

Important separators and parameterized algorithms

Dániel Marx

Computer and Automation Research Institute,
Hungarian Academy of Sciences (MTA SZTAKI)
Budapest, Hungary

WORKER 2013
University of Warsaw, Poland
April 9, 2013

Overview

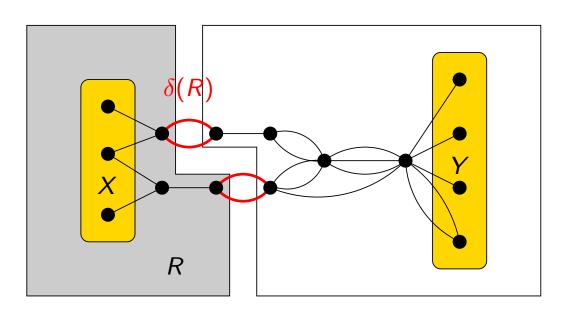
Main message: Small separators in graphs have interesting extremal properties that can be exploited in combinatorial and algorithmic results.

- 6 Bounding the number of "important" separators.
- 6 Edge/vertex versions, directed/undirected versions.
- 6 Algorithmic applications: FPT algorithm for Multiway cut and Directed Feedback Vertex Set.

Definition: $\delta(R)$ is the set of edges with exactly one endpoint in R.

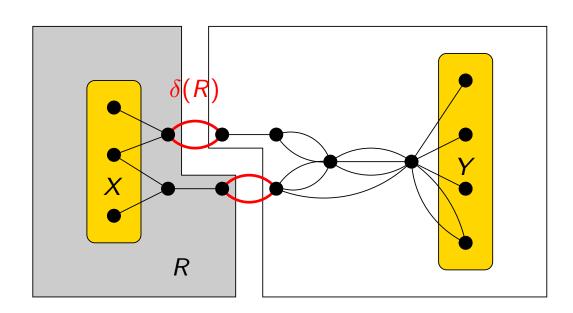
Definition: A set S of edges is an (X, Y)-separator if there is no X - Y path in $G \setminus S$ and no proper subset of S breaks every X - Y path.

Observation: Every (X, Y)-separator S can be expressed as $S = \delta(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$.



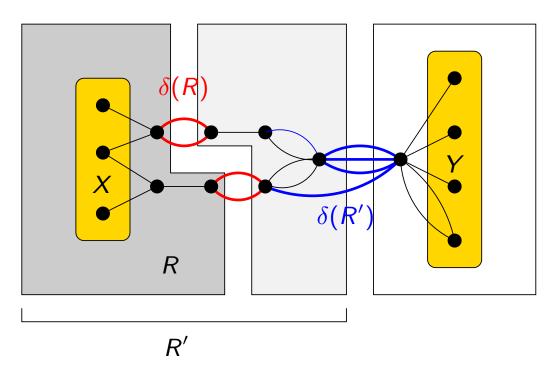
Definition: An (X, Y)-separator $\delta(R)$ is **important** if there is no (X, Y)-separator $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$.

Note: Can be checked in polynomial time if a separator is important.



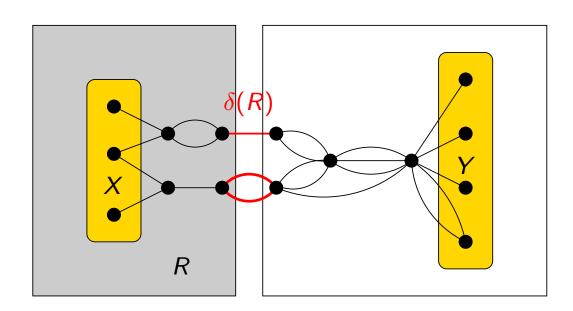
Definition: An (X, Y)-separator $\delta(R)$ is **important** if there is no (X, Y)-separator $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$.

Note: Can be checked in polynomial time if a separator is important.



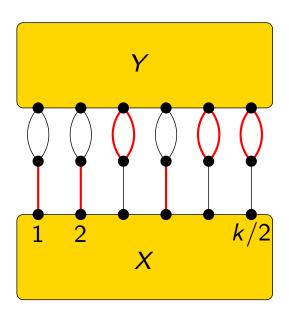
Definition: An (X, Y)-separator $\delta(R)$ is **important** if there is no (X, Y)-separator $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$.

Note: Can be checked in polynomial time if a separator is important.



The number of important separators can be exponentially large.

Example:



This graph has exactly $2^{k/2}$ important (X, Y)-separators of size at most k.

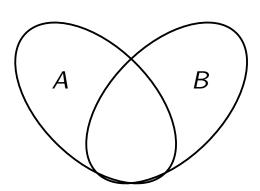
Theorem: There are at most 4^k important (X, Y)-separators of size at most k. (Proof is implicit in [Chen, Liu, Lu 2007], worse bound in [M. 2004].)

Fact: The function δ is **submodular:** for arbitrary sets A, B,

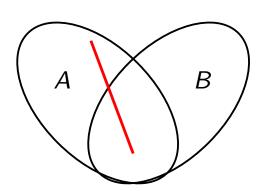
$$|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$$

Fact: The function δ is **submodular:** for arbitrary sets A, B,

$$|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$$

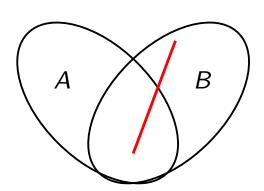


$$|\delta(A)|$$
 + $|\delta(B)|$ $\geq |\delta(A \cap B)|$ + $|\delta(A \cup B)|$
0 1 0

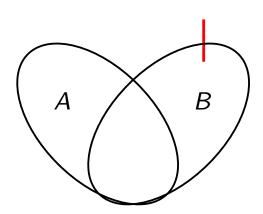


$$|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$$

$$1 \qquad 0 \qquad 1 \qquad 0$$



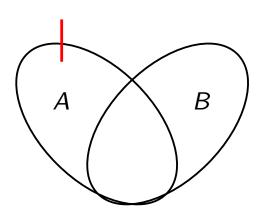
$$|\delta(A)|$$
 + $|\delta(B)|$ $\geq |\delta(A \cap B)|$ + $|\delta(A \cup B)|$
0 1



Fact: The function δ is **submodular:** for arbitrary sets A, B,

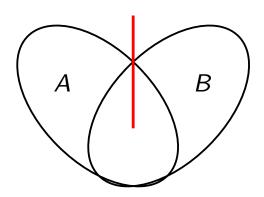
$$|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$$

$$1 \qquad 0 \qquad 1$$



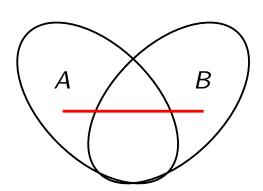
Fact: The function δ is **submodular:** for arbitrary sets A, B,

$$|\delta(A)|$$
 + $|\delta(B)|$ $\geq |\delta(A \cap B)|$ + $|\delta(A \cup B)|$
1 1 1



Fact: The function δ is **submodular:** for arbitrary sets A, B,

$$|\delta(A)|$$
 + $|\delta(B)|$ $\geq |\delta(A \cap B)|$ + $|\delta(A \cup B)|$
1 0 0



Consequence: Let λ be the minimum (X, Y)-separator size. There is a unique maximal $R_{\text{max}} \supseteq X$ such that $\delta(R_{\text{max}})$ is an (X, Y)-separator of size λ .

Consequence: Let λ be the minimum (X, Y)-separator size. There is a unique maximal $R_{\text{max}} \supseteq X$ such that $\delta(R_{\text{max}})$ is an (X, Y)-separator of size λ .

Proof: Let R_1 , $R_2 \supseteq X$ be two sets such that $\delta(R_1)$, $\delta(R_2)$ are (X, Y)-separators of size λ .

$$|\delta(R_1)| + |\delta(R_2)| \ge |\delta(R_1 \cap R_2)| + |\delta(R_1 \cup R_2)|$$

$$\lambda \qquad \lambda \qquad \ge \lambda$$

$$\Rightarrow |\delta(R_1 \cup R_2)| \le \lambda$$

 R_1

 R_2

Theorem: There are at most 4^k important (X, Y)-separators of size at most k.

Proof: Let λ be the minimum (X, Y)-separator size and let $\delta(R_{\text{max}})$ be the unique important separator of size λ such that R_{max} is maximal.

First we show that $R_{\text{max}} \subseteq R$ for every important separator $\delta(R)$.

Theorem: There are at most 4^k important (X, Y)-separators of size at most k.

Proof: Let λ be the minimum (X, Y)-separator size and let $\delta(R_{\text{max}})$ be the unique important separator of size λ such that R_{max} is maximal.

First we show that $R_{\text{max}} \subseteq R$ for every important separator $\delta(R)$.

By the submodularity of δ :

$$|\delta(R_{\max})| + |\delta(R)| \ge |\delta(R_{\max} \cap R)| + |\delta(R_{\max} \cup R)|$$

$$\lambda \ge \lambda$$

$$|\delta(R_{\max} \cup R)| \le |\delta(R)|$$

$$|\delta(R_{\max} \cup R)| \le |\delta(R)|$$

If $R \neq R_{\text{max}} \cup R$, then $\delta(R)$ is not important.

Thus the important (X, Y)- and (R_{max}, Y) -separators are the same.

 \Rightarrow We can assume $X = R_{\text{max}}$.

Theorem: There are at most 4^k important (X, Y)-separators of size at most k.

Search tree algorithm for enumerating all these separators:

An (arbitrary) edge uv leaving $X = R_{max}$ is either in the separator or not.

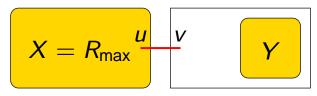
Theorem: There are at most 4^k important (X, Y)-separators of size at most k.

Search tree algorithm for enumerating all these separators:

An (arbitrary) edge uv leaving $X = R_{max}$ is either in the separator or not.

Branch 1: If $uv \in S$, then $S \setminus uv$ is an important (X, Y)-separator of size at most k - 1 in $G \setminus uv$.

Branch 2: If $uv \notin S$, then S is an important $(X \cup v, Y)$ -separator of size at most k in G.



Theorem: There are at most 4^k important (X, Y)-separators of size at most k.

Search tree algorithm for enumerating all these separators:

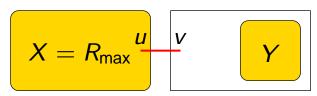
An (arbitrary) edge uv leaving $X = R_{max}$ is either in the separator or not.

Branch 1: If $uv \in S$, then $S \setminus uv$ is an important (X, Y)-separator of size at most k - 1 in $G \setminus uv$.

 \Rightarrow k decreases by one, λ decreases by at most 1.

Branch 2: If $uv \notin S$, then S is an important $(X \cup v, Y)$ -separator of size at most k in G.

 \Rightarrow k remains the same, λ increases by 1.



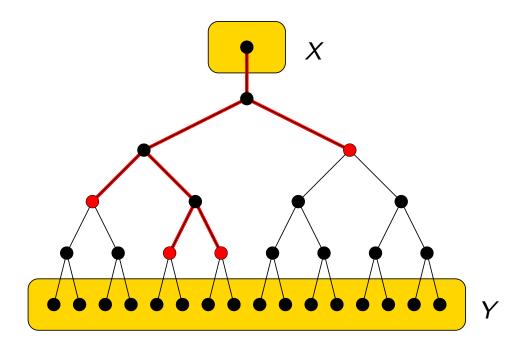
The measure $2k - \lambda$ decreases in each step.

 \Rightarrow Height of the search tree $\leq 2k \Rightarrow \leq 2^{2k}$ important separators of size $\leq k$.

Example: The bound 4^k is essentially tight.

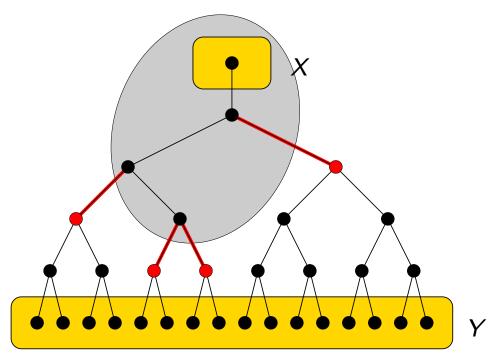


Example: The bound 4^k is essentially tight.



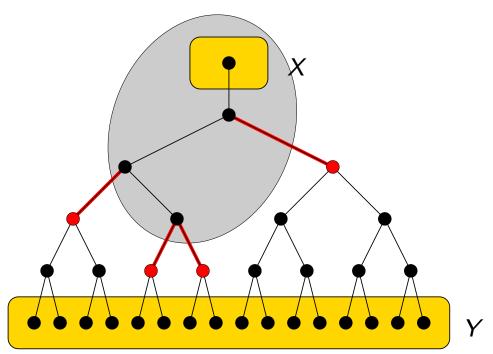
Any subtree with k leaves gives an important (X, Y)-separator of size k.

Example: The bound 4^k is essentially tight.



Any subtree with k leaves gives an important (X, Y)-separator of size k.

Example: The bound 4^k is essentially tight.



Any subtree with k leaves gives an important (X, Y)-separator of size k. The number of subtrees with k leaves is the Catalan number

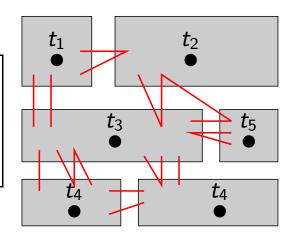
$$C_{k-1}=rac{1}{k}inom{2k-2}{k-1}\geq 4^k/\mathsf{poly}(k).$$

Definition: A **multiway cut** of a set of terminals T is a set S of edges such that each component of $G \setminus S$ contains at most one vertex of T.

MULTIWAY CUT

Input: Graph G, set T of vertices, integer k

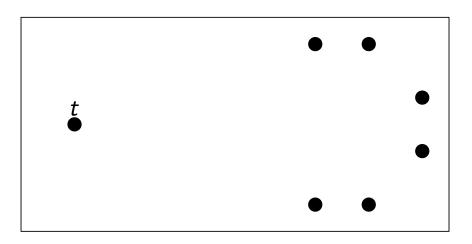
Find: A multiway cut S of at most k edges.



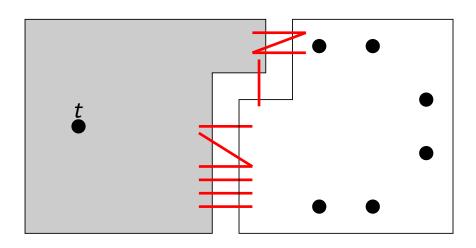
Polynomial for |T| = 2, but NP-hard for any fixed $|T| \ge 3$ [Dalhaus et al. 1994]. Trivial to solve in polynomial time for fixed k (in time $n^{O(k)}$).

Theorem: MULTIWAY CUT can be solved in time $4^k \cdot n^{O(1)}$, i.e., it is fixed-parameter tractable (FPT) parameterized by the size k of the solution.

Intuition: Consider a $t \in T$. A subset of the solution S is a $(t, T \setminus t)$ -separator.

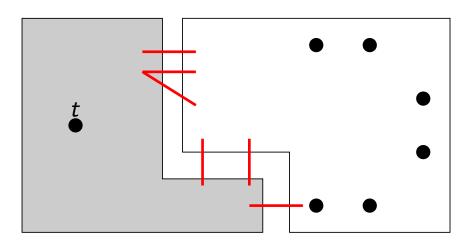


Intuition: Consider a $t \in T$. A subset of the solution S is a $(t, T \setminus t)$ -separator.



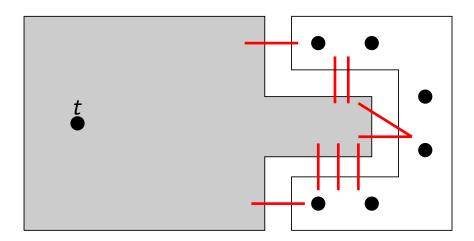
There are many such separators.

Intuition: Consider a $t \in T$. A subset of the solution S is a $(t, T \setminus t)$ -separator.



There are many such separators.

Intuition: Consider a $t \in T$. A subset of the solution S is a $(t, T \setminus t)$ -separator.



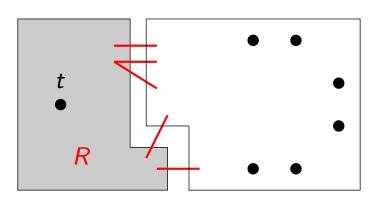
There are many such separators.

But a separator farther from t and closer to $T \setminus t$ seems to be more useful.

Pushing Lemma: Let $t \in T$. The MULTIWAY CUT problem has a solution S that contains an important $(t, T \setminus t)$ -separator.

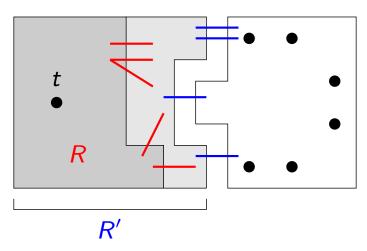
Pushing Lemma: Let $t \in T$. The MULTIWAY CUT problem has a solution S that contains an important $(t, T \setminus t)$ -separator.

Proof: Let R be the vertices reachable from t in $G \setminus S$ for a solution S.



Pushing Lemma: Let $t \in T$. The MULTIWAY CUT problem has a solution S that contains an important $(t, T \setminus t)$ -separator.

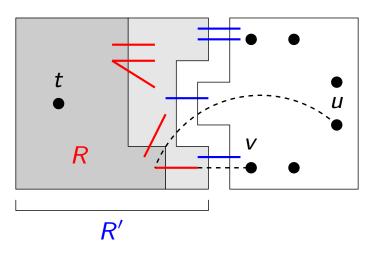
Proof: Let R be the vertices reachable from t in $G \setminus S$ for a solution S.



If $\delta(R)$ is not important, then there is an important separator $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$. Replace S with $S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \leq |S|$

Pushing Lemma: Let $t \in T$. The MULTIWAY CUT problem has a solution S that contains an important $(t, T \setminus t)$ -separator.

Proof: Let R be the vertices reachable from t in $G \setminus S$ for a solution S.

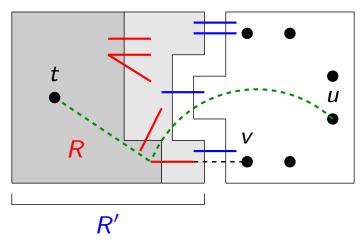


If $\delta(R)$ is not important, then there is an important separator $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$. Replace S with $S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \leq |S|$

S' is a multiway cut: (1) There is no t-u path in $G \setminus S'$ and (2) a u-v path in $G \setminus S'$ implies a t-u path, a contradiction.

Pushing Lemma: Let $t \in T$. The MULTIWAY CUT problem has a solution S that contains an important $(t, T \setminus t)$ -separator.

Proof: Let R be the vertices reachable from t in $G \setminus S$ for a solution S.



If $\delta(R)$ is not important, then there is an important separator $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$. Replace S with $S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \leq |S|$

S' is a multiway cut: (1) There is no t-u path in $G \setminus S'$ and (2) a u-v path in $G \setminus S'$ implies a t-u path, a contradiction.

Algorithm for Multiway Cut

- 1. If every vertex of T is in a different component, then we are done.
- 2. Let $t \in T$ be a vertex that is not separated from every $T \setminus t$.
- 3. Branch on a choice of an important $(t, T \setminus t)$ separator S of size at most k.
- 4. Set $G := G \setminus S$ and k := k |S|.
- 5. Go to step 1.

We branch into at most 4^k directions at most k times.

(Better analysis gives 4^k bound on the size of the search tree.)

MULTICUT

MULTICUT

Input: Graph G, pairs $(s_1, t_1), \ldots, (s_\ell, t_\ell)$, integer k

Find: A set *S* of edges such that $G \setminus S$ has no s_i - t_i path for any i.

Theorem: MULTICUT can be solved in time $f(k, \ell) \cdot n^{O(1)}$ (FPT parameterized by combined parameters k and ℓ).

MULTICUT

MULTICUT

Input: Graph G, pairs $(s_1, t_1), \ldots, (s_\ell, t_\ell)$, integer k

Find: A set *S* of edges such that $G \setminus S$ has no s_i - t_i path for any *i*.

Theorem: MULTICUT can be solved in time $f(k, \ell) \cdot n^{O(1)}$ (FPT parameterized by combined parameters k and ℓ).

Proof: The solution partitions $\{s_1, t_1, ..., s_\ell, t_\ell\}$ into components. Guess this partition, contract the vertices in a class, and solve MULTIWAY CUT.

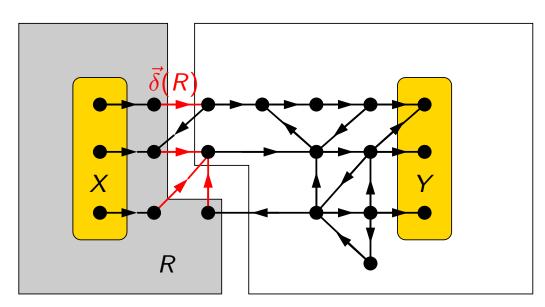
Theorem: [Bousquet, Daligault, Thomassé 2011] [M., Razgon 2011] MULTICUT is FPT parameterized by the size k of the solution.

Directed graphs

Definition: $\vec{\delta}(R)$ is the set of edges leaving R.

Observation: Every inclusionwise-minimal directed (X, Y)-separator S can be expressed as $S = \vec{\delta}(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$.

Definition: An (X, Y)-separator $\vec{\delta}(R)$ is **important** if there is no (X, Y)-separator $\vec{\delta}(R')$ with $R \subset R'$ and $|\vec{\delta}(R')| \leq |\vec{\delta}(R)|$.

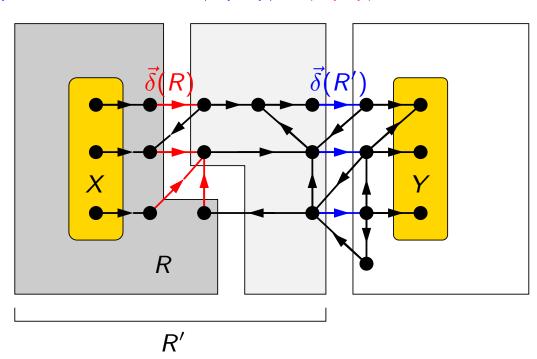


Directed graphs

Definition: $\vec{\delta}(R)$ is the set of edges leaving R.

Observation: Every inclusionwise-minimal directed (X, Y)-separator S can be expressed as $S = \vec{\delta}(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$.

Definition: An (X, Y)-separator $\vec{\delta}(R)$ is **important** if there is no (X, Y)-separator $\vec{\delta}(R')$ with $R \subset R'$ and $|\vec{\delta}(R')| \leq |\vec{\delta}(R)|$.



Directed graphs

Definition: $\vec{\delta}(R)$ is the set of edges leaving R.

Observation: Every inclusionwise-minimal directed (X, Y)-separator S can be expressed as $S = \vec{\delta}(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$.

Definition: An (X, Y)-separator $\vec{\delta}(R)$ is **important** if there is no (X, Y)-separator $\vec{\delta}(R')$ with $R \subset R'$ and $|\vec{\delta}(R')| \leq |\vec{\delta}(R)|$.

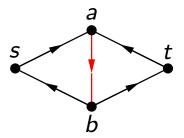
The proof for the undirected case goes through for the directed case:

Theorem: There are at most 4^k important directed (X, Y)-separators of size at most k.

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma: [for undirected graphs] Let $t \in T$. The MULTIWAY CUT problem has a solution S that contains an important $(t, T \setminus t)$ -separator.

Directed counterexample:

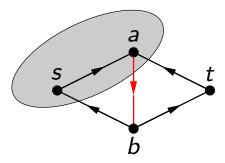


Unique solution with k = 1 edges, but it is not an important separator (boundary of $\{s, a\}$, but the boundary of $\{s, a, b\}$ is of the same size).

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma: [for undirected graphs] Let $t \in T$. The MULTIWAY CUT problem has a solution S that contains an important $(t, T \setminus t)$ -separator.

Directed counterexample:

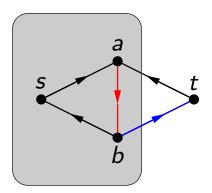


Unique solution with k = 1 edges, but it is not an important separator (boundary of $\{s, a\}$, but the boundary of $\{s, a, b\}$ is of the same size).

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma: [for undirected graphs] Let $t \in T$. The MULTIWAY CUT problem has a solution S that contains an important $(t, T \setminus t)$ -separator.

Directed counterexample:

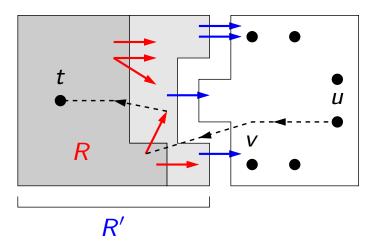


Unique solution with k = 1 edges, but it is not an important separator (boundary of $\{s, a\}$, but the boundary of $\{s, a, b\}$ is of the same size).

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma: [for undirected graphs] Let $t \in T$. The MULTIWAY CUT problem has a solution S that contains an important $(t, T \setminus t)$ -separator.

Problem in the undirected proof:

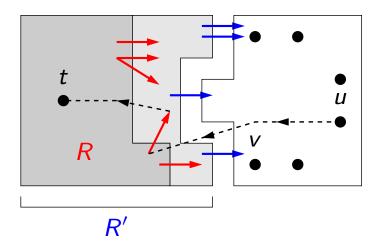


Replacing R by R' cannot create a $t \to u$ path, but can create a $u \to t$ path.

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma: [for undirected graphs] Let $t \in T$. The MULTIWAY CUT problem has a solution S that contains an important $(t, T \setminus t)$ -separator.

Problem in the undirected proof:



Replacing R by R' cannot create a $t \to u$ path, but can create a $u \to t$ path.

Theorem: [Chitnis, Hajiaghayi, M. 2011] DIRECTED MULTIWAY CUT is FPT parameterized by the size k of the solution.

DIRECTED MULTICUT

Input: Graph G, pairs $(s_1, t_1), \ldots, (s_\ell, t_\ell)$, integer k

Find: A set *S* of edges such that $G \setminus S$ has no $s_i \to t_i$ path for any *i*.

Theorem: [M. and Razgon 2011] DIRECTED MULTICUT is W[1]-hard parameterized by k.

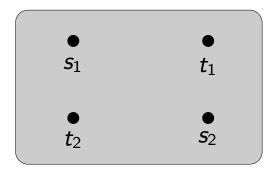
DIRECTED MULTICUT

Input: Graph G, pairs $(s_1, t_1), \ldots, (s_\ell, t_\ell)$, integer k

Find: A set *S* of edges such that $G \setminus S$ has no $s_i \to t_i$ path for any *i*.

Theorem: [M. and Razgon 2011] DIRECTED MULTICUT is W[1]-hard parameterized by k.

But the case $\ell=2$ can be reduced to DIRECTED MULTIWAY CUT:



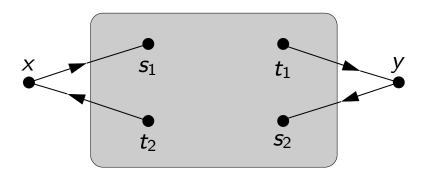
DIRECTED MULTICUT

Input: Graph G, pairs $(s_1, t_1), \ldots, (s_\ell, t_\ell)$, integer k

Find: A set *S* of edges such that $G \setminus S$ has no $s_i \to t_i$ path for any *i*.

Theorem: [M. and Razgon 2011] DIRECTED MULTICUT is W[1]-hard parameterized by k.

But the case $\ell=2$ can be reduced to DIRECTED MULTIWAY CUT:



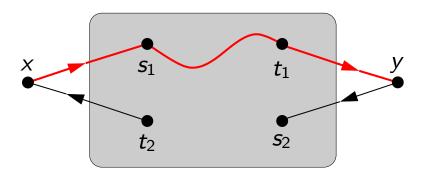
DIRECTED MULTICUT

Input: Graph G, pairs $(s_1, t_1), \ldots, (s_\ell, t_\ell)$, integer k

Find: A set *S* of edges such that $G \setminus S$ has no $s_i \to t_i$ path for any *i*.

Theorem: [M. and Razgon 2011] DIRECTED MULTICUT is W[1]-hard parameterized by k.

But the case $\ell=2$ can be reduced to DIRECTED MULTIWAY CUT:



DIRECTED MULTICUT

Input: Graph G, pairs $(s_1, t_1), \ldots, (s_\ell, t_\ell)$, integer k

Find: A set *S* of edges such that $G \setminus S$ has no $s_i \to t_i$ path for any *i*.

Theorem: [M. and Razgon 2011] DIRECTED MULTICUT is W[1]-hard parameterized by k.

Corollary: DIRECTED MULTICUT with $\ell = 2$ is FPT parameterized by the size k of the solution.

Open: Is DIRECTED MULTICUT with $\ell=3$ FPT?

Open: Is there an $f(k, \ell) \cdot n^{O(1)}$ algorithm for DIRECTED MULTICUT?

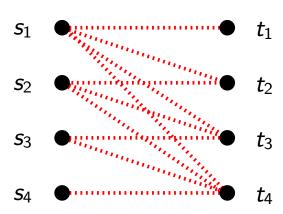
SKEW MULTICUT

SKEW MULTICUT

Input: Graph G, pairs $(s_1, t_1), \ldots, (s_\ell, t_\ell)$, integer k

Find: A set *S* of *k* directed edges such that $G \setminus S$ contains

no $s_i \to t_j$ path for any $i \le j$.



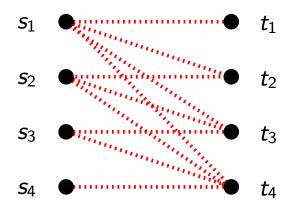
SKEW MULTICUT

SKEW MULTICUT

Input: Graph G, pairs $(s_1, t_1), \ldots, (s_\ell, t_\ell)$, integer k

Find: A set *S* of *k* directed edges such that $G \setminus S$ contains

no $s_i \to t_j$ path for any $i \le j$.



Pushing Lemma: SKEW MULTCUT problem has a solution S that contains an important $(s_1, \{t_1, ..., t_\ell\})$ -separator.

Theorem: [Chen, Liu, Lu, O'Sullivan, Razgon 2008] SKEW MULTICUT can be solved in time $4^k \cdot n^{O(1)}$.

DIRECTED FEEDBACK VERTEX SET

DIRECTED FEEDBACK VERTEX/EDGE SET

Input: Directed graph G, integer k

Find: A set S of k vertices/edges such that $G \setminus S$ is

acyclic.

Note: Edge and vertex versions are equivalent, we will consider the edge version here.

Theorem: [Chen, Liu, Lu, O'Sullivan, Razgon 2008] DIRECTED FEEDBACK EDGE SET is FPT parameterized by the size k of the solution.

Solution uses the technique of **iterative compress**ion introduced by [Reed, Smith, Vetta 2004].

DIRECTED FEEDBACK EDGE SET COMPRESSION

Input: Directed graph G, integer k,

a set S' of k+1 edges such that $G \setminus S'$ is acyclic

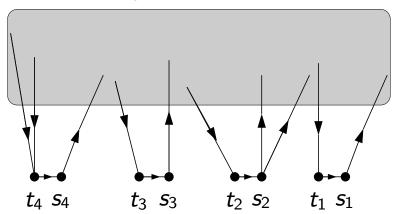
Find: A set *S* of *k* edges such that $G \setminus S$ is acyclic.

Easier than the original problem, as the extra input S' gives us useful structural information about G.

Lemma: The compression problem is FPT parameterized by k.

Lemma: The compression problem is FPT parameterized by k.

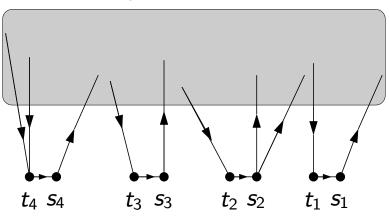
Proof: Let $S' = \{\overrightarrow{t_1s_1}, ..., \overrightarrow{t_{k+1}s_{k+1}}\}.$



- 6 By guessing and removing $S \cap S'$, we can assume that S and S' are disjoint $[2^{k+1}$ possibilities].
- 6 By guessing the order of $\{s_1, ..., s_{k+1}\}$ in the acyclic ordering of $G \setminus S$, we can assume that $s_{k+1} < s_k < \cdots < s_1$ in $G \setminus S$ [(k+1)! possibilities].

Lemma: The compression problem is FPT parameterized by k.

Proof: Let $S' = \{\overrightarrow{t_1s_1}, ..., \overrightarrow{t_{k+1}s_{k+1}}\}.$



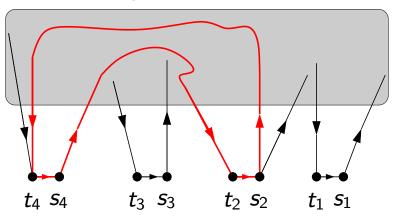
Claim: Suppose that $S' \cap S = \emptyset$.

 $G \setminus S$ is acyclic and has an ordering with $s_{k+1} < s_k < \cdots < s_1$

S covers every $s_i \rightarrow t_j$ path for every $i \leq j$

Lemma: The compression problem is FPT parameterized by k.

Proof: Let $S' = \{\overrightarrow{t_1s_1}, ..., \overrightarrow{t_{k+1}s_{k+1}}\}.$

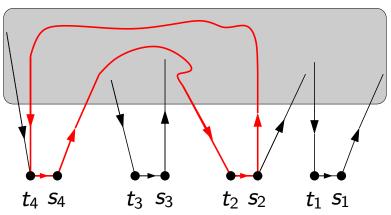


Claim: Suppose that $S' \cap S = \emptyset$.

 $G \setminus S$ is acyclic and has an ordering with $s_{k+1} < s_k < \cdots < s_1$

S covers every $s_i \rightarrow t_j$ path for every $i \leq j$

Proof: Let $S' = \{\overrightarrow{t_1s_1}, ..., \overrightarrow{t_{k+1}s_{k+1}}\}.$



Claim: Suppose that $S' \cap S = \emptyset$.

 $G \setminus S$ is acyclic and has an ordering with $s_{k+1} < s_k < \cdots < s_1$

S covers every $s_i \rightarrow t_j$ path for every $i \leq j$

 \Rightarrow We can solve the compression problem by $2^{k+1} \cdot (k+1)!$ applications of SKEW MULTICUT.

We have given a $f(k)n^{O(1)}$ algorithm for the following problem:

DIRECTED FEEDBACK EDGE SET COMPRESSION

Input: Directed graph G, integer k,

a set S' of k+1 edges such that $G \setminus S'$ is acyclic

Find: A set *S* of *k* edges such that $G \setminus S$ is acyclic.

Nice, but how do we get a solution S' of size k + 1?

We have given a $f(k)n^{O(1)}$ algorithm for the following problem:

DIRECTED FEEDBACK EDGE SET COMPRESSION

Input: Directed graph G, integer k,

a set S' of k+1 edges such that $G \setminus S'$ is acyclic

Find: A set *S* of *k* edges such that $G \setminus S$ is acyclic.

Nice, but how do we get a solution S' of size k + 1?

We get it for free!

Useful trick: **Iterative compression** (introduced by [Reed, Smith, Vetta 2004] for BIPARTITE DELETION).

Let $e_1, ..., e_m$ be the edges of G and let G_i be the subgraph containing only the first i edges (and all vertices).

For every i = 1, ..., m, we find a set S_i of k edges such that $G_i \setminus S_i$ is acyclic.

Let $e_1, ..., e_m$ be the edges of G and let G_i be the subgraph containing only the first i edges (and all vertices).

For every i = 1, ..., m, we find a set S_i of k edges such that $G_i \setminus S_i$ is acyclic.

- 6 For i = k, we have the trivial solution $S_i = \{e_1, ..., e_k\}$.
- Suppose we have a solution S_i for G_i . Then $S_i \cup \{e_{i+1}\}$ is a solution of size k+1 in the graph G_{i+1}
- 6 Use the compression algorithm for G_{i+1} with the solution $S_i \cup \{e_{i+1}\}$.
 - If there is no solution of size k for G_{i+1} , then we can stop.
 - Otherwise the compression algorithm gives a solution S_{i+1} of size k for G_{i+1} .

We call the compression algorithm m times, everything else is polynomial.

⇒ DIRECTED FEEDBACK EDGE SET iS FPT.

Conclusions

- 6 A simple (but essentially tight) bound on the number of important separators.
- 6 Algorithmic results: FPT algorithms for
 - ▲ MULTIWAY CUT in undirected graphs,
 - SKEW MULTICUT in directed graphs, and
 - DIRECTED FEEDBACK VERTEX/EDGE SET.