
The limited blessing of low dimensionality: when 1− 1/d
is the best possible exponent for d-dimensional geometric

problems

[Extended Abstract]

Dániel Marx
∗

Institute of Computer Science and Control
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary
dmarx@cs.bme.hu

Anastasios Sidiropoulos
Dept. of Computer Science & Engineering,

and Dept. of Mathematics
The Ohio State University

Columbus, OH, USA
sidiropoulos.1@osu.edu

ABSTRACT
We are studying d-dimensional geometric problems that have
algorithms with 1−1/d appearing in the exponent of the run-

ning time, for example, in the form of 2n1−1/d

or nk1−1/d

.
This means that these algorithms perform somewhat better
in low dimensions, but the running time is almost the same
for all large values d of the dimension. Our main result is
showing that for some of these problems the dependence on
1 − 1/d is best possible under a standard complexity as-
sumption. We show that, assuming the Exponential Time
Hypothesis,

• d-dimensional Euclidean TSP on n points cannot be

solved in time 2O(n1−1/d−ε) for any ε > 0, and

• the problem of finding a set of k pairwise nonintersect-
ing d-dimensional unit balls/axis parallel unit cubes

cannot be solved in time f(k)no(k1−1/d) for any com-
putable function f .

These lower bounds essentially match the known algorithms
for these problems. To obtain these results, we first prove
lower bounds on the complexity of Constraint Satisfaction
Problems (CSPs) whose constraint graphs are d-dimensional
grids. We state the complexity results on CSPs in a way to
make them convenient starting points for problem-specific
reductions to particular d-dimensional geometric problems
and to be reusable in the future for further results of similar
flavor.

∗Research supported by the European Research Council
(ERC) grant “PARAMTIGHT: Parameterized complexity
and the search for tight complexity results,” reference 280152
and OTKA grant NK105645.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
SoCG’14, June 8–11, 2014, Kyoto, Japan.
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-2594-3/14/06 ...$15.00.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computa-
tions on discrete structures

General Terms
Theory

1. INTRODUCTION
The curse of dimensionality is a ubiquitous phenomenon

observed over and over again for geometric problems: poly-
nomial-time algorithms that work for low dimensions quickly
become infeasible in high dimensions, as the running time
depends exponentially on the dimension d. Consider, for
example, the Euclidean k-center problem, which can be for-
mulated as follows: given a set of P points in d-dimensions,
find a set of k unit balls whose union covers P . For k = 1, the
problem can be solved in linear time [30], but the problem
becomes NP-hard even for k = 2 [31] and only algorithms

with running time of the form nO(d) is known [2]. In recent
years, the framework of W[1]-hardness has been used to give
evidence that for several problems (including Euclidean 2-
center), the exponent of n has to depend on the dimension
d; in fact, for many of these problems tight lower bounds
have been given that show that no no(d) algorithm is pos-
sible under standard complexity assumptions [13, 14, 7, 23,
22, 12, 6, 8].

For certain other geometric problems, however, the di-
mension d affects the complexity of the problem in a very
different way. Consider, for example, the classical Trav-
eling Salesperson Problem (TSP): given a distance metric
on a set of n points, the task is to find a shortest path1

visiting all n points. This problem can be solved in time
2n · nO(1) using a well-known dynamic programming algo-
rithm of Bellman [5] and of Held and Karp [20] that works
for any metric. However, in the special case when the points

1This variant of TSP is also known as path-TSP. Our lower
bound also holds for tour-TSP, i.e. the variant where one
seeks to find a cycle visiting all vertices. In order to simplify
the discussion, we restrict our attention to path-TSP for
now; on Section 4 we explain how our proof can be modified
to obtain the same lower bound for cycle-TSP.

are in d-dimensional Euclidean space, TSP can be solved

in time 2dO(d)

· nO(dn1−1/d) by an algorithm of Smith and
Wormald [34], that is, treating d as a fixed constant, the

running time is nO(n1−1/d) = 2O(n1−1/d·logn) = 2O(n1−1/d+ε)

for every ε > 0. This means that, as the dimension d grows,
the running time quickly converges to the 2n · nO(1) time of
the standard dynamic programming algorithm that does not
exploit any geometric property of the problem. On the other
hand, when the dimension d is small, the algorithm has a
moderate gain over dynamic programming: for example, for

d = 2, we have 2O(
√
n logn) instead of 2n ·nO(1). This behav-

ior is very different compared to the nO(d) running time of
algorithms for problems affected by the curse of dimension-
ality: for those problems, complexity gets constantly worse
and worse as d grows, while for TSP the complexity is essen-
tially the same for all large values of d. Therefore, we may
call this phenomenon observed for d-dimensional TSP the
“limited blessing of low dimensionality”: the running time is
almost uniformly bad for large values of d, but some amount
of improvement can be achieved for low dimensions.

A slightly different example of the same phenomenon ap-
pears in the case of packing problems. Consider the follow-
ing problem: Given a set of n unit balls in d-dimensional
space and an integer k, the task is to find k pairwise disjoint
balls, or in other words, we have to find an independent
set of size k in the intersection graph of the balls. Clearly,
this can be done in time nO(k) by brute force for any inter-
section graph. However, using the geometric nature of the

problem, one can reduce the running time to nO(k1−1/d) (for
d = 2, this has been proved by Alber and Fiala [3]; in Ap-
pendix 5, we sketch a simple algorithm for any d ≥ 2 based
on a standard sweeping argument and dynamic program-
ming2). Again, we are in a similar situation as in the case
of d-dimensional TSP: as d grows, the running time quickly
converges to the nO(k) running time of brute force, but there
is a moderate improvement for low dimensions (for example,

nO(
√
k) vs. nO(k) for d = 2).

Our results. Can we make the blessing of low dimension-
ality more pronounced? That is, can we improve 1− 1/d in
the exponent of the running time of the algorithms described
above to something like 1−1.1/d or 1−1/

√
d? The main re-

sult of the current paper is showing that the exponent 1−1/d
is best possible for these problems. We prove these results
under the complexity assumption called Exponential Time
Hypothesis (ETH), introduced by Impagliazzo, Paturi, and
Zane [21], stating that n-variable 3SAT cannot be solved in

time 2o(n). This complexity assumption is the basis of tight
lower bounds for many problems, see the survey of Loksh-
tanov et al. [25].

For d-dimensional TSP, we prove the following result:

Theorem 1.1. If for some d ≥ 2 and ε > 0, TSP in d-

dimensional Euclidean space can be solved in time 2O(n1−1/d−ε),
then ETH fails.

Note that this lower bound essentially matches the 2O(n1−1/d+ε)

time algorithm of Smith and Wormald [34]. For packing
problems, we have the following results:

Theorem 1.2. If for some d ≥ 2 and computable func-

tion f , there is a f(k)no(k1−1/d) time algorithm for finding
2We thank Sariel Har-Peled for suggesting this approach for
the algorithm.

k pairwise nonintersecting d-dimensional balls/axis-parallel
cubes, then ETH fails.

That is, the exponent k1−1/d cannot be improved, even if we
allow an arbitrary dependence f(k) as a multiplicative con-
stant. That is, in the language of parameterized complex-
ity, we are not only proving that the problem is not fixed-
parameter tractable, but we also give a tight lower bound
on the dependence of the exponent on the parameter k.

To prove Theorems 1.1 and 1.2, we first develop gen-
eral tools for approaching d-dimensional geometric prob-
lems. We formulate complexity results in the abstract set-
ting of Constraint Satisfaction Problems (CSPs) whose con-
straint graphs are d-dimensional grids. These results faith-
fully capture the influence of the number d of dimensions on
problem complexity and are stated in a way to facilitate fur-
ther reductions to d-dimensional geometric problems. Then
we can obtain Theorems 1.1 and 1.2 by problem-specific re-
ductions that are mostly local and do not depend very much
on the number of dimensions. We believe that our results
for d-dimensional CSPs could serve as a useful starting point
for proving further results of this flavor for geometric prob-
lems. Producing an exhaustive list of such results was not
the goal of the current paper; instead, we wanted to demon-
strate that 1− 1/d in the exponent can be the best possible
dependence on the dimension, build the framework for prov-
ing such lower bounds, and provide a sample of results on
concrete problems.

Let us remark that the results in Theorems 1.1–1.2 were
already known for the special case of d = 2. Papadimitriou
[32] proved the NP-hardness of Euclidean TSP in d = 2
dimensions by a reduction from Exact-Cover: given an
instance of Exact-Cover with universe size n and m sub-
sets, the reduction creates an equivalent instance of TSP
with O(nm) points. It can be shown that an instance of
3-Coloring with n vertices and m edges can be reduced to
an instance of Exact-Cover with universe size O(n + m)

and number of sets O(n + m). Therefore, a 2o(
√
n) algo-

rithm for TSP in d = 2 dimensions would give a 2o(n+m)

time algorithm for 3-Coloring, contradicting ETH [25].
Marx [26] proved the W[1]-hardness of finding k pairwise

nonintersecting unit disks (in d = 2 dimensions) by a re-
duction from k-Clique. The reduction maps an instance
of k-Clique to a set of disks where k′ := k2 independent
disks have to be found. By a result of Chen et al. [10], if

k-Clique can be solved in time f(k)no(k) for some com-
putable function f , then ETH fails. Putting together the
result of Chen et al. [10] and the reduction of Marx [26], we
get Theorem 1.2 for d = 2.

For d ≥ 3 dimensions, however, the tight lower bounds be-
come much harder to obtain. As we shall see, the hardness
proofs rely on constructing embeddings into d-dimensional
grids. For d = 2, this can be achieved by simple and ele-
mentary arguments, but the tight results for d ≥ 3 require
more delicate constructions.

Constraint satisfaction problems. We use the lan-
guage of CSPs to express the basic lower bounds in a way
that is not specific to any geometric problem. A CSP is de-
fined by a set V of variables, a domain D from which the
variables can take values, and a set of constraints on the vari-
ables. In the current paper, we consider only CSPs where
every constraint is binary, that is, involves only two vari-
ables and restricts the possible combination of values that

can appear on those two variables in a solution (see Section 2
for definitions related to CSPs). It is important to point out
that one can consider CSPs where the size of the domain D
is a fixed small constant (e.g., 3-Coloring on a graph G
can be reduced to a CSP with |V (G)| variables and |D| = 3)
or CSPs where the domain size is large, much larger than
the number of variables (e.g., k-Clique on a graph G can
be reduced to a CSP with k variables and |D| = |V (G)|).
We will need both viewpoints in the current paper.

Intuitively, it is clear how a hardness proof for a d-di-
mensional geometric problem should proceed. We construct
small gadgets able to represent a certain number of states
and put copies of these gadgets at certain locations in d-
dimensional space. Then each gadget can interact with the
at most 2d gadgets that are “adjacent” to it in one of the
d dimensions. The gadgets should be constructed to ensure
that each such interaction enforces some binary constraint
on the states of the two gadgets. Therefore, we can effec-
tively express a CSP where the variables are located on the
d-dimensional grid and the binary constraints are only on
adjacent variables. This means that we need lower bounds
on the complexity of such CSPs. In particular, we would
like to understand the complexity of CSPs where the graph
of constraints is exactly a d-dimensional grid.

There is a large body of literature on how structural re-
strictions, that is, restrictions on the constraint graph influ-
ences the complexity of CSP [9, 17, 1, 18, 15, 19, 28, 27,
29, 16]. Specifically, we need a general result of Marx [28]
stating that, in a precise technical sense, treewidth of the
constraint graph governs the complexity of the problem.
Roughly speaking, the result states that, assuming the Ex-
ponential Time Hypothesis, there is no |D|o(tw(G)/ log tw(G))

time algorithm for CSP (where tw(G) is the treewidth of
the constraint graph) and this holds even if we restrict the
constraint graph to any class of graphs. Therefore, if we re-
strict CSP to instances where the constraint graph is the
d-dimensional grid with k = md vertices for some m, then
the known fact that such a d-dimensional grid has treewidth

O(md−1) = O(k1−1/d) implies that there is no |D|o(k
1−1/d/ log k)

time algorithm for such CSPs. Therefore, in a sense, the con-
nection to treewidth given by [28] and the treewidth of the
d-dimensional grid explain why 1−1/d is the right exponent
for the d-dimensional geometric problems we are consider-
ing.

We still have some work left to prove Theorems 1.1–1.2.
First, as a minor issue, we remove the log factor from the
lower bound obtained above for CSPs whose constraint graph
is a d-dimensional grid and improve it to the tight bound rul-

ing out |D|o(k
1−1/d) time algorithms. The general result of

[28] is a based on constructing certain embeddings exploiting
the treewidth of the constraint graph. However, by focusing
on a specific class of graphs, we can obtain slightly bet-
ter embeddings and therefore improve the lower bound. In
particular, Alon and Marx [4] gave an embedding of an arbi-
trary graph into a d-dimensional Hamming graph (general-
ized hypercube) and it is easy to embed a (d−1)-dimensional
Hamming graph into a d-dimensional grid. These embed-
dings together prove the tighter lower bound. Second, we
modify the CSPs to make them more suited to reductions to
geometric problems. In these CSPs, the domain is [δ]d for
some integer δ, that is, the solution assigns every variable
a d-tuple of integers as a value. Every constraint is of the
same form: if variables v1 and v2 are adjacent in the i-th di-

mension (with v2 being larger by one in the i-th coordinate),
then the constraint requires that the i-th component of the
value of v1 is at most the i-th component of the value of
v2. Then problem-specific, but very transparent reductions
from these CSPs to packing unit disks or unit cubes prove
Theorem 1.2.

To prove Theorem 1.1, we need a slightly different ap-
proach. The issue is that the general result of [28] holds
only if there is no bound on the domain size. Thus we need
a reduction to TSP that works even if the domain size is
much larger than the number of variables. However, if we
have k variables and domain size |D|, then probably the best
we can hope for is a reduction to TSP with n = O(|D|k) or
so points (and even this is only under the assumption that we
can construct gadgets with O(|D|) points to represent each
variable and each constraint, which is far from obvious).

But then a 2O(n1−1/d−ε) time algorithm for d-dimensional

TSP would give only a 2O(|D|k)1−1/d−ε
time algorithm for

CSP, which would not violate the lower bound ruling out

|D|o(k
1−1/d) time algorithms. Therefore, we prove a vari-

ant of the lower bound stating that there is a constant δ

such that there is no 2O(k1−1/d−ε) time algorithm for CSP
on d-dimensional grids even under the restriction |D| ≤ δ.
Again, we prove this lower bound by revisiting the embed-
ding results into d-dimensional grids and Hamming graphs.
Then a problem-specific reduction reusing some of the ideas
of Papadimitriou [32] for the d = 2 case proves Theorem 1.1.
Interestingly, our reduction exploits the fact d ≥ 3: this al-
lows us to express arbitrary binary relations in an easy way
without having to worry about crossings.

2. CONSTRAINT SATISFACTION
PROBLEMS

Understanding constraint satisfaction problems (CSPs) whose
constraint graphs are d-dimensional grids seems to be a very
convenient starting point for proving lower bounds on the
complexity of d-dimensional geometric problems. In this
section, we review the relevant background on CSPs and
prove the basic complexity results that will be useful for the
lower bounds on specific d-dimensional geometric problems.

Definition 2.1. An instance of a constraint satisfaction
problem is a triple (V,D,C), where:

• V is a set of variables,

• D is a domain of values,

• C is a set of constraints, {c1, c2, . . . , cq}. Each con-
straint ci ∈ C is a pair 〈si, Ri〉, where:

– si is a tuple of variables of length mi, called the
constraint scope, and

– Ri is an mi-ary relation over D, called the con-
straint relation.

For each constraint 〈si, Ri〉 the tuples of Ri indicate the al-
lowed combinations of simultaneous values for the variables
in si. The length mi of the tuple si is called the arity of the
constraint. A solution to a constraint satisfaction problem
instance is a function f from the set of variables V to the do-
main of values D such that for each constraint 〈si, Ri〉 with
si = (vi1 , vi2 , . . . , vim), the tuple (f(vi1), f(vi2), . . . , f(vim))

is a member of Ri. We say that an instance is binary if each
constraint relation is binary, i.e., mi = 2 for each constraint
(hence the term“binary”refers to the arity of the constraints
and not to the size of the domain). Note that Definition 2.1
allows for a variable to appear multiple times in the scope
of the constraint. Thus a binary instance can contain a con-
straint of the form 〈(v, v), R〉, which is essentially a unary
constraint. We will deal only with binary CSPs in this pa-
per. We may assume that there is at most one constraint
with the same scope, as two constraints 〈s,R1〉 and 〈s,R2〉
can be merged into a single constraint 〈s,R1 ∩ R2〉. There-
fore, we may assume that the input size |I| of a binary CSP
instance is polynomial in |V | and |D|, without going into the
details of how the constraints are exactly represented.

The primal graph (or Gaifman graph) of a CSP instance
I = (V,D,C) is a graph with vertex set V such that dis-
tinct vertices u, v ∈ V are adjacent if and only if there is
a constraint whose scope contains both u and v. The fol-
lowing classical result shows that treewidth of the primal
graph is a relevant parameter to the complexity of CSPs:
low treewidth implies efficient algorithms.

Theorem 2.2 (Freuder [11]). Given a binary CSP in-
stance I whose primal graph has treewidth w, a solution can
be found in time |I|O(w).

The d-dimensional grid R[n, d] has vertex set [n]d and ver-
tices a = (a1, . . . , ad) and b = (b1, . . . , bd) are adjacent if and

only if
∑d

i=1 |ai − bi| = 1, that is, they differ in exactly one
coordinate and only by exactly one in that coordinate. In
other words, if we denote by ei the unit vector whose i-th
coordinate is 1 and every other coordinate is 0, then b is the
neighbor of a only if b is of the form a + ei or a − ei for
some 1 ≤ i ≤ d. Note that the maximum degree of R[n, d]
is 2d (for n ≥ 3). We denote by Rd the set of graphs R[n, d]
for every n ≥ 1. For every fixed d, the treewidth of the
d-dimensional grid is Θ(nd−1) (this is proved for the related
notion of carving width by Kozawa et al. [24], but carving
width is known to be between tw(G)/3 and ∆tw(G), where
∆ is the maximum degree [35]).

Proposition 2.3 (Kozawa et al. [24]). For any fixed

d ≥ 2, the treewidth of R[n, d] is Θ(nd−1) = Θ(|V (R[n, d])|1−1/d).

Theorem 2.2 and Proposition 2.3 together imply that, for
every fixed d, CSPs restricted to instances where the primal
graph is a d-dimensional grid R[n, d] can be solved in time

|I|O(nd−1) = |I|O(|V |1−1/d).
A result of Marx [28] provides a converse of Theorem 2.2

showing, in a precise technical sense, that it is indeed the
treewidth of the primal graph that determines the complex-
ity. This very general result can be used to provide an almost
matching lower bound on the complexity of solving CSPs on
a d-dimensional grid. For a class G of graphs, let us denote
by CSP(G) the binary CSP problem restricted to instances
whose primal graph is in G.

Theorem 2.4 (Marx [28]). If there is a recursively enu-
merable class G of graphs with unbounded treewidth, an algo-
rithm A, and a function f such that A correctly decides every
binary CSP(G) instance in time f(|V |)|I|o(tw(G)/ log tw(G)),
then ETH fails.

Theorem 2.4 and Proposition 2.3 together imply the follow-
ing lower bound:

Corollary 2.5. For every fixed d ≥ 2, there is no

f(|V |)|I|o(|V |
1−1/d/ log |V |) algorithm for CSP(Rd) for any

function f , unless ETH fails.

We extend Corollary 2.5 in two ways. First, by an analysis
specific to the class Rd of graphs at hand and avoiding the
general tools used in the proof of Theorem 2.4, we can get
rid of the logarithmic factor in the exponent, making the
result tight.

Theorem 2.6. [∗] For every fixed d ≥ 2, there is no

f(|V |)|I|o(|V |
1−1/d) algorithm for CSP(Rd) for any function

f , unless ETH fails.

Second, observe that Theorem 2.4 does not give any lower
bound for the restriction of the problem to instances with
domain size bounded by a fixed constant δ. In fact, no such
strong negative result as Theorem 2.4 can hold for instances
with domain size restricted to δ: as the size of the instance
is bounded by a function of |V | and δ, it can be solved in
time f(|V |) for some function f (assuming δ is a constant).
Therefore, we prove a bound of the following form:

Theorem 2.7. [∗] For every fixed d ≥ 2, there is a con-

stant δd such that there is no 2O(|V |1−1/d−ε) algorithm for
CSP(Rd) with domain size at most δd for any ε > 0, unless
ETH fails.

For the proof of Theorem 2.6 we show how d-dimensional
Hamming graphs can be embedded into (d+ 1)-dimensional
grids and then invoke a lower bound on d-dimensional Ham-
ming graphs by Alon and Marx [4]. To prove Theorem 2.7,
we need to tighten the lower bound on d-dimensional Ham-
ming graphs by revisiting the embedding result of Alon and
Marx [4]. Interestingly, this can be done in two ways: either
by a construction similar to the one by Alon and Marx [4]
together with the randomized rounding of Raghavan and
Thompson [33] or by deducing it from the connection be-
tween multi-commodity flows and graph Laplacians. Due to
lack of space, the proofs of Theorems 2.6 and 2.7 are given
in the full version of this paper.

2.1 Geometric CSP problems
In this section, we give lower bounds for CSP problems

of certain special forms that are particularly suited for re-
ductions to d-dimensional geometric problems. First, we
consider CSPs where every constraint satisfies the following
property: we say that a constraint 〈(u, v), R〉 is a projec-
tion from u to v if for every x ∈ D, there is at most one
y ∈ D such that (x, y) ∈ R (a projection from v to u is
defined analogously). In other words, the relation R is of
the form {(x, y) | y = p(x)} for some function p; we call
this function p the projection function associated with the
projection constraint. A CSP instance is a projection CSP
if every binary constraint is a projection; in addition to the
binary constraint, the instance may contain any number of
unary constraints. Note that an edge uv in the undirected
primal graph of a projection CSP does not tell us whether
the corresponding constraint is a projection from u to v, or
a projection from v to u.

Proposition 2.8. [∗] There is a polynomial time algo-
rithm that, given a CSP instance I on R[n, d] and domain D,
creates an equivalent projection CSP instance I ′ on R[2n, d]
and domain D2.

A d-dimensional geometric ≤-CSP is a CSP of the fol-
lowing form. The set V of variables is a subset of the
vertices of R[n, d] for some n and the primal graph is an
induced subgraph of R[n, d] (that is, if two variables are
adjacent in R[n, d], then there is a binary constraint on
them). The domain is [δ]d for some integer δ ≥ 1. The
instance can contain arbitrary unary constraints, but the
binary constraints are of a special form. A geometric con-
straint is a constraint 〈(a,a′), R〉 is with a′ = a + ei such
that R = {((x1, . . . , xd), (y1, . . . , yd)) | xi ≤ yi}. In other
words, if a and a′ are adjacent with a′ being larger by one
in the i-th coordinate, then the i-th coordinate of the value
of a′ should be at least as large as the i-th coordinate of
the value of a. Note that a d-dimensional geometric CSP is
fully defined by specifying the set of variables and the unary
constraints: the binary constraints of the instance are then
determined by the definition.

Proposition 2.9. [∗] For every d ≥ 2, given a projection
CSP instance I on R[n, d] and domain D, one can construct
in polynomial time an equivalent d-dimensional geometric
≤-CSP instance I ′ with domain [2|D|+ 1]d and O(nd) vari-
ables.

Theorem 2.6 and Propositions 2.8 and 2.9 imply the fol-
lowing lower bound on geometric CSPs:

Theorem 2.10. If for some fixed d ≥ 1, there is an

f(|V |)no(|V |1−1/d) time algorithm for d-dimensional geomet-
ric ≤-CSP for some function f , then ETH fails.

3. PACKING PROBLEMS
In this section, we prove the lower bounds on packing

d-dimensional unit balls and cubes. These results can be
obtained quite easily from the lower bounds for geometric
CSP problems proved in Section 2.1. For simplicity of no-
tation, we state the results for open balls and cubes, but of
course the same bounds hold for closed balls and cubes.

Theorem 3.1. If for some fixed d ≥ 2, there is an

f(k)no(k1−1/d) time algorithm for finding k pairwise nonin-
tersecting d-dimensional open unit balls in a collection of n
balls, then ETH fails.

Proof. It will be convenient to work with open balls of
diameter 1 (that is, radius 1/2) in this proof: then two balls
are nonintersecting if and only if the distance of their cen-
ters are at least 1. Let I be a d-dimensional ≤-CSP in-
stance on variables V and domain [δ]d. We construct a set
B of d-dimensional balls such that B contains a set of |V |
pairwise nonintersecting balls if and only if I has a satisfy-
ing assignment. Therefore, if we can find k nonintersecting

balls in time f(k)no(k1−1/d), then we can solve I in time

f(k)no(|V |1−1/d). By Theorem 2.10, this would contradict
ETH.

Let ε = 1/(dδ2). Let a = (a1, . . . , ad) be a variable of I
and let 〈(a), Ra〉 be the unary constraint on a. For every
x = (x1, . . . , xd) ∈ Ra ⊆ [δ]d, we introduce into B an open
ball of diameter 1

2
centered at (a1 + εx1, . . . , ad + εxd) =

a + εx; let Ba be the set of these |Ra| balls. Note that the
balls in Ba all intersect each other. Therefore, B′ ⊆ B is
a set of pairwise nonintersecting balls, then |B′| ≤ |V | and
|B′| = |V | is possible only if B′ contains exactly one ball
from each Ba. In the following, we prove that there is such

a set of |V | pairwise nonintersecting balls if and only if I has
a satisfying assignment.

We need the following observation first. Consider two
balls centered at a + εx and a + ei + εx′ for some x =
(x1, . . . , xd) ∈ [δ]d and x′ = (x′1, . . . , x

′
d) ∈ [δ]d. We claim

that they are nonintersecting if and only if xi ≤ x′i. Indeed,
if xi > x′i, then the square of the distance of the two centers
is

i−1∑
j=1

ε2(x′j − xj)2+(1 + ε(x′i − xi))2 +

d∑
j=i+1

ε2(x′j − xj)2

≤ dε2δ2 + (1 + ε(x′i − xi))2

≤ ε+ (1− ε)2 = 1− ε+ ε2 < 1

(we have used x′i, xi ≤ δ in the first inequality and ε =
1/(dδ2) in the second inequality). On the other hand, if
xi ≤ x′i, then the square of the distance is at least (1 +
ε(x′i − xi))2 ≥ 1, hence the two balls do not intersect (recall
that the balls are open). This proves our claim. Moreover,
it is easy to see that if a and a′ are not adjacent in R[n, d],
then the balls centered at a+εx and a′+εx′ cannot intersect
for any x,x′ ∈ [δ]d: the square of the distance of the two
centers is at least 2(1− εδ)2 > 1.

Let f be a satisfying assignment for I. For every variable
a, we select the ball a + εf(a) ∈ Ba. If a and a′ are not
adjacent, then a + εf(a) and a′ + εf(a′) cannot intersect.
If a and a′ are adjacent, then there is a geometric binary
constraint on a and a′. Therefore, if, say, a′ = a + ei,
then the binary constraint ensures that the i-th coordinate
of f(a) is at most the i-th coordinate of f(a′). By our claim
in the previous paragraph, it follows that the balls centered
at a + εf(a) and a′ + εf(a′) do not intersect.

Conversely, let B′ ⊆ B be a set of |V | pairwise indepen-
dent balls. This is only possible if for every a ∈ V , set B′

contains a ball from Ba, that is, centered at a + εf(a) for
some f(a) ∈ [δ]d. We claim that f is a satisfying assign-
ment of I. First, it satisfies the unary constraints: the fact
that a + εf(a) is in Ba implies that f(a) satisfies the unary
constraint on a. Moreover, let a and a′ = a + ei be two ad-
jacent variables. Then, as we have observed above, the fact
that a + εf(a) and a′ + εf(a′) do not intersect implies that
the i-th coordinate of f(a) is at most the i-th coordinate of
f(a′). That is, the geometric binary constraint on a and a′

is satisfied.

The lower bound for packing d-dimensional axis-parallel
unit-side cubes is similar, but there is a slight difference. In
the case of unit balls, as we have seen, balls centered at a+εx
and a+ei+ej+εx′ cannot intersect (if ε is sufficiently small),
but this is possible for unit cubes. Therefore, we represent
each variable with 2d+1 cubes: a cube and its two neighbors
in each of the d dimensions.

Theorem 3.2. [∗] If for some fixed d ≥ 2, there is an

f(k)no(k1−1/d) time algorithm for finding k pairwise nonin-
tersecting d-dimensional open axis-parallel unit cubes in a
collection of n cubes, then ETH fails.

Proof. It will be convenient to work with open cubes of
side length 1 in this proof: then two cubes are nonintersect-
ing if and only if the centers differ by at least 1 in at least
one of the coordinates. Let I be a d-dimensional ≤-CSP
instance on variables V and domain [δ]d. We construct a set
B of d-dimensional axis-parallel cubes such that B contains

a set of (2d + 1)|V | pairwise nonintersecting cubes if and
only if I has a satisfying assignment. Therefore, if we can

find k nonintersecting cubes in time f(k)no(k1−1/d), then we

can solve I in time f(k)no(|V |1−1/d). By Theorem 2.10, this
would contradict ETH.

Let ε = 1/(2δ). Let a = (a1, . . . , ad) be a variable of I
and let 〈(a), Ra〉 be the unary constraint on a. For every
x = (x1, . . . , xd) ∈ Ra ⊆ [δ]d, we introduce into B the cube
centered at 3a + εx, and for every 1 ≤ i ≤ d, the two cubes
centered at 3a + ei + εx and 3a− ei + εx. Let us call Ba,x

this set of 2d+ 1 cubes. Note that the 2d+ 1 cubes in Ba,x

do not intersect each other (recall that the cubes are open).
Moreover, at most 2d+1 pairwise nonintersecting cubes can
be selected from Ba :=

⋃
x∈Ra

Ba,x: for example, the cubes

centered at a + ei + εx and a + ei + εx′ intersect for any
x,x′ ∈ [δ]d.

Let f be a satisfying assignment for I. We show that
selecting the 2d + 1 cubes Ba,f(a) for each variable a ∈ V
gives a set of (2d+1)|V | pairwise nonintersecting cubes. We
claim that if a and a′ are not adjacent, then the cubes in
Ba,f(a) do not intersect the cubes in Ba′,f(a′). First, if a and
a′ differ by at least 2 in some coordinate, then 3a and 3a′

differ by at least 6 in that coordinate and then it is clear that,
e.g., the cubes centered at 3a+ei+εf(a) and 3a′−ej+εf(a′)
cannot intersect (note that εf(a) ≤ εδ ≤ 1/2). On the other
hand, if a and a′ differ in at least two coordinates, then
3a and 3a differ by at least 3 in those two coordinates and
3a + εf(a) and 3a′ + εf(a′) differ by at least 3 − εδ ≥ 2 in
those two coordinates. Then adding two unit vectors to the
centers cannot decrease both differences to strictly less than
1, that is, 3a + ei + εf(a) and 3a + ej + εf(a) differ by at
least 1 in at least one coordinate for any 1 ≤ i, j ≤ d. This
means that the cubes in Ba,f(a) do not intersect the cubes
in Ba′,f(a′). Consider now two variables a and a′ that are
adjacent; suppose that a′ = a+ei. Then there is a geometric
binary constraint on a and a′, which ensures that the i-th
coordinate of f(a) is at most the i-th coordinate of f(a′).
It follows that 3a + ei + εf(a) ∈ Ba,f(a) does not intersect
3a′ − ei + f(a′) ∈ Ba′,f(a′). Furthermore, the other cubes
in Ba,f(a) have i-th coordinate less than the i-th coordinate
of 3a + ei + εf(a) and the other cubes in Ba′,f(a′) have i-th
coordinate greater than the i-th coordinate of 3a′−ei+f(a′),
hence they cannot intersect either.

Conversely, let B′ ⊆ B be a set of (2d + 1)|V | pairwise
independent cubes. This is only possible if for every a ∈ V ,
set B′ contains 2d+ 1 cubes selected from Ba; in particular,
B′ contains a cube centered at 3a + εf(a) for some f(a) ∈
[δ]d. We claim that f is a satisfying assignment of I. First,
it satisfies the unary constraints: the fact that 3a + εf(a) is
in B implies that f(a) satisfies the unary constraint on a.
Moreover, let a and a′ = a + ei be two adjacent variables.
Then, as B′ contains 2d + 1 cubes from each of Ba and
Ba′ , it has to contain cubes 3a + ei + εx1 and 3a′ − ei +
εx2 = 3a + 2ei + εx2 for some x1,x2 ∈ [δ]d. Now the i-
th coordinate of 3a + ei + εx1 cannot be less than the i-th
coordinate of 3a + εf(a), that is, the i-th coordinate of x1

is at least the i-th coordinate of f(a). Similarly, the i-th
coordinate of x2 is at least the i-coordinate of x1, and the
i-th coordinate of f(a′) is at least the i-th coordinate of
x2. Putting together, we get that the i-coordinate of f(a)
is at least the i-th coordinate of f(a), that is, the geometric
binary constraint on a and a′ is satisfied.

Figure 1: A 1-chain from x to y.

4. THE REDUCTION TO TSP
Let d be a positive integer. An instance of TSP in d-

dimensional Euclidean space is a pair ψ = (X,α), where X
is a finite set of points in Rd, and α > 0 is an integer; the
goal is to decide whether the length of the shortest TSP tour
for X is at most α.

Our reduction is inspired by the NP-hardness proof of
TSP in R2 due to Papadimitriou [32]. We remark that our
proof critically assumes d ≥ 3. However, even though we
don’t know how to make our argument work in R2, we can
still recover the desired lower bound on the running time for
d = 2 by the reduction of [32].

We begin by introducing some terminology that will al-
low us to construct the desired TSP instances. Some of
the definitions are from [32]. However, some of them have
been extended for our setting. In particular, we use a more
elaborate construction that takes advantage of the fact that
d ≥ 3.

1-Chains. Let x, y ∈ Rd. A 1-chain from x to y is a
sequence of points {xi}ki=1, with x1 = x, xk = y, such that
for any i ∈ [k − 1], the points xi and xi+1 differ in exactly
one coordinate, and ‖xi − xi+1‖1 = 1 (see Figure 1). We
also require that for any i, j ∈ [k], with |i− j| ≤ 20, we have
‖xi − xj‖1 ≥ ‖i− j‖.

2-Chains. Let x, y ∈ Rd, and let θ ∈ [0, π/100). A
θ-ribbon from x to y is a pair (P,H), where P is a sim-
ple polygonal curve with endpoints x and y, consisting of
k line segments s1, . . . , sk, and H = {Hi}ki=1 is a family of
2-dimensional planes in Rd, satisfying the following condi-
tions:

(I) For any i, j ∈ [k], with |i − j| > 20, for any p ∈ si,
q ∈ sj , we have ‖p− q‖2 > 40.

(II) The segments s1, and sk are of length 1. All other
segments are of length 2.

(III) For every segment si, we have si ⊂ Hi.

(IV) For every two consecutive segments si, si+1, at least
one of the following conditions holds:

(IV-1) Let p be the common endpoint of si, and si+1,
and let ` bet the line in Hi passing through p,
and being normal to si. Then the 2-plane Hi+1 is
obtained by rotating Hi around ` by some angle
of at most θ.

(IV-2) The segments si and si+1 are collinear, and
Hi+1 is obtained by rotating Hi around si by
some angle of at most θ.

Given a θ-ribbon R = (P,H) from x to y, we define a set
of points Y = Y (R), which we refer to as a 2-chain with
angular defect θ (or simply a 2-chain when θ is clear from
the context) from x to y, corresponding to R. We set Y :=

{x, y} ∪
⋃k−1

i=1 {pi, qi}, where for any i, the points pi, qi ∈ Rd

are defined as follows: Let a be the common endpoint of

Figure 2: A 2-chain from x to y (top left), its
schematic abbreviation (top right), and the two pos-
sible optimal paths: mode 1 (bottom left), and mode
2 (bottom right).

Figure 3: A configuration-H (left), its schematic ab-
breviation (middle), and an optimal path from a to
a′ (right).

si, and si+1. Let ` be the line in Hi+1 normal to si+1 that
passes through a. Let pi, qi be the two points in ` that
are at distance 1/2 from a. We assign pi, qi so that for any
two consecutive segments sj , sj+1, with j ∈ {1, . . . , k − 1},
the angle between the vectors pi − qi, and pi+1 − qi+1, is at
most θ (this is always possible since (P,H) is a θ-ribbon).
Notice that there are precisely two distinct possibilities of
assigning the points p1, . . . , pk−1, and q1, . . . , qk−1. We refer
to the points {pi}ki=1 as the left side, and the points {qi}ki=1

as the right side of the 2-chain. This concludes the definition
of a 2-chain (see Figure 2).

Lemma 4.1. There exists a constant θ∗ > 0, such that the
following holds. Let x, y ∈ Rd, and let Y be a 2-chain from x
to y, and with angular defect θ∗. Let {pi}k−1

i=1 , and {qi}k−1
i=1

be the left, and right sides of Y respectively. Then, there
are precisely two optimal Traveling Salesperson paths from
x to y for the set Y : the first one is xp1q1q2p2p3q3 . . . y, and
the second one is xq1p1p2q2q3p3 . . . y. In the former case we
say that Y is traversed in mode 1, and in the latter case in
mode 2.

The configuration-H. We recall the following gadget
from [32]. A set of points Y ⊂ Rd is called a configuration-
H if there exists a 2-plane h containing Y , so that Y on h
appears as in Figure 33.

Lemma 4.2 (Papadimitriou [32]). Among all Travel-
ing Salesperson paths having as endpoints two of the points
in a, a′, b, b′, c, c′, c, d and d′, there are 4 optimal paths
with length 32, namely those with endpoints (a, a′), (b, b′),
(c, c′), (d, d′).

Let (P,H) be a θ-ribbon from x to y, with H = {Hi}ki=1,
and let Y be the corresponding 2-chain. Suppose that there
exists some odd j ∈ {1, . . . , k−15}, such that for any r, r′ ∈
{j, . . . , j+14}, we have Hr = Hr′ . Let Z be a configuration-
H contained in the 2-plane Hj . Suppose further that Z ∪ Y
3The distance that is set to 8 in Figure 3, was set to 6 in the
original construction from [32]. This appears to be a minor
error in [32].

Figure 4: A configuration-H H1 that is a left neigh-
bor of a 2-chain, and its schematic abbreviation
(left). A configuration-H H2 that is a right neighbor
of a 2-chain, and its schematic abbreviation (right).

Figure 5: A configuration-B (left), and its schematic
abbreviation (right).

appear in Hj as in Figure 4 (top). Then, we say that the
configuration-H Z is a left neighbor of the 2-chain Y at j.
Similarly, we define a right neighbor of a 2-chain (see bottom
of Figure 4).

The configuration-B. Following [32], we say that a set
of points Y ⊂ Rd is a configuration B if there exists a 2-
plane h containing Z, so that Z on h appears as in Figure
5.

Let (P,H) be a θ-ribbon from x to y, with H = {Hi}ki=1,
and let Y be the corresponding 2-chain. Suppose that there
exists some odd j ∈ [k − 15], such that for any r, r′ ∈
{j, . . . , j+14}, we have Hr = Hr′ . Let Z be a configuration-
B contained in the 2-plane Hj . Suppose that we replace a
subset of Y by a configuration-B Z, such that Z is contained
in Hj , and is as in figure 6. Then, we say that resulting
point-set Y ′ is obtained by attaching Z to Y at j.

The reduction. Let (V,D,C) be an instance of a bi-
nary constraint satisfaction problem, with primal graph G =
R[n, d]. We may assume w.l.o.g. that every constraint is bi-
nary (i.e. there are no unary constraints).

First, we encode the variables. Let γ = γ(D) be a param-
eter to be determined later. For any r = (r1, . . . , rd) ∈ Zd,
let U(r) := {(x1, . . . , xd) ∈ Rd : for all i ∈ [d], riγ ≤ xi <
(ri + 1)γ}. Let us identify V with [n]d, in the obvious
way. For each u ∈ V , we introduce a family of d 2-chains

Γ(u, 1), . . . ,Γ(u, |D|). We will ensure that
⋃|D|

i=1 Γ(u, i) ⊂
U(u)∪

⋃d
i=1 (U(u− ei) ∪ U(u + ei)), where e1, . . . , ed is the

standard orthonormal basis in Rd. We need to enforce that
in any optimal solution, exactly one of the 2-chains Γ(u, 1),
. . ., Γ(u, |D|) is traversed in mode 2. Intuitively, this will
correspond to assigning the value i to variable u. To that
end, we construct the 2-chains Γ(u, i) such that there exists
a 2-plane h(u, i), where subsets of the 2-chains are arranged
as in Figure 7. Namely, for any i ∈ [|D|] we introduce a

Figure 6: From top to bottom: Attaching a
configuration-B to a 2-chain, its schematic abbre-
viation, the optimal path for mode 2, and the two
possible optimal paths for mode 1.

configuration-BB(u, i) that is attached to Γ(u, i) at some ji.
Moreover, for any i ∈ [|D|−1], we introduce a configuration-
H H(u, i), such that H(u, i) is the right neighbor of Γ(u, i)
at ji, and the left neighbor of Γ(u, i+ 1) at ji+1.

Next, we encode the constraints. Let 〈(u,v), R〉 ∈ C be
a constraint. For every pair of values (i, j) ∈ D2, with
(i, j) /∈ R, we need to ensure that in any optimal solution,
at most one of the 2-chains Γ(u, i), Γ(v, j) is traversed in
mode 1. To that end, we add two new vertices x(u, i,v, j),
y(u, i,v, j), and a new 2-chain Γ(u, i,v, j) from x(u, i,v, j)
to y(u, i,v, j). We arrange the 2-chains such that there
exists a 2-plane h(u,v, i, j), with subsets of the 2-chains
Γ(u, i), and Γ(v, j) being arranged in h(u,v, i, j) as in Fig-
ure 8. Namely, we introduce configurations-B B(u, i,v, j, 1),
B(u, i,v, j, 2), B(u, i,v, j, 3), such that B(u, i,v, j, 1) is at-
tached to Γ(u, i) at some `i, B(u, i,v, j, 2) is attached to
Γ(u, i,v, j) at some `2, and B(u, i,v, j, 3) is attached to
Γ(v, j) at some `3. Moreover, we add a configuration-H
H(u, i,v, j, 1) that is a right neighbor of Γ(u, i) at `1, and
a left neighbor of Γ(u, i,v, j) at `2, and a configuration-H
H(u, i,v, j, 2) that is a right neighbor of Γ(u, i,v, j) at `2,
and a left neighbor of Γ(v, j) at `3.

Finally, we need to ensure that the optimal solution in-
duces a traversal of all the 2-chains, such that each 2-chain is
traversed without interruptions. This can be done by intro-
ducing 1-chains between the endpoints of 2-chains which we
want to appear consecutively in the optimal traversal. Ini-
tially, we unmark all 2-chains in the construction. Observe
that the graph G is Hamiltonian. Fix a Hamiltonian path P
in G. We construct a total ordering of all the 2-chains in the
construction as follows. We start from the empty ordering,
and we consider all vertices in the order they are visited by
P . When considering a vertex u, we extend the ordering by
appending all the 2-chains Γ(u, i), for all i ∈ [|D|]. Next, we
also append all the 2-chains Γ(u, i,v, j), for all i, j ∈ [|D|],
and v ∈ V (G), that we have not added to the ordering yet.
This process clearly results in a total ordering of all the 2-
chains in the construction. Let k be the total number of

Figure 7: Gadget corresponding to some variable u.

2-chains, for any i ∈ [k], let pi, qi be points such that the
i-th chain is from pi to qi. For any i ∈ [k − 1], we add a
1-chain from qi to qi+1. When adding a 1-chain Y between
the endpoints of two 2-chains involving only one variable
u (i.e. Γ(u, i), and Γ(u, i + 1) for some i), we ensure that
Y ⊂ U(u). Similarly, when we add a 1-chain Y between the
endpoints of two 2-chains involving only two variable u,v
(i.e. either Γ(u, i) and Γ(u, j,v, `) for some i, j, `, or Γ(u, i)
and Γ(v, j) for some i, j), we ensure that Y ⊂ U(u)∪U(v).

Finally, we introduce two points p∗, and q∗, and we add
a 1-chain from p∗ to p1, and a 1-chain from qt to q∗. We
choose the point p∗ to be in U(−2 · e1), and the point q∗ to
be in U((n+ 2) ·e1). We can clearly chose the 1-chains from
p∗ to p1, and from qt to q∗ so that the following is satisfied.

Lemma 4.3. Any optimal Traveling Salesperson path from
in the constructed instance has endpoints p∗ and q∗.

Lemma 4.4. [∗] Let d ≥ 2. Let ϕ = (V,D,C) be an in-
stance of a constraint satisfaction problem with domain size
|D| = δ, with constraint graph G = R[n, d]. Then, there ex-
ists a polynomially-time computable instance (X,α) of TSP

in d-dimensional Euclidean space, with |X| ≤ nd · |D|O(1),
such that the length of the shortest TSP tour for X is at
most α, if and only if ϕ is satisfiable.

Proof (of Theorem 1.1). It follows by Theorem 2.6 &
Lemma 4.4.

Recall that cycle-TSP is the variant of TSP where one
seeks to find a cycle visiting all points. We can prove the
same lower bound for cycle-TSP, using a simple modification
of the above reduction. We remark that the same modifica-
tion was used in [32] to show that cycle-TSP in the Euclidean
plane is NP-complete.

Theorem 4.5. If for some d ≥ 2 and ε > 0, cycle-TSP
in d-dimensional Euclidean space can be solved in time

2O(n1−1/d−ε), then ETH fails.

Figure 8: Part of a gadget encoding (i, j) /∈ R, for
some constraint 〈(u,v), R〉.

Proof. We use the same reduction as for the case of
path-TSP above. The only modification needed is to con-
nect p∗ with q∗ via a 1-chain, that is at distance at least 20,
say, from all other gadgets used in the reduction.

5. AN EXACT ALGORITHM FOR PACKING
UNIT BALLS IN Rd

We present an nO(k1−1/d) time algorithm for finding a
pairwise nonintersecting set k unit balls in d-dimensional
space (generalizing the result of Alber and Fiala [3] for d =
2). As the technique (combining a sweeping argument, brute
force, and dynamic programming) is fairly standard, we keep
the discussion brief. Exactly the same argument works for
finding k pairwise nonintersecting d-dimensional unit cubes.

Theorem 5.1. Let d ≥ 2 be a fixed constant. There ex-
ists an algorithm that, given a set X of unit d-dimensional

balls in Rd and an integer k ≥ 0, decides in time nO(k1−1/d)

whether there exist k pairwise nonintersecting balls in X.

Proof. Let s = k1/d. For any i ∈ {0, . . . , s− 1}, and for
any j ∈ [d], letH(i, j) = {(x1, . . . , xd) ∈ Rd : there exists r ∈
Z s.t. xj = i+r ·s}. Note that H(i, j) is the union of parallel
(d − 1)-dimensional hyperplanes, with any two consecutive
ones being at distance s. For any i ∈ {0, . . . , s − 1}, let

H(i) =
⋃d

j=1H(i, j). Observe that Rd \H(i) is the union of
open hypercubes.

Let A ⊂ Rd be a unit d-dimensional ball. By the union
bound, we have

Pri∈{0,...,s−1} [A ∩H(i) 6= ∅]

≤
d∑

j=1

Pri∈{0,...,s−1} [A ∩H(i, j) 6= ∅]

= O(d/s) = O(1/s),

where i ∈ {0, . . . , s− 1} is chosen uniformly at random.

Suppose that there exists a subset X∗ ⊆ X of pairwise
nonintersecting balls with |X∗| = k. By linearity of expec-
tation, we obtain

Ei∈{0,...,s−1}[|{A ∈X∗ : A ∩H(i) 6= ∅}|]

≤
∑

A∈X∗
Pri∈{0,...,s−1} [A ∩H(i) 6= ∅]

= O(k/s) = O(k1−1/d).

By averaging, there exists i∗ ∈ {0, . . . , s− 1}, such that

|{A ∈ X∗ : A ∩H(i∗) 6= ∅}| = O(k1−1/d).

The algorithm proceeds as follows. We guess a value i ∈
{0, . . . , s−1}, and we guess a subset Y of at most O(k1−1/d)
balls in X that intersect H(i). Let X ′ = X \ {A ∈ X :
A∩H(i) 6= ∅}. Let C be the set of open hypercubes in Rd \
H(i). We partition X ′ into a collection of subsets {X ′C}C∈C ,
where every X ′C contains all the balls that intersect the open
hypercube C ∈ C. For each C ∈ C, we define the subset
X ′′C ⊆ X ′C containing all balls that do not intersect any of
the balls in Y , i.e. X ′′C = {A ∈ X ′C : A ∩

⋃
A′∈Y A

′ = ∅}.
We now proceed to compute a maximum set of pairwise

nonintersecting balls in each X ′′C . By translating, we may
assume that C = (0, s)d. For each j ∈ {0, . . . , s − 1}, let
C(j) = C ∩

(
[j, j + 1]× [0, s]d−1

)
. Let X ′′C,j be the set of all

balls intersecting C(j) and let Y ′′C,j =
⋃j′=j

j′=0X
′′
C,j′ . For any

j ∈ {0, . . . , s − 1}, there can be at most O(s) balls in the
solution X∗ that intersect C(j). For each j ∈ {0, . . . , s−1},
we compute all possible subsets of at most O(s) pairwise
nonintersecting balls in X ′′C,j ; let XC,j be the collection of
all these sets. We can now compute an maximum set YC of
pairwise nonintersecting balls in X ′′C via dynamic program-
ming, as follows. For every j ∈ {0, . . . , s − 1} and subset
Z ∈ XC,j , we compute the maximum size of a set of pair-
wise nonintersecting balls in Y ′′C,j whose intersection with
X ′′C,j is precisely Z. The important observation is that the
sets X ′′C,j and X ′′C,j−2 are disjoint. Hence the maximum for
a given j and Z ∈ XC,j can be computed if we know the
maximum for j − 1 and every Z ∈ XC,j−1.

After computing the maximum set YC for each open hy-
percube C, we output the set of pairwise nonintersecting
balls in X that we find is Y ∪

⋃
C∈C YC . The final set of

balls is the maximum such set computed for all choices of i,
and Y . This concludes the description of the algorithm.

Let us first argue that the algorithm is correct. Indeed,
when we choose i = i∗, the algorithm will eventually cor-
rectly choose the correct set Y = X∗ ∩ H(i∗). Once we
remove the balls that intersect H(i∗), and all the balls that
intersect the balls in Y , the remaining subproblems are inde-
pendent, and are solved optimally. Therefore, the resulting
global solution is optimal.

Lastly, let us bound the running time. There are s =
nO(1/d) choices for i, and for each such choice, there are at

most nO(k1−1/d) choices for Y . For every such choice, we
solve at most n different subproblems (one for every open
hypercube in C). Each subproblem uses dynamic program-
ming with a table with O(s) entries, where each entry stores

nO(s) = nO(k1−1/d) different partial solutions. It follows that

the total running time is nO(k1−1/d), as required.

6. REFERENCES
[1] I. Adler, G. Gottlob, and M. Grohe. Hypertree width

and related hypergraph invariants. European J.
Combin., 28(8):2167–2181, 2007.

[2] P. K. Agarwal and M. Sharir. Efficient algorithms for
geometric optimization. ACM Comput. Surv.,
30(4):412–458, 1998.

[3] J. Alber and J. Fiala. Geometric separation and exact
solutions for the parameterized independent set
problem on disk graphs. J. Alg., 52(2):134–151, 2004.

[4] N. Alon and D. Marx. Sparse balanced partitions and
the complexity of subgraph problems. SIAM J.
Discrete Math., 25(2):631–644, 2011.

[5] R. Bellman. Dynamic programming treatment of the
travelling salesman problem. J. ACM, 9(1):61–63, Jan.
1962.

[6] S. Cabello, P. Giannopoulos, and C. Knauer. On the
parameterized complexity of d-dimensional point set
pattern matching. Inf. Process. Lett., 105(2):73–77,
2008.

[7] S. Cabello, P. Giannopoulos, C. Knauer, D. Marx, and
G. Rote. Geometric clustering: Fixed-parameter
tractability and lower bounds with respect to the
dimension. ACM Trans. on Algorithms, 7(4):43, 2011.

[8] T. M. Chan. A (slightly) faster algorithm for Klee’s
measure problem. In Symposium on Computational
Geometry, pages 94–100, 2008.

[9] H. Chen and M. Grohe. Constraint satisfaction with
succinctly specified relations. J. Comput. Syst. Sci.,
76(8):847–860, 2010.

[10] J. Chen, X. Huang, I. A. Kanj, and G. Xia. Linear
FPT reductions and computational lower bounds. In
Proc. of the 36th Ann. ACM Symp. on Theory of
Comp., pages 212–221, New York, 2004.

[11] E. C. Freuder. Complexity of k-tree structured
constraint satisfaction problems. In Proc. of AAAI-90,
pages 4–9, Boston, MA, 1990.

[12] P. Giannopoulos, C. Knauer, and G. Rote. The
parameterized complexity of some geometric problems
in unbounded dimension. In IWPEC, pages 198–209,
2009.

[13] P. Giannopoulos, C. Knauer, G. Rote, and D. Werner.
Fixed-parameter tractability and lower bounds for
stabbing problems. Comput. Geom., 46(7):839–860,
2013.

[14] P. Giannopoulos, C. Knauer, M. Wahlström, and
D. Werner. Hardness of discrepancy computation and
-net verification in high dimension. J. Complexity,
28(2):162–176, 2012.

[15] G. Gottlob, M. Grohe, N. Musliu, M. Samer, and
F. Scarcello. Hypertree decompositions: structure,
algorithms, and applications. In Graph-theoretic
concepts in computer science, volume 3787 of Lecture
Notes in Comput. Sci., pages 1–15. Springer, Berlin,
2005.

[16] G. Gottlob, N. Leone, and F. Scarcello. Hypertree
decompositions and tractable queries. Journal of
Computer and System Sciences, 64:579–627, 2002.

[17] M. Grohe. The complexity of homomorphism and
constraint satisfaction problems seen from the other
side. J. ACM, 54(1):1, 2007.

[18] M. Grohe and D. Marx. Constraint solving via

fractional edge covers. In SODA ’06: Proc. of the 17th
Ann. ACM-SIAM Symp. on Disc. Alg., pages 289–298,
New York, NY, USA, 2006. ACM Press.

[19] M. Grohe, T. Schwentick, and L. Segoufin. When is
the evaluation of conjunctive queries tractable? In
STOC ’01: Proceedings of the thirty-third annual
ACM symposium on Theory of computing, pages
657–666, New York, NY, USA, 2001. ACM Press.

[20] M. Held and R. Karp. The traveling-salesman problem
and minimum spanning trees: Part II. Mathematical
Programming, 1(1):6–25, 1971.

[21] R. Impagliazzo, R. Paturi, and F. Zane. Which
problems have strongly exponential complexity? J.
Comput. System Sci., 63(4):512–530, 2001.

[22] C. Knauer. The complexity of geometric problems in
high dimension. In TAMC, pages 40–49, 2010.

[23] C. Knauer, H. R. Tiwary, and D. Werner. On the
computational complexity of ham-sandwich cuts, helly
sets, and related problems. In STACS, pages 649–660,
2011.

[24] K. Kozawa, Y. Otachi, and K. Yamazaki. The
carving-width of generalized hypercubes. Discrete
Mathematics, 310(21):2867–2876, 2010.

[25] D. Lokshtanov, D. Marx, and S. Saurabh. Lower
bounds based on the Exponential Time Hypothesis.
Bulletin of the EATCS, 84:41–71, 2011.

[26] D. Marx. On the optimality of planar and geometric
approximation schemes. In 48th Ann. IEEE Symp. on
Found. of Comp. Sci., pages 338–348, 2007.

[27] D. Marx. Approximating fractional hypertree width.
ACM Trans. Algorithms, 6(2):1–17, 2010.

[28] D. Marx. Can you beat treewidth? Theory of
Computing, 6(1):85–112, 2010.

[29] D. Marx. Tractable structures for constraint
satisfaction with truth tables. Theory of Computing
Systems, 48:444–464, 2011.

[30] N. Megiddo. Linear-time algorithms for linear
programming in R3 and related problems. SIAM J.
Comput., 12(4):759–776, 1983.

[31] N. Megiddo. On the complexity of some geometric
problems in unbounded dimension. J. Symb. Comput.,
10(3/4):327–334, 1990.

[32] C. H. Papadimitriou. The Euclidean traveling
salesman problem is NP-complete. Theor. Comput.
Sci., 4(3):237–244, 1977.

[33] P. Raghavan and C. D. Thompson. Randomized
rounding: a technique for provably good algorithms
and algorithmic proofs. Combinatorica, 7(4):365–374,
1987.

[34] W. D. Smith and N. C. Wormald. Geometric
separator theorems & applications. In FOCS, pages
232–243, 1998.

[35] D. M. Thilikos, M. J. Serna, and H. L. Bodlaender.
Constructive linear time algorithms for small cutwidth
and carving-width. In ISAAC, pages 192–203, 2000.

