The Complexity Landscape of Fixed-Parameter Directed Steiner Network Problems

Dániel Marx

Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

(Joint work with Andreas Feldmann)

SIWAG 2016 Polignano a Mare September 26, 2016

STEINER TREE

STEINER TREE Given an edge-weighted graph G and set $T \subseteq V(G)$ of terminals, find a minimum-weight tree in G containing every vertex of T.

STEINER TREE

Some known results:

- NP-hard
- Easy 2-approximation: use a minimum spanning tree.
- 1.386-approximation [Byrka et al. 2013].
- 3^k · n^{O(1)} time algorithm for k terminals using dynamic programming (i.e., fixed-parameter tractable parameterized by the number of terminals)
- Can be improved to 2^k · n^{O(1)} time using fast subset convolution [Björklund et al. 2006].

STEINER FOREST

STEINER FOREST

Given an edge-weighted graph G and a list $(s_1, t_1), \ldots, (s_k, t_k)$ of pairs of terminals, find a minimum-weight forest in G that connects s_i and t_i for every $1 \le i \le k$.

Fixed-parameter tractable parameterized by k: Guess a partition of the 2k terminals $(k^{O(k)} = 2^{O(k \log k)})$ possibilities) and solve a STEINER TREE for each class of the partition.

Variants of STEINER TREE

STEINER FOREST

Create connections satisying every request

Variants of STEINER TREE

DIRECTED STEINER vs. SCSS

The DP for $\ensuremath{\operatorname{Steiner}}$ $\ensuremath{\operatorname{Tree}}$ generalizes to the directed version:

DIRECTED STEINER TREE with k terminals can be solved in time $2^k \cdot n^{O(1)}$.

DIRECTED STEINER vs. SCSS

The DP for STEINER TREE generalizes to the directed version:

DIRECTED STEINER TREE with k terminals can be solved in time $2^k \cdot n^{O(1)}$.

 SCSS seems to be much harder:

Theorem [Feldman and Ruhl 2006]

STRONGLY CONNECTED STEINER SUBGRAPH with k terminals can be solved in time $n^{O(k)}$.

Theorem [Chitnis, Hajiaghayi, and M. 2014]

Assuming ETH, STRONGLY CONNECTED STEINER SUBGRAPH is W[1]-hard and has no $f(k)n^{o(k/\log k)}$ time algorithm for any function f.

DIRECTED STEINER NETWORK

Theorem [Feldman and Ruhl 2006]

DIRECTED STEINER NETWORK with k requests can be solved in time $n^{O(k)}$.

Corollary: STRONGLY CONNECTED STEINER SUBGRAPH with k terminals can be solved in time $n^{O(k)}$.

Proof is based on a "pebble game": O(k) pebbles need to reach their destinations using certain allowed moves, tracing the solution.

DIRECTED STEINER NETWORK

A new combinatorial result:

Theorem [Feldmann and M. 2016]

[The underlying undirected graph of] every minimum cost solution of DIRECTED STEINER NETWORK with k requests has cutwidth and treewidth O(k).

DIRECTED STEINER NETWORK

A new combinatorial result:

Theorem [Feldmann and M. 2016]

[The underlying undirected graph of] every minimum cost solution of DIRECTED STEINER NETWORK with k requests has cutwidth and treewidth O(k).

A new algorithmic result:

Theorem [Feldmann and M. 2016]

If a DIRECTED STEINER NETWORK instance with k requests has a minimum cost solution with treewidth w [of the underlying undirected graph], then it can be solved in time $f(k, w) \cdot n^{O(w)}$.

Corollary: A new proof that DSN and SCSS can be solved in time $f(k)n^{O(k)}$.

Special cases of DIRECTED STEINER NETWORK

DIRECTED STEINER TREE and STRONGLY CONNECTED STEINER SUBGRAPH are both restrictions of DIRECTED STEINER NETWORK to certain type of patterns:

Goal: characterize the patterns that give rise to $\mathsf{FPT}/\mathsf{W}[1]$ -hard problems.

Question:

What is the complexity of $\ensuremath{\mathsf{DIRECTED}}$ STEINER Network for this pattern?

Question:

What is the complexity of $\ensuremath{\mathsf{DIRECTED}}$ STEINER Network for this pattern?

Answer:

DIRECTED STEINER NETWORK has an $n^{O(k)}$ algorithm for k requests, so it is polynomial-time solvable for every fixed pattern.

Goal: For every class of \mathcal{H} of directed patterns, characterize the complexity of DIRECTED STEINER NETWORK when restricted to demand patterns from \mathcal{H} .

Example:

- If \mathcal{H} is the class of all directed in-stars (or out-stars), then \mathcal{H} -DSN is FPT.
- If \mathcal{H} is the class of all directed cycles, then \mathcal{H} -DSN is W[1]-hard.

Goal: For every class of \mathcal{H} of directed patterns, characterize the complexity of DIRECTED STEINER NETWORK when restricted to demand patterns from \mathcal{H} .

Example:

- If \mathcal{H} is the class of all directed in-stars (or out-stars), then \mathcal{H} -DSN is FPT.
- If \mathcal{H} is the class of all directed cycles, then \mathcal{H} -DSN is W[1]-hard.

Main result:

Theorem [Feldmann and M. 2016]

For any class $\mathcal H$ of directed patterns,

- \bullet if ${\cal H}$ has combinatorial property X, then ${\cal H}\text{-}{\rm DSN}$ and
- \mathcal{H} -DSN is W[1]-hard otherwise.

What classes \mathcal{H} give FPT cases of \mathcal{H} -DSN?

We know that out-stars are FPT.

What classes \mathcal{H} give FPT cases of \mathcal{H} -DSN?

This is also FPT: minimal solutions have bounded treewidth.

What classes \mathcal{H} give FPT cases of \mathcal{H} -DSN?

This is also FPT: minimal solutions have bounded treewidth.

What classes \mathcal{H} give FPT cases of \mathcal{H} -DSN?

 \mathcal{C}_{λ} : in- or out-caterpillar of length λ .

Lemma

If the pattern is in C_{λ} , then every minimal solution has treewidth $O(\lambda^2)$.

What about this pattern?

Lemma

If the pattern is **transitively equivalent** to a member of C_{λ} , then every minimal solution has treewidth $O(\lambda^2)$.

What classes \mathcal{H} give FPT cases of \mathcal{H} -DSN?

 $\mathcal{C}_{\lambda,\delta}$: in- or out-caterpillar of length λ with δ additional edges.

Lemma

If the pattern is **transitively equivalent** to a member of $C_{\lambda,\delta}$, then every minimal solution has treewidth $O((1 + \lambda)(\lambda + \delta))$.

Theorem

If every $H \in \mathcal{H}$ is **transitively equivalent** to a member of $\mathcal{C}_{\lambda,\delta}$ for some constants $\lambda, \delta \geq 0$, then \mathcal{H} -DSN is FPT.

Does this cover all the FPT cases?

Theorem

If every $H \in \mathcal{H}$ is transitively equivalent to a member of $\mathcal{C}_{\lambda,\delta}$ for some constants $\lambda, \delta \geq 0$, then \mathcal{H} -DSN is FPT.

Does this cover all the FPT cases?

W[1]-hard special cases

We show that the following classes \mathcal{H} make \mathcal{H} -DSN W[1]-hard:

flawed out-diamonds

flawed in-diamonds

Identifying terminals

If H' is obtained from H by identifying terminals, then the problem cannot be harder for H' than for H:

 \Rightarrow We can assume that \mathcal{H} is closed under identifying terminals.

Combinatorial classification

The following combinatorial result connects the algorithmic and the hardness results:

Theorem

Let \mathcal{H} be a class of patterns closed under identifying terminals and transitive equivalence. Then exactly one of the following holds:

- There are constants λ, δ such that every $H \in \mathcal{H}$ is transitively equivalent to a member of $\mathcal{C}_{\lambda,\delta}$
- \bigcirc \mathcal{H} contains either
 - all directed cycles,
 - all in-diamonds,
 - all out-diamonds,
 - all flawed in-diamonds, or
 - all flawed out-diamonds.

Our main result:

Theorem [Feldmann and M. 2016]

Let \mathcal{H} be a class of patterns.

- If there are constants λ, δ such that every $H \in \mathcal{H}$ is transitively equivalent to a member of $\mathcal{C}_{\lambda,\delta}$, then \mathcal{H} -DSN is FPT,
- 2 and it is W[1]-hard otherwise.