaction Problems (CSP)

Many natural problems can be expressed as a **Constraint Satisfaction Problem**, where a conjunction of clauses has to be satisfied.

$$I = C_1(x_1, x_2, x_3) \wedge C_2(x_2, x_4) \wedge C_3(x_1, x_3, x_4)$$

A CSP instance is given by describing the

- variables,
- domain of the variables,
- constraints on the variables.

Task: Find an assignment that satisfies every constraint.

Example: 3-COLORING is a CSP problem.

Variables: vertices, Domain: $\{1, 2, 3\}$, Constraints: one for each edge.

Tractable structures

Structural properties that can make a CSP instance tractable:

- 6 tree width
- 6 hypertree width [Gottlob et al. '99]
- fractional edge cover number
- 6 fractional hypertree width

Representation issues

How are the constraints represented in the input?

- full truth table
- 6 listing the satisfying tuples
- 6 formula/circuit
- 6 oracle

Representation issues

How are the constraints represented in the input?

- 6 full truth table
- 6 listing the satisfying tuples
- 6 formula/circuit
- oracle

In this talk: Each constraint is given by listing all the tuples that satisfy it.

Motivation: Applications in database theory & Al.

Constraints are known databases, "satisfying" means "appears in the database."

Tree width

Tree width: A measure of how "tree-like" the graph is. (Introduced by Robertson and Seymour.)

Tree decomposition: Bags of vertices are arranged in a tree structure satisfying the following properties:

- 1. If u and v are neighbors, then there is a bag containing both of them.
- 2. For every vertex v, the bags containing v form a connected subtree.

Width of the decomposition:

size of the largest bag minus 1.

Tree width: width of the best decomposition.

Fact: Tree width $= 1 \iff$ graph is a forest

Bounded tree width graphs

Many problems are polynomial-time solvable for bounded tree width graphs:

- VERTEX COLORING
- 6 EDGE COLORING
- 6 Hamiltonian Cycle
- MAXIMUM CLIQUE
- VERTEX DISJOINT PATHS

Bounded tree width graphs

Many problems are polynomial-time solvable for bounded tree width graphs:

- VERTEX COLORING
- 6 EDGE COLORING
- 6 Hamiltonian Cycle
- MAXIMUM CLIQUE
- VERTEX DISJOINT PATHS

Usually, if a problem can be solved on trees by bottom-up dynamic programming, then the same approach works for bounded tree width graphs.

CSP and tree width

Primal (Gaifman) graph: vertices are the variables, and two vertices are connected if they appear in a common constraint.

Fact: For every w, there is a polynomial-time algorithm solving CSP instances where the primal graph have tree width at most w.

CSP and tree width

Primal (Gaifman) graph: vertices are the variables, and two vertices are connected if they appear in a common constraint.

Fact: For every w, there is a polynomial-time algorithm solving CSP instances where the primal graph have tree width at most w.

This result is best possible.

CSP(G): the problem restricted to instances where the primal graph is in G.

Theorem: [Grohe '03]

 $CSP(\mathcal{G})$ is polynomial-time solvable $\iff \mathcal{G}$ has bounded tree width (assuming FPT \neq W[1]).

CSP and hypergraphs

Hypergraph: edges are arbitrary subsets of vertices.

Hypergraph of a CSP instance: vertices are the variables, each constraint is an edge.

CSP and hypergraphs

Hypergraph: edges are arbitrary subsets of vertices.

Hypergraph of a CSP instance: vertices are the variables, each constraint is an edge.

Considering the hypergraph instead of the primal graph makes the complexity analysis more precise.

$$I_1=C(x_1,x_2,\dots,x_n)$$
 vs. $I_2=C(x_1,x_2)\wedge C(x_1,x_3)\wedge \dots \wedge C(x_{n-1},x_n)$

 I_1, I_2 have the same primal graph K_n , but I_1 is always easy, I_2 can be hard.

CSP and hypergraphs

Hypergraph: edges are arbitrary subsets of vertices.

Hypergraph of a CSP instance: vertices are the variables, each constraint is an edge.

Considering the hypergraph instead of the primal graph makes the complexity analysis more precise.

$$I_1=C(x_1,x_2,\ldots,x_n)$$
 vs. $I_2=C(x_1,x_2)\wedge C(x_1,x_3)\wedge\cdots\wedge C(x_{n-1},x_n)$

 I_1, I_2 have the same primal graph K_n , but I_1 is always easy, I_2 can be hard.

Observation: If there is a constraint that covers every variable, then we have to test at most ||I|| possible assignments.

Observation: If the variables can be covered by k constraints, then we have to test at most $||I||^k$ possible assignments.

In a **hypertree decomposition** [Gottlob et al. '99] of width w, bags of vertices are arranged in a tree structure such that

- 1. If u and v are connected by an edge, then there is a bag containing both of them.
- 2. For every vertex v, the bags containing v form a connected subtree.
- 3. For each bag, there are w edges (called the **guards**) that cover the bag.

Hypertree width: width of the best decomposition.

In a **hypertree decomposition** [Gottlob et al. '99] of width w, bags of vertices are arranged in a tree structure such that

- 1. If u and v are connected by an edge, then there is a bag containing both of them.
- 2. For every vertex v, the bags containing v form a connected subtree.
- 3. For each bag, there are w edges (called the **guards**) that cover the bag.

Hypertree width: width of the best decomposition.

Footnote: This is actually called generalized hypertree width for historical reasons.

Theorem: [Gottlob et al. '99] For every w, there is a polynomial-time algorithm for solving CSP on instances with hypergraphs having hypertree width at most w.

Algorithm: Bottom up dynamic programming. There are at most $||I||^w$ possible satisfying assignments for each bag.

Theorem: [Gottlob et al. '99] For every w, there is a polynomial-time algorithm for solving CSP on instances with hypergraphs having hypertree width at most w.

Algorithm: Bottom up dynamic programming. There are at most $||I||^w$ possible satisfying assignments for each bag.

Generalization: Is there some more general property that makes the number of satisfying assignments of a bag polynomial?

(Fractional) edge covering

An **edge cover** of a hypergraph is a subset of the edges such that every vertex is covered by at least one edge.

 $\varrho(H)$: size of the smallest edge cover.

A **fractional edge cover** is a weight assignment to the edges such that every vertex is covered by total weight at least 1.

 $\varrho^*(H)$: smallest total weight of a fractional edge cover.

(Fractional) edge covering

An **edge cover** of a hypergraph is a subset of the edges such that every vertex is covered by at least one edge.

 $\varrho(H)$: size of the smallest edge cover.

A **fractional edge cover** is a weight assignment to the edges such that every vertex is covered by total weight at least 1.

 $\varrho^*(H)$: smallest total weight of a fractional edge cover.

$$\varrho(H)=2$$

(Fractional) edge covering

An **edge cover** of a hypergraph is a subset of the edges such that every vertex is covered by at least one edge.

 $\varrho(H)$: size of the smallest edge cover.

A **fractional edge cover** is a weight assignment to the edges such that every vertex is covered by total weight at least 1.

 $\varrho^*(H)$: smallest total weight of a fractional edge cover.

Fractional edge covering

Lemma: (trivial) If the hypergraph of the instance has edge covering number w, then there are at most $||I||^w$ satisfying assignments.

Lemma: If the hypergraph of the instance has fractional edge covering number w, then there are at most $||I||^w$ satisfying assignments.

This can be shown using the following combinatorial lemma:

Shearer's Lemma: Let H=(V,E) be a hypergraph, and let A_1,A_2,\ldots , A_p be (not necessarily distinct) subsets of V such that each $v\in V$ is contained in at least q of the A_i 's. Denote by E_i the edge set of the hypergraph projected to A_i . Then

$$|E| \leq \prod_{i=1}^p |E_i|^{1/q}.$$

Fractional edge covering

Lemma: (trivial) If the hypergraph of the instance has edge covering number w, then there are at most $||I||^w$ satisfying assignments.

Lemma: If the hypergraph of the instance has fractional edge covering number w, then there are at most $||I||^w$ satisfying assignments, and they can be enumerated in $||I||^{O(w)}$ time.

This can be shown using the following combinatorial lemma:

Shearer's Lemma: Let H=(V,E) be a hypergraph, and let A_1,A_2,\ldots , A_p be (not necessarily distinct) subsets of V such that each $v\in V$ is contained in at least q of the A_i 's. Denote by E_i the edge set of the hypergraph projected to A_i . Then

$$|E| \leq \prod_{i=1}^p |E_i|^{1/q}.$$

Fractional hypertree width

In a fractional hypertree decomposition of width w, bags of vertices are arranged in a tree structure such that

- 1. If u and v are connected by an edge, then there is a bag containing both of them.
- 2. For every vertex v, the bags containing v form a connected subtree.
- 3. A fractional edge cover of weight w is given for each bag.

Fractional hypertree width: width of the best decomposition.

Fractional hypertree width

In a fractional hypertree decomposition of width w, bags of vertices are arranged in a tree structure such that

- 1. If u and v are connected by an edge, then there is a bag containing both of them.
- 2. For every vertex v, the bags containing v form a connected subtree.
- 3. A fractional edge cover of weight w is given for each bag.

Fractional hypertree width: width of the best decomposition.

Theorem: For every w, there is a polynomial-time algorithm for solving CSP if a fractional hypertree decomposition of width at most w is given in the input.

Currently we do not know if deciding fractional hypertree width $\leq w$ is possible in polynomial time for every fixed value of w.

Law enforcement on graphs

Robber and Cops Game: k cops try to capture a robber in the graph.

- In each step, the cops can move from vertex to vertex arbitrarily with helicopters.
- The robber moves infinitely fast, and sees where the cops will land.
- The robber cannot go through the vertices blocked by the cops.

Law enforcement on graphs

Robber and Cops Game: k cops try to capture a robber in the graph.

- In each step, the cops can move from vertex to vertex arbitrarily with helicopters.
- The robber moves infinitely fast, and sees where the cops will land.
- The robber cannot go through the vertices blocked by the cops.

Theorem: [Seymour and Thomas '93]

k cops can win the game \iff the tree width of the graph is at most k-1.

The winner of the game can be determined in $n^{O(k)}$ time \Rightarrow tree width $\leq k$ can be checked in polynomial time for fixed k.

Law enforcement on hypergraphs

Robber and Marshals:

Played on a hypergraph, a marshal can occupy an edge blocking all the vertices of the edge at the same time.

Theorem: [Adler et al. '05] k marshals can win the game if hypertree width is

 $\leq k$, and they cannot win the game if hypertree width is $\geq 3k+1$.

 $\Rightarrow n^{O(k)}$ algorithm for approximating the hypertree width.

Law enforcement on hypergraphs

Robber and Marshals:

Played on a hypergraph, a marshal can occupy an edge blocking all the vertices of the edge at the same time.

Theorem: [Adler et al. '05] k marshals can win the game if hypertree width is $\leq k$, and they cannot win the game if hypertree width is $\geq 3k+1$. $\Rightarrow n^{O(k)}$ algorithm for approximating the hypertree width.

Robber and Army:

A general has k battalions. A battalion can be divided arbitrarily, each part can be assigned to an edge. A vertex is blocked if it is covered by one full battalion. **Theorem:** k battalions can win the game if fractional hypertree width is $\leq k$, and they cannot win the game if fractional hypertree width is $\geq 3k + 2$.

We don't know how to turn this result into an algorithm (there are too many army positions).

Conclusions

- OSP where constraints are represented as lists of satisfying tuples.
- Sounded tree width and bounded hypertree width make the problem polynomial-time solvable.
- New: Bounded fractional edge cover number.
- New: ractional hypertree width.
- Open: finding fractional hypertree decompositions.
- 6 Robber and Army Game: equivalent to fractional hypertree width (up to a constant factor).
- 6 Are there other classes of hypergraphs where CSP is easy? Can we prove that bounded fractional hypertree width is best possible?