Constraint Solving via Fractional Edge
Covers

Martin Grohe and Daniel Marx

Humboldt-Universitat zu Berlin

Institut fur Informatik

Symposium on Discrete Algorithms (SODA) 2006
January 22, 2006

Constraint Solving via Fractional Edge Covers — p.1/16



Constraint Satisfaction Problems (CSP)

Many natural problems can be expressed as a Constraint Satisfaction
Problem, where a conjunction of clauses has to be satisfied.

I = Cl($1, $2,w3) N\ Cz($2, $4) VAN C3($1,$3,$4)

A CSP instance is given by describing the
variables,
domain of the variables,

constraints on the variables.

Task: Find an assignment that satisfies every constraint.
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Constraint Satisfaction Problems (CSP)

Many natural problems can be expressed as a Constraint Satisfaction
Problem, where a conjunction of clauses has to be satisfied.

I = Cl($1, $2,w3) N\ Cz($2, $4) VAN C3($1,$3,$4)

A CSP instance is given by describing the
variables,
domain of the variables,

constraints on the variables.

Task: Find an assignment that satisfies every constraint.

Example: 3-COLORING is a CSP problem.
Variables: vertices, Domain: {1, 2, 3}, Constraints: one for each edge.
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Tractable structures

Structural properties that can make a CSP instance tractable:

tree width

hypertree width [Gottlob et al. '99]
fractional edge cover number

fractional hypertree width
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Representation issues

How are the constraints represented in the input?
full truth table
listing the satisfying tuples
formula/circuit

oracle
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Representation issues

How are the constraints represented in the input?
full truth table
listing the satisfying tuples
formula/circuit

oracle

In this talk: Each constraint is given by listing all the tuples that satisfy it.

Motivation: Applications in database theory & Al.
Constraints are known databases, “satisfying” means “appears in the

database.”
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Tree width

Tree width: A measure of how “tree-like” the graph is.
(Introduced by Robertson and Seymour.)

Tree decomposition: Bags of vertices are arranged
In a tree structure satisfying the following properties:

1. If w and v are neighbors, then there is a bag con-
taining both of them.

2. For every vertex v, the bags containing v form a @
connected subtree. h

Width of the decomposition:
size of the largest bag minus 1.

Tree width: width of the best decomposition.

Fact: Tree width =1 <= graph is a forest
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Bounded tree width graphs

Many problems are polynomial-time solvable for bounded tree width graphs:
VERTEX COLORING
EDGE COLORING
HAMILTONIAN CYCLE

MAXIMUM CLIQUE

VERTEX DISJOINT PATHS
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Bounded tree width graphs

Many problems are polynomial-time solvable for bounded tree width graphs:

VERTEX COLORING
EDGE COLORING
HAMILTONIAN CYCLE
MAXIMUM CLIQUE
VERTEX DISJOINT PATHS

Usually, if a problem can be solved on trees by bottom-up dynamic
programming, then the same approach works for bounded tree width graphs.
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CSP and tree width

Primal (Gaifman) graph: vertices are the variables, and two vertices are
connected if they appear in a common constraint.

Fact: For every w, there is a polynomial-time algorithm solving CSP instances
where the primal graph have tree width at most w.
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CSP and tree width

Primal (Gaifman) graph: vertices are the variables, and two vertices are
connected if they appear in a common constraint.

Fact: For every w, there is a polynomial-time algorithm solving CSP instances
where the primal graph have tree width at most w.

This result is best possible.
CSP(G): the problem restricted to instances where the primal graph isin G.

Theorem: [Grohe '03]

CSP (@) is polynomial-time solvable <— G has bounded tree width
(assuming FPT £ WI1])).
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CSP and hypergraphs

Hypergraph: edges are arbitrary subsets of vertices.

Hypergraph of a CSP instance: vertices are the variables, each constraint is
an edge.
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CSP and hypergraphs

Hypergraph: edges are arbitrary subsets of vertices.

Hypergraph of a CSP instance: vertices are the variables, each constraint is
an edge.

Considering the hypergraph instead of the primal graph makes the complexity
analysis more precise.

I1 = C(wl, L2y ,CUn) VS.

I2 = C(azl, $2) /\ C’(a:l,:ng) VANKIEICIVAN C(azn_l,wn)

I,, I> have the same primal graph K, , but I is always easy, I> can be hard.
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CSP and hypergraphs

Hypergraph: edges are arbitrary subsets of vertices.

Hypergraph of a CSP instance: vertices are the variables, each constraint is
an edge.

Considering the hypergraph instead of the primal graph makes the complexity
analysis more precise.

I1 = C(wl, L2y ,CUn) VS.

I2 = C(azl, $2) /\ C’(a:l,:ng) VANKIEICIVAN C(azn_l,wn)

I,, I> have the same primal graph K, , but I is always easy, I> can be hard.

Observation: If there is a constraint that covers every variable, then we have
to test at most || I || possible assignments.
Observation: If the variables can be covered by k constraints, then we have to

test at most || I]|* possible assignments.

Constraint Solving via Fractional Edge Covers — p.8/16



Hypertree width

In a hypertree decomposition [Gottlob et al. '99] of width w, bags of vertices
are arranged in a tree structure such that

1. If w and v are connected by an edge, then there is a bag containing both of
them.

2. For every vertex v, the bags containing v form a connected subtree.
3. For each bag, there are w edges (called the guards) that cover the bag.

Hypertree width: width of the best decomposition.
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Hypertree width

In a hypertree decomposition [Gottlob et al. '99] of width w, bags of vertices
are arranged in a tree structure such that

1. If w and v are connected by an edge, then there is a bag containing both of
them.

2. For every vertex v, the bags containing v form a connected subtree.
3. For each bag, there are w edges (called the guards) that cover the bag.

Hypertree width: width of the best decomposition.

Footnote: This is actually called generalized hypertree width for historical rea-
sons.
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Hypertree width

Theorem: [Gottlob et al. '99] For every w, there is a polynomial-time algorithm
for solving CSP on instances with hypergraphs having hypertree width at most

w.

Algorithm: Bottom up dynamic programming. There are at most || I||"
possible satisfying assignments for each bag.
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Hypertree width

Theorem: [Gottlob et al. '99] For every w, there is a polynomial-time algorithm
for solving CSP on instances with hypergraphs having hypertree width at most

w.

Algorithm: Bottom up dynamic programming. There are at most || I||"
possible satisfying assignments for each bag.

Generalization: Is there some more general property that makes the number
of satisfying assignments of a bag polynomial?
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(Fractional) edge covering

An edge cover of a hypergraph is a subset of the edges such that every vertex
IS covered by at least one edge.
o(H): size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every
vertex is covered by total weight at least 1.
o” (H): smallest total weight of a fractional edge cover.
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(Fractional) edge covering

An edge cover of a hypergraph is a subset of the edges such that every vertex
IS covered by at least one edge.

o(H): size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every
vertex is covered by total weight at least 1.

o” (H): smallest total weight of a fractional edge cover.
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Fractional edge covering

Lemma: (trivial) If the hypergraph of the instance has edge covering number
w, then there are at most || I||* satisfying assignments.

Lemma: If the hypergraph of the instance has fractional edge covering number
w, then there are at most || I||* satisfying assignments.

This can be shown using the following combinatorial lemma:

Shearer's Lemma: Let H = (V, E) be a hypergraph, and let A, A, ...,
A, be (not necessarily distinct) subsets of V' such that each v € V' is
contained in at least g of the A;’s. Denote by E; the edge set of the
hypergraph projected to A;. Then

p
E| <[] 1E:|Y.

=1
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Fractional edge covering

Lemma: (trivial) If the hypergraph of the instance has edge covering number
w, then there are at most || I||* satisfying assignments.

Lemma: If the hypergraph of the instance has fractional edge covering number
w, then there are at most || I||* satisfying assignments, and they can be
enumerated in || I||°) time.

This can be shown using the following combinatorial lemma:

Shearer’'s Lemma: Let H = (V, E) be a hypergraph, and let A4, A2, ...,
A, be (not necessarily distinct) subsets of V' such that each v € V' is
contained in at least q of the A;’s. Denote by FE; the edge set of the
hypergraph projected to A;. Then

b
E| < ] 1E:"°.

1=1
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Fractional hypertree width

In a fractional hypertree decomposition of width w, bags of vertices are
arranged in a tree structure such that

1. If w and v are connected by an edge, then there is a bag containing both of
them.

2. For every vertex v, the bags containing v form a connected subtree.
3. A fractional edge cover of weight w is given for each bag.

Fractional hypertree width: width of the best decomposition.

Constraint Solving via Fractional Edge Covers — p.13/16



Fractional hypertree width

In a fractional hypertree decomposition of width w, bags of vertices are
arranged in a tree structure such that

1. If w and v are connected by an edge, then there is a bag containing both of
them.

2. For every vertex v, the bags containing v form a connected subtree.
3. A fractional edge cover of weight w is given for each bag.

Fractional hypertree width: width of the best decomposition.

Theorem: For every w, there is a polynomial-time algorithm for solving CSP if
a fractional hypertree decomposition of width at most w is given in the input.

? Currently we do not know if deciding fractional hypertree width < w

= IS possible in polynomial time for every fixed value of w.
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Law enforcement on graphs

Robber and Cops Game: k cops try to capture a rob-
ber in the graph.

In each step, the cops can move from vertex to =
vertex arbitrarily with helicopters.

The robber moves infinitely fast, and sees where
the cops will land.

The robber cannot go through the vertices blocked
by the cops.
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Law enforcement on graphs

Robber and Cops Game: k cops try to capture a rob-
ber in the graph.

In each step, the cops can move from vertex to
vertex arbitrarily with helicopters.

The robber moves infinitely fast, and sees where
the cops will land.

The robber cannot go through the vertices blocked
by the cops.

Theorem: [Seymour and Thomas '93]
k cops can win the game <= the tree width of the graph is at most & — 1.

The winner of the game can be determined in n€*) time = tree width < k
can be checked in polynomial time for fixed k.
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Law enforcement on hypergraphs

Robber and Marshals:

Played on a hypergraph, a marshal can occupy an edge blocking all the
vertices of the edge at the same time.

Theorem: [Adler et al. '05] k£ marshals can win the game if hypertree width is
< k, and they cannot win the game if hypertree width is > 3k + 1.

= n?®) algorithm for approximating the hypertree width.
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Law enforcement on hypergraphs

Robber and Marshals:

Played on a hypergraph, a marshal can occupy an edge blocking all the
vertices of the edge at the same time.

Theorem: [Adler et al. '05] k£ marshals can win the game if hypertree width is
< k, and they cannot win the game if hypertree width is > 3k + 1.

= n?®) algorithm for approximating the hypertree width.

Robber and Army:

A general has k battalions. A battalion can be divided arbitrarily, each part can
be assigned to an edge. A vertex is blocked if it is covered by one full battalion.
Theorem: k battalions can win the game if fractional hypertree width is < k,
and they cannot win the game if fractional hypertree width is > 3k + 2.

We don’t know how to turn this result into an algorithm
(there are too many army positions).
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Conclusions

CSP where constraints are represented as lists of satisfying tuples.

Bounded tree width and bounded hypertree width make the problem
polynomial-time solvable.

New: Bounded fractional edge cover number.
New: ractional hypertree width.
Open: finding fractional hypertree decompositions.

Robber and Army Game: equivalent to fractional hypertree width (up to a
constant factor).

Are there other classes of hypergraphs where CSP is easy? Can we prove
that bounded fractional hypertree width is best possible?
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