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Abstract

We consider parameterized problems where some separation property has to be
achieved by deleting as few vertices as possible. The following five problems are studied:
delete k vertices such that (a) each of the given ℓ terminals is separated from the others,
(b) each of the given ℓ pairs of terminals is separated, (c) exactly ℓ vertices are cut
away from the graph, (d) exactly ℓ connected vertices are cut away from the graph, (e)
the graph is separated into at least ℓ components. We show that if both k and ℓ are
parameters, then (a), (b) and (d) are fixed-parameter tractable, while (c) and (e) are
W[1]-hard.

1 Introduction

In this paper we study five problems where we have to delete at most k vertices from a graph to
achieve a certain goal. In all five cases, the goal is related to making the graph disconnected:
either certain vertices have to be separated from each other, or certain components have to
be created.

Before defining the five problems, let us discuss our research methodology. The separa-
tion problems we study are known to be NP-hard, but here we investigate them from the
parameterized complexity point of view. Since the solution is a set of k vertices and it is
easy to verify whether a solution is correct, these problems can be solved by enumerating
and verifying all the O(nk) sets of size k. Therefore, for every fixed value of k, the problems
can be solved in polynomial time. However, this way of solving the problems is not prac-
tical even for, say, k = 10. In parameterized complexity, we are interested in the question
whether a uniformly polynomial-time algorithm can be given for the problem, that is, an
algorithm where in the running time the parameter k does not appear in the exponent of n
(e.g., O(2k · n)). In this case we say that the problem is fixed-parameter tractable. There is
a large number of standard techniques in the literature for designing uniformly polynomial-
time algorithms. On the negative side, the theory of W[1]-hardness gives us methods to show
that a problem is not fixed-parameter tractable (under some standard complexity-theoretic
assumptions). This means that every algorithm has to search essentially the whole nk search
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Parameter(s)

Problem k ℓ k and ℓ

Minimum Node Multiway Cut FPT NP-hard FPT
(Theorem 3.7) for ℓ ≥ 3 [5] (Theorem 3.7)

Minimum Node Multicut Open NP-hard FPT
for ℓ ≥ 3 [5] (Theorem 3.9)

Cutting ℓ Vertices W[1]-hard W[1]-hard W[1]-hard
(Theorem 4.1) (Theorem 4.1) (Theorem 4.1)

Cutting ℓ Connected Vertices W[1]-hard W[1]-hard FPT
(Theorem 4.5) (Theorem 4.4) (Theorem 4.3)

Cutting into ℓ Components W[1]-hard W[1]-hard W[1]-hard
(Theorem 4.6) (Theorem 4.6) (Theorem 4.6)

Table 1: Complexity of the problems with different parameterizations.

space. The most important notions of parameterized complexity are summarized in Section 2.
For further background, the reader is referred to the monograph of Downey and Fellows [8].

Classical flow theory gives us a way of deciding in polynomial time whether two vertices
t1 and t2 can be disconnected by deleting at most k vertices. However, for every ℓ ≥ 3, if
we have ℓ terminals t1, t2, . . . , tℓ, then it is NP-hard to find k vertices such that no two
terminals are in the same component after deleting these vertices [5]. In [10] a (2 − 2/ℓ)-
approximation algorithm was presented for this problem. Here we give an algorithm that is
efficient if k is small: in Section 3 it is shown that the Minimum Node Multiway Cut

problem is fixed-parameter tractable with parameter k. We also consider the more general
Minimum Node Multicut problem where ℓ pairs (s1, t1), . . . , (sℓ, tℓ) are given, and it has
to be decided whether there is a set of k vertices whose deletion separates each of the ℓ pairs.
We show that this problem is fixed-parameter tractable if both k and ℓ are parameters. Our
results go through for the edge deletion versions of these problems as well.

In Section 4 we consider two separation problems without terminals. In the Cutting

ℓ Vertices problem exactly ℓ vertices have to be separated from the rest of the graph by
deleting at most k vertices. In Cutting into ℓ Components problem k vertices have
to be deleted such that the remaining graph has at least ℓ connected components. The
edge deletion variants of these problems were considered in [7], where it is shown that these
problems are W[1]-hard with parameter ℓ. Here we show that the vertex deletion versions of
both problems are W[1]-hard even if both k and ℓ are parameters. However, in the case of
Cutting ℓ Vertices if we restrict the problem to bounded-degree graphs, then it becomes
fixed-parameter tractable if both k and ℓ are parameters. Moreover, we also consider the
variant Cutting ℓ Connected Vertices, where it is also required that the separated
vertices form a connected subgraph. It turns out that this problems is fixed-parameter
tractable if both k and ℓ are parameters, but W[1]-hard if only one of them is parameter.

The results of the paper are summarized in Table 1.
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2 Parameterized Complexity

In parameterized complexity we are dealing with parameterized problems, where every input
instance (x, k) has a distinguished part k called the parameter. For example, in the Maximum

Clique problem the parameter k is the size of the clique to be found. Problems such as
Maximum Clique, Minimum Vertex Cover, and Longest Path can be solved trivially
by trying all the O(nk) possibilities for the solution. However, such an algorithm is not really
practical: nk can be huge even for moderate values of n and small values of k. Therefore,
we are interested in the question whether there is an algorithm where k does not appear in
the exponent of n. We say that a parameterized problem is fixed-parameter tractable (FPT)
if it has an algorithm with running time f(k)nc, where c is a constant independent of k and
n, and f depends only on k. Such an algorithm can be useful even for large values of n,
provided that f(k) is relatively small and c is a small constant. It turns out that several NP-
hard problems, e.g., Minimum Vertex Cover, Longest Path, k-Disjoint Triangles,
etc. are fixed-parameter tractable. There is a standard toolbox of techniques for designing
FPT algorithms: kernelization, bounded search trees, color coding, well-quasi-ordering, just
to name some of the more important ones (see [8] and [14]).

The theory of NP-completeness can be used to show that certain problems are unlikely to
be polynomial-time solvable. In parameterized complexity, W[1]-hardness plays an analogous
role: by showing that a problem is W[1]-hard, we can give strong evidence that the problem is
not fixed-parameter tractable. We omit the somewhat technical definition of the complexity
class W[1], see [8] for details. Here it will be sufficient to know that there are several problems,
including Maximum Clique, that were proved to be W[1]-hard. Furthermore, we also expect
that there is no O(no(k)) algorithm for Maximum Clique: recently it was shown that there
exists an O(no(k)) algorithm for Maximum Clique if and only if there are subexponential-
time algorithms for 3-Sat (see [4] and [11]).

To prove that a parameterized problem Q′ is W[1]-hard, we have to present a parameter-
ized reduction from a known W[1]-hard problem Q to Q′. A parameterized reduction from
problem Q to problem Q′ is a function that transforms a problem instance (x, k) of Q into a
problem instance (x′, k′) of Q′ such that

• (x′, k′) ∈ Q′ if and only if (x, k) ∈ Q,

• k′ is a function of k independent of x, and

• the transformation can be computed in time f(k) · |x|c for some constant c and function
f(k).

It is easy to see that if there is a parameterized reduction from Q to Q′, and Q′ is fixed-
parameter tractable, then it follows that Q is fixed-parameter tractable as well.

3 Separating Terminals

The parameterized terminal separation problem studied in this section is formally defined as
follows:
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Minimum Node Multiway Cut

Input: A graph G(V, E), a set of terminals T ⊆ V , and an
integer k.

Parameter 1: k

Parameter 2: ℓ := |T |, the number of terminals

Question: Is there a set of vertices S ⊆ V of size at most k such
that no two vertices of T belong to the same connected
component of G \ S?

Note that S and T do not have to be disjoint, which means that it is allowed to delete
terminals. A deleted terminal is considered to be separated from all the other terminals
(later we will argue that our results remain valid for the slightly different problem where the
terminals cannot be deleted).

The graph minor theory of Robertson and Seymour gives a quick way of showing that
Minimum Node Multiway Cut is fixed-parameter tractable. Here we briefly sketch the
main idea, we refer the reader to [8, Chapter 7] for more background on the connections
between graph minors and parameterized complexity.

The celebrated result of Robertson and Seymour states that graphs are well-quasi-ordered
with respect to the minor relation. Moreover, the same holds for graphs where the edges are
colored with a fixed number of colors. For every terminal v ∈ T , we add a new vertex v′

and a red edge vv′ (the original edges have color black). Now separating the terminals and
separating the red edges are the same problem. Consider the set Gk that contains those red-
black graphs where the red edges can be separated by deleting at most k vertices. It is easy to
see that Gk is closed with respect to taking minors. Therefore, by the Graph Minor Theorem,
Gk has a finite set of forbidden minors. Another result of Robertson and Seymour states that
for every graph H there is an O(|V |3) algorithm deciding whether a graph G(V, E) has a
H-minor; therefore, membership in Gk can be tested in O(|V |3) time. This means that for
every k, Minimum Node Multiway Cut can be solved in O(|V |3) time, thus the problem
is (non-uniformly) fixed-parameter tractable.

The constants given by this non-constructive method are incredibly large. In this section
we give a direct combinatorial algorithm for the problem, which is more efficient.

The notion of important separator is the most important definition in this section:

Definition 3.1. Let G(V, E) be a graph. For subsets X, S ⊆ V , the set of vertices reachable
from X \ S in G \ S is denoted by R(X, S). For X, Y ⊆ V , the set S is called an (X, Y )-
separator if Y ∩R(X, S) = ∅. An (X, Y )-separator is minimal if none of its proper subsets is
an (X, Y )-separator. An (X, Y )-separator S′ dominates an (X, Y )-separator S if |S′| ≤ |S|
and R(X, S) ⊂ R(X, S′) (proper subset). A subset S is an important (X, Y )-separator if it
is minimal, and there is no (X, Y )-separator S′ that dominates S.

Abusing notations, the one element set {v} will be often denoted by v. We note that
X and Y can have non-empty intersection, but in this case every (X, Y )-separator has to
contain X ∩ Y .

We use Figure 1 to demonstrate the notion of important separator. Let X = {x} and
Y = {y1, y2, y3, y4, y5}, we want to separate these two sets. X and Y can be separated
by deleting x, this is the only separator of size 1. There are several separators of size 2,
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Figure 1: The important (X, Y )-separators in this graph are {x}, {c, j}, {c, k, ℓ}, {d, e, j},
and {y1, y2, y3, y4}.

for example {a, f}, {b, g}, {b, j}, {c, j}. However, {c, j} is the only important separator of
size 2: R(x, {c, j}) = {x, a, b, f, g, h, i} and the set of vertices reachable from x is smaller
for every other separator of size 2. There are two important separators of size 3: {c, k, ℓ}
and {d, e, j}. Separator {c, h, i} is not important, since it is dominated by both {c, j} and
{c, k, ℓ}. Finally, there is only one important separator of size 4: the set {y1, y2, y3, y4}. The
separator {y1, y2, y3, y4, y5} is not important, since is not minimal.

Before we go into the technical details, let us have an intuitive overview of our algorithm
for Minimum Node Multiway Cut and the motivation behind the definition of important
separators. The algorithm first selects a set S1 that separates t1 from the rest of the ter-
minals; next it selects a set S2 that separates t2 from the rest of the terminals in G \ S1,
etc. The solution is obtained as S := S1 ∪ S2 ∪ . . . . Of course, there are many different
({t1}, {t2, . . . , tℓ})-separators, and it can matter a lot which separator is selected as S1: if S1

is chosen carefully, then besides separating t1 and {t2, . . . , tℓ}, it can also help us in separat-
ing the terminals {t2, . . . , tℓ} from each other. Intuitively, the closer S1 is to {t2, . . . , tℓ} and
the farther it is from t1, the more it can help in separating {t2, . . . , tℓ}. This motivates the
definition of important separators: a separator is important, if there is no separator strictly
farther from t1. Lemma 3.6 shows that if there is a solution, then the algorithm can obtain
a solution by selecting S1, S2, etc. to be important separators. Furthermore, Lemma 3.4
shows that there are at most 4k2

important separators of size at most k. The proof of this
lemma is the technically most demanding part of the algorithm. Therefore, when the algo-
rithm chooses the separator Si, then it has to branch into only a constant number of different
directions, and the running time is uniformly polynomial.

Testing whether a given (X, Y )-separator S is important can be done using standard
network flow techniques:

Lemma 3.2. It can be checked in O(|V |4) time whether a set S is an important (X, Y )-
separator in G(V, E). Furthermore, if S is a minimal separator that is not important, then
we can find in O(|V |5) time an important (X, Y )-separator that dominates S.

Proof. The minimality of S can be easily checked by testing for each vertex s ∈ S whether
S \ s remains a separator. If S is minimal, then for every vertex s ∈ S, we test whether
there is an (X, Y )-separator S′ of size at most |S| that does not contain any vertex of
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R(X, S)∪ s. This separator can be found in O(|V |3) time using network flow techniques (see
[1]). If there is such a separator S′, then S is not important: R(X, S) is a proper subset of
R(X, S′) ⊇ R(X, S) ∪ s.

If S is not important, then this method can be used to find an important separator that
dominates S. In the previous paragraph, we have obtained a separator S′ that dominates S.
The test can be repeated for S′, and if it is not important, then we get another separator
S′′ that dominates S′. We repeat this as many times as necessary. Since the set of vertices
reachable from X increases at each step, eventually we arrive to an important separator. We
have to repeat the test at most O(|V |) times, hence the total running time is O(|V |5). �

Let X and Y be two sets of vertices. Our algorithm for the Minimum Node Multiway

Cut problem is based on the observation that the number of important (X, Y )-separators
can be bounded by a function of k (Lemma 3.4). This is easy to see for k = 1: there is at
most one important (X, Y )-separator of size 1. A separator of size 1 has to be a cut vertex
(here we ignore the special cases where |X | = 1 or |Y | = 1). If there are multiple cut vertices
that separate X and Y , then there is a unique cut vertex that is farthest from X and closest
to Y . This vertex will be the only important (X, Y )-separator.

This observation on the number of size 1 important separators also follows from the
following more general result stating that there is a unique important separator of minimum
size. This result will not be needed, but we present it here for completeness.

Lemma 3.3. If every (X, Y )-separator has size at least k, then there is at most one important
(X, Y )-separator of size k.

Proof. The proof uses standard techniques from the theory of network flows. For a set of
vertices A, define the set d(A) to contain those vertices outside A that either belong to X or
are adjacent to a vertex in A. If S is an (X, Y )-separator, then d(R(X, S)) ⊆ S: the separator
has to ensure that no edge leads out of R(X, S) and the separator has to contain every vertex
of X outside R(X, S). Moreover, if S is a minimal separator, then d(R(X, S)) = S: there is
no point in deleting any other vertex.

If vertex set W is disjoint from Y , then d(W ) is an (X, Y )-separator. To see this, assume
that there is a path P connecting x ∈ X and y ∈ Y in G \ d(W ). Since d(W ) contains
X \W , vertex x has to be in W . The path P cannot leave W : the set d(W ) contains all the
neighbors of W . Therefore, y also has to be in W , which is not possible.

It is a routine exercise to verify that the function d satisfies the submodular inequality

|d(A)| + |d(B)| ≥ |d(A ∩ B)| + |d(A ∪ B)|. (1)

Assume that there are two size k important (X, Y )-separators S1 and S2. Let A := R(X, S1)
and B := R(X, S2). Notice that it is not possible that |d(A∩B)| < k: as we have seen above,
d(A ∩ B) would be an (X, Y )-separator of size less than k. The left hand side of (1) is 2k
and |d(A ∩ B)| ≥ k, thus it follows that |d(A ∪ B)| ≤ k. The set A ∪ B is disjoint from Y ,
hence, as we have seen above, S := d(A ∪ B) is an (X, Y )-separator of size k. Furthermore,
all the vertices of A ∪ B can be reached from X \ S in G \ S (this follows from the way A
and B was defined and from the fact that S contains no vertex from A ∪ B.) Therefore,
R(X, S) = A ∪ B = R(X, S1) ∪ R(X, S2), contradicting the assumption that S1 and S2 are
important. �
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Figure 2: A graph where there is an exponential number of important separators that separate
the large cliques X and Y .

For larger sizes, there can be many important (X, Y )-separators of a given size. Let us
consider the example in Figure 2. To separate the two large cliques X and Y , for each
1 ≤ i ≤ t, either ai, or both bi and ci have to be deleted. If we choose to delete both bi

and ci, then we have to delete two vertices instead of one, but the set of vertices reachable
from X increases, it includes ai. Therefore, there are

(

t
t/2

)

important (X, Y )-separators of

size 3t/2: for t/2 of the i’s we delete ai, and for the remaining t/2 we delete bi and ci. All
these separators are important, since R(X, S′) and R(X, S′′) are incomparable for two such
separators S′ and S′′. Thus the number of important separators of a given size k can be
exponential in k. However, we show that the maximum number is independent of the size of
the graph:

Lemma 3.4. If X and Y are arbitrary sets of vertices, then there are at most 4k2

impor-
tant (X, Y )-separators of size at most k. Moreover, these separators can be enumerated in
uniformly polynomial time.

Proof. The proof is by induction on k. We have seen above that the statement holds for
k = 1. Let S be an important (X, Y )-separator of size at most k in G. We count how many
other important separators can be in G. If H is another important (X, Y )-separator of size
at most k, then we consider two cases depending on whether Z = S ∩ H is empty or not. If
Z is not empty, then it is easy to see that H \ Z is an important (X \ Z, Y \ Z)-separator
in G \ Z. Since |H \ Z| < k, by the induction hypothesis the number of such separators is

at most 4(k−1)2 . There are not more than 2k possibilities for the set Z, and for each set Z
there are at most 4(k−1)2 possibilities for the set H , hence the total number of different H
that intersect S is at most 2k4(k−1)2 .

Next we count those separators that do not intersect S. Assume that H contains ℓ vertices
from R(X, S) and at most k − ℓ vertices from R(Y, S). It is not possible that ℓ = 0: that
would imply that R(X, S)∪S ⊆ R(X, H) and S would not be an important separator. Here
we used the minimality of S: if no vertex of R(X, S) and S is deleted, then every vertex of
S can be reached from X . Similarly, it is not possible that ℓ = k because H would not be
an important separator in that case. To see this, notice that by the minimality of S, from
every vertex of S a vertex of Y can be reached using only the vertices in R(Y, S). Therefore,
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no vertex of S can be reached from X \ H in G \ H , otherwise H would not be an (X, Y )-
separator. Since S is an (X, Y )-separator, thus this also means that no vertex of R(Y, S)
can be reached. Therefore, R(X, H) is contained in R(X, S), and the containment is proper
because of ℓ > 0. Henceforth, it is assumed that 0 < ℓ < k.

We divide H into two parts: let H1 = H ∩R(X, S) and H2 = H ∩R(Y, S) (see Figure 3).
The separator S is also divided into two parts: S1 = S∩R(X, H) contains those vertices that
can be reached from X \H in G\H , while S2 = S \S1 contains those that cannot be reached.
Let G1 (resp., G2) be the subgraph of G induced by R(X, S) ∪ S (resp., R(Y, S) ∪ S).1 It is
clear that H1 is an (X ∪ S1, S2)-separator in G1, and H2 is an (S1, Y ∪ S2)-separator in G2.
Moreover, we claim that they are important separators:

Claim 3.5. H1 is an important (X∪S1, S2)-separator in G1 and H2 is an important (S1, Y ∪
S2)-separator in G2.

Proof. First, if H1 is not minimal, i.e., it remains an (X ∪ S1, S2)-separator in G1 without
some vertex v ∈ H1, then H would be an (X, Y )-separator without v as well. To see this,
assume that there is a path P from X to Y in G \ (H \ v). Let u1 be the last vertex on P
that is from X ∪ S1, and let u2 be the first vertex after u1 that is from Y ∪S2. The subpath
P ′ between u1 and u2 is completely contained either in G1 or G2, since the interior points
of P ′ cannot contain vertices from S1 and S2. If P ′ is completely contained in G1, then it
connects a vertex of X∪S1 with a vertex of S2, which contradicts the assumption that H1 \v
is an (X ∪ S1, S2)-separator in G1. Similarly, if P ′ is in G2, then it connects a vertex of S1

with a vertex of Y ∪ S2, which is not possible if H2 is an (S1, Y ∪ S2)-separator.
Assume now that the minimal (X ∪ S1, S2)-separator H1 is not important, because some

(X ∪ S1, S2)-separator H∗
1 dominates H1 in G1. In this case H∗

1 ∪H2 is an (X, Y )-separator
in G. This can be shown by an argument similar to the previous paragraph: if there were a
path P connecting X and Y , then P would have a subpath connecting X ∪ S1 and S2 in G1

(impossible because of H∗
1 ) or a subpath connecting S1 and Y ∪ S2 (impossible because of

H2).
Furthermore, we show that H∗

1 ∪ H2 dominates H , contradicting the assumption that H
is important. To see that R(X, H) ⊂ R(X, H∗

1 ∪ H2) holds, assume on the contrary that
some vertex u ∈ H∗

1 ∪ H2 is in R(X, H). Clearly, u has to be in H∗
1 . Let Q ⊆ R(X, H) be a

path connecting a vertex of X and u, this path is disjoint from H . Without loss of generality,
we can assume that u is the first vertex from H∗

1 on Q. Let z be the last vertex on Q from
X ∪S1. The subpath Q′ between z and u is completely contained in G1, since Q ⊆ R(X, H)
cannot go through S2. This means that u is reachable from X ∪S1 in G1 \H1, but (trivially)
u ∈ H∗

1 is not reachable from X ∪ S1 in G1 \ H∗
1 . This means that H∗

1 does not dominate
H1, a contradiction.

A similar argument shows that H2 is an important (S1, Y ∪ S2)-separator in G2. �

By the induction hypothesis, we have a bound on the number of possible important
separators H1 and H2. For a given partition (S1, S2) of S and a given value of ℓ, there are

at most 4ℓ24(k−ℓ)2 possibilities for H1 and H2. There are 2k possible partitions (S1, S2), and

1As shown in Figure 4, the situation can be more complicated than what is suggested by Figure 3. It is
possible that some vertex v ∈ S1 is not reachable from X in G1 \ H1, but can be reached in G \ H by going
through G2 first. Therefore in the proof it is important that we formally verify every claim and do not rely
on the intuition gained from Figure 3.

8



YX
H2

H1

S2

S1

Figure 3: Separators in the proof of Lemma 3.4.
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Figure 4: A more complicated example for the separators in the proof of Lemma 3.4.

the value of ℓ is between 1 and k − 1. Therefore, the total number of different separators
(including S itself and the at most 2k4(k−1)2 sets from the first case) is at most

1 + 2k4(k−1)2 +

k−1
∑

ℓ=1

2k4ℓ24(k−ℓ)2 ≤ 1 + 2k4(k−1)2 + (k − 1)2k4(k−1)2+1

≤ k2k4(k−1)2+1 ≤ 4k4(k−1)2+1 = 4k+k2−2k+2 ≤ 4k2

,

which we had to show (in the first inequality we used ℓ2 + (k − ℓ)2 ≤ (k − 1)2 + 1, which
follows from 1 ≤ ℓ ≤ k − 1).

The proof also gives an algorithm for finding all the important separators. First, we use
standard network flow techniques to find an arbitrary (X, Y )-separator S0 of size at most
k. Next we use Lemma 3.2 to find an important separator S that dominates S0. Let us
enumerate the other important separators besides S. To handle the first case of the proof,
we take every subset Z of S, and recursively find all the important size k − |Z| separators
in G \ S. In the second case, we consider every 1 ≤ ℓ ≤ k − 1 and every division (S1, S2) of
S. We recursively enumerate every important (X ∪ S1, S2)-separator H1 in G1 that has size
at most ℓ and every important (S1, Y ∪ S2)-separator H2 in G2 that has size at most k − ℓ.
We have seen above that if an important (X, Y )-separator is disjoint from S, then it is the
union of some H1 and some H2. For each H1, H2, it has to be checked whether H1 ∪ H2

is an important (X, Y )-separator. Checking whether H is important can be done with the
algorithm of Lemma 3.2.

Our algorithm makes a constant number of recursive calls with smaller k; therefore, the
running time is uniformly polynomial. �

What makes important separators important is that a separator in a solution can be
always replaced by an important separator:
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Figure 5: The proof of Lemma 3.6.

Lemma 3.6. If there is a set S of vertices that separates the terminals t1, . . . , tr, then
there is a set H with |H | ≤ |S| that also separates the terminals and contains an important
({t1}, {t2, t3, . . . , tr})-separator.

Proof. Let S0 ⊆ S be those vertices of S that can be reached from t1 without going through
other vertices of S. Clearly, S0 is a ({t1}, {t2, t3, . . . , tr})-separator, and it contains a minimal
separator S1 (see Figure 5a). If S1 is important, then S contains the important separator S1,
and we are done. Otherwise, there is an important ({t1}, {t2, t3, . . . , tr})-separator S′

1 that
dominates S1. We claim that S′ = (S \ S1) ∪ S′

1 also separates the terminals. If this is true,
then |S′

1| ≤ |S1| implies |S′| ≤ |S|, proving the lemma.
Since S′

1 is a ({t1}, {t2, t3, . . . , tr})-separator, S′ separates t1 from all the other vertices.
Assume therefore that there is a path P in G\S′ connecting terminals ti and tj (see Figure 5b).
Since S separates ti and tj , this is only possible if P goes through a vertex v of S1. Every
vertex of S1 ⊆ S0 has a neighbor in R(t1, S), let w be such a neighbor of v. Since R(t1, S) ⊆
R(t1, S

′), vertex w can be reached from t1 in G \ S′. Therefore, ti can be reached from t1
via w and v, which is a contradiction, since S′ is a ({t1}, {t2, t3, . . . , tr})-separator. �

Lemma 3.4 and Lemma 3.6 allow us to use the method of bounded search trees to solve
the Minimum Node Multiway Cut problem:

Theorem 3.7. Minimum Node Multiway Cut is fixed-parameter tractable with parameter
k.

Proof. We choose an arbitrary terminal t that is not already separated from every other
terminal. By Lemma 3.6, there is a solution that contains an important (t, T \ t)-separator.

Using Lemma 3.4, we enumerate all the at most 4k2

important separators of size at most
k, and select a separator S from this list. We delete S from G, and recursively solve the
problem for G \ S with problem parameter k − |S|. At each step we can branch into at most

4k2

directions, and the problem parameter is decreased by at least one, hence the search
tree has height at most k and has at most 4k3

leaves. The work to be done is uniformly
polynomial at each step, hence the algorithm is uniformly polynomial. �
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A natural way to generalize Minimum Node Multiway Cut is to have a more compli-
cated restriction on which terminals should be separated. Instead of a set of terminals where
every terminal has to be separated from every other terminal, in the following problem there
are pairs (si, ti) of terminals, and each si has to be separated only from the corresponding
ti:

Minimum Node Multicut

Input: A graph G(V, E), pairs of vertices (s1, t1), (s2, t2), . . . ,
(sℓ, tℓ), and an integer k.

Parameter 1: k

Parameter 2: ℓ

Question: Is there a set of vertices S ⊆ V of size at most k such
that for every 1 ≤ i ≤ ℓ, vertices si and ti are in different
components of G \ S?

Let T =
⋃ℓ

i=1{si, ti} be the set of terminals. We can prove an analog of Lemma 3.6:
there is an optimal solution containing an important separator.

Lemma 3.8. If there is a set S of vertices that separates every pair, then there is a set S′

with |S′| ≤ |S| that also separates the pairs and S′ contains an important ({s1}, T ′)-separator
for some nonempty subset T ′ ⊆ T .

Proof. We proceed similarly as in the proof of Lemma 3.6. Let T ′ be the set of those terminals
that are separated from s1 in G \ S. Let S0 ⊆ S be the vertices reachable from s1 without
going through other vertices of S. Clearly, S0 is an (s1, T

′)-separator, and it contains a
minimal (s1, T

′)-separator S1. If S1 is not important, then there is an important (s1, T
′)-

separator S′
1 that dominates S1. We claim that S′ = (S \ S1) ∪ S′

1 also separates the pairs.
Clearly, t1 ∈ T ′, hence s1 and t1 are separated in S′. Assume therefore that si and ti are
connected by a path P in G \S′. As in Lemma 3.6, path P goes through a vertex of S1, and
it follows that both si and ti are connected to s1 in G \ S′. Therefore, si, ti 6∈ T ′. However,
this implies that s1 is connected to si and ti in G \ S, hence S does not separate si from ti,
a contradiction.

�

To find k vertices that separate the pairs, we use the same method as in Theorem 3.7. In
Lemma 3.8, there are 2ℓ different possibilities for the set T ′, and by Lemma 3.4, for each T ′

there are at most 4k2

important ({s1}, T ′}-separators of size at most k. Therefore, we can

generate 2ℓ · 2k2

separators such that one of them is contained in an optimum solution. This
results in a search tree with at most 2kℓ · 4k3

leaves.

Theorem 3.9. The Minimum Node Multicut problem is fixed-parameter tractable with
parameters k and ℓ. �

Separating the terminals in T can be expressed as separating
(

|T |
2

)

pairs, hence Minimum

Node Multiway Cut is a special case of Minimum Node Multicut. However, Theo-
rem 3.9 does not imply Theorem 3.7. In Theorem 3.9 the number of pairs is a parameter,
while the size of T can be unbounded in Theorem 3.7. The complexity of Minimum Node
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Multicut if only k is the parameter remains an interesting open question. We remark
that similarly to Theorem 3.7, a non-constructive proof of Theorem 3.9 follows from the
graph minor theorems. However, this technique does not seem to work for Minimum Node

Multicut if ℓ is not a parameter.
As noted at the beginning of the section, in the separation problems we assume that any

vertex can be deleted, even the terminals themselves. However, we can consider the slightly
more general problem when the input contains a set V ∗ of distinguished vertices, and these
vertices cannot be deleted. All the results in this section hold for this variant of the problem
as well. In all of the proofs, when a new separator is constructed, then it is constructed from
vertices that were contained in some other separator.

We can consider the variants Minimum Multiway Cut and Minimum Multicut where
the terminals have to be separated by deleting at most k edges. The edge deletion problems
received more attention in the literature [6, 5, 9]. As noted in [10], it is easy to reduce the
edge deletion problem to vertex deletion; therefore, our algorithms can be used for these
edge deletion problems as well. For completeness, we briefly describe a possible reduction.
The edge deletion problem can be solved by considering the line graph (in the line graph
L(G) of G the vertices correspond to the edges of G, and two vertices are connected if the
corresponding two edges have a common vertex.) However, we have to do some tinkering
before we can define the terminals in the line graph. For each terminal vi of G, add a new
vertex v′i and a new edge viv

′
i. Let v′i be the terminal instead of vi. If edge viv

′
i is marked as

unremovable, then this modification does not change the solvability of the instance. Now the
problem can be solved by using the vertex separation algorithms (Theorem 3.7 and 3.9) on
the line graph L(G). The terminals in the line graph are the vertices corresponding to the
edges viv

′
i. These edges were marked as unremovable in G, hence the corresponding vertices

have to be included in the set V ∗ of distinguished vertices in L(G).

Theorem 3.10. The edge deletion versions of Minimum Multiway Cut (with parameter
k) and Minimum Multicut (with parameters k and ℓ) are fixed-parameter tractable. �

4 Cutting up a Graph

Finding a good separator that splits a graph into two parts of approximately equal size is a
useful algorithmic technique (see [12, 13] for classic examples). This motivates the study of
the following problem, where a given number of vertices has to be separated from the rest of
the graph:

Cutting ℓ Vertices

Input: A graph G(V, E), integers k and ℓ.

Parameter 1: k

Parameter 2: ℓ

Question: Is there a partition V = X ∪ S ∪ Y such that |X | = ℓ,
|S| ≤ k and there is no edge between X and Y ?

It follows from [3] that the problem is NP-hard in general. Moreover, it is not difficult
to show that the parameterized version of the problem is hard as well, even with both
parameters:

12



Theorem 4.1. Cutting ℓ Vertices is W[1]-hard with parameters k and ℓ.

Proof. The proof is by reduction from the parameterized Maximum Clique problem. Let
G be a graph with n vertices and m edges, it has to be determined whether G has a clique
of size k. We construct G′ as follows. In G′ there are n vertices v1, . . . , vn that correspond
to the vertices of G, they form a clique in G′. Furthermore, G′ has m vertices e1, . . . , em

that correspond to the edges of G. If the end points of edge ej in G are vertices vj1 and vj2 ,

then connect vertex ej with vertices vj1 and vj2 in G′. Set ℓ′ :=
(

k
2

)

and k′ := k.
If there is a clique of size k in G, then we can cut away ℓ′ vertices in G′ by removing k′

vertices. From v1, . . . , vn remove those k vertices that correspond to the clique. Now the
(

k
2

)

vertices of G′ that correspond to the edges of the clique are isolated vertices. On the other
hand, assume that in G′ it is possible to cut away ℓ′ vertices by deleting k′ vertices. The
remaining vertices of v1, . . . , vn form a clique of size greater than ℓ′ (assuming n >

(

k
2

)

+ k),
hence the ℓ′ separated vertices correspond to ℓ′ edges of G. These vertices have to be isolated,
since they cannot be connected to the large clique formed by the remaining vi’s. This means
that the end vertices of the corresponding edges were all deleted. Therefore, these ℓ′ =

(

k
2

)

edges can have at most k′ = k end points, which is only possible if the end points induce a
clique of size k in G. �

If we restrict the problem to bounded-degree graphs, then Cutting ℓ Vertices becomes
fixed-parameter tractable:

Theorem 4.2. Cutting ℓ Vertices is fixed-parameter tractable with parameters k, ℓ, and
d, where d is the maximum degree of the graph.

Proof. Consider a solution V = X ∪ S ∪ Y , and consider the subgraph induced by X ∪ S.
This subgraph consists of some number of connected components, let Xi ∪ Si be the vertex
set of the i-th component. For each i, the pair (Si, Xi) has the following two properties:

(1) in graph G the set Si separates Xi from the rest of the graph, and

(2) Xi ∪ Si induces a connected graph.

On the other hand, assume that the pairs (X1, S1), . . . , (Xt, St) satisfy (1), (2), and the
sets X1, . . . , Xt, S1, . . . , St are pairwise disjoint. In this case S = S1 ∪ · · · ∪ St separates
X = X1 ∪ · · · ∪ Xt from the rest of G. Furthermore, if X has size exactly ℓ and S has
size at most k, then they form a solution. Therefore, to solve the problem we generate all
the pairs that satisfy these requirements, and use color coding to decide whether there are
disjoint pairs with the required total size (see below for details). If there is a solution, then
this method will find one.

By requirement (2) a pair (Xi, Si) induces a connected subgraph of size at most k+ℓ. We
enumerate every such connected subgraph. If a vertex v is contained in a connected subgraph
of size at most k + ℓ, then every vertex of the subgraph is at distance less than k + ℓ from v.
The maximum degree of the graph is d, thus there are at most dk+ℓ vertices at distance less
than k + ℓ from v. Therefore, the number of connected subgraphs that contain v and have
size at most k + ℓ is a constant (depending only k, ℓ, and d), which means that there is a
linear number of such subgraphs in the whole graph. We can enumerate these subgraphs in
linear time. Each subgraph can be divided into a pair (Xi, Si) in at most

(

k+ℓ
k

)

= O(2k+ℓ)
different ways. From these pairs we retain only those that satisfy requirement (1).
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Having generated all the possible pairs (X1, S1), . . . , (Xp, Sp), a solution can be found
as follows. We consider a random coloring of the vertices with a set C of c := k + ℓ colors.
Using dynamic programming, we try to find a solution where every vertex of X ∪ S has a
distinct color. Subproblem (C′, j, k′, ℓ′) asks whether it is possible to select some pairs from
the first j pairs such that

• the selected pairs are pairwise disjoint,

• the selected pairs use only vertices with colors in C′ and every color of C′ is used at
most once,

• the union of the Si’s has size at most k′, and

• the union of the Xi’s has size ℓ′.

Clearly, there is a solution where X ∪ S has distinct colors if and only if the answer to
subproblem (C, p, k, ℓ) is true. For j = 0, the subproblems are trivial. If the subproblems
for j − 1 are solved, then the problem can be solved for j using the following two recurrence
relations. First, if subproblem (C′, j − 1, k′, ℓ′) is true, then clearly (C′, j, k′, ℓ′) is true as
well. Moreover, if every vertex of Xj ∪ Sj has distinct color (denote by Cj these colors), and
subproblem (C′ \ Cj , j − 1, k′ − |Sj |, ℓ′ − |Xj |) is true, then a solution for this subproblem
can be extended by the pair (Xj , Sj) to obtain a solution for (C′, j, k′, ℓ′). Using these two
rules, all the subproblems can be solved.

If there is a solution X ∪ S, then with probability at least c−c (where c = k + ℓ is the
number of colors) these vertices receive distinct colors, and the algorithm described above
finds a solution. Therefore, if there is a solution, then on average we have to repeat the
method at most cc (constant) times to find a solution. The algorithm can be derandomized
using the standard method of k-perfect hash functions, see [8, Section 8.3] and [2]. �

A variant of Cutting ℓ Vertices is the Cutting ℓ Connected Vertices problem
where we also require that X induces a connected subgraph of G. This problem is fixed-
parameter tractable:

Theorem 4.3. The Cutting ℓ Connected Vertices problem is fixed-parameter tractable
with parameters k and ℓ.

Proof. A vertex with degree at most k + ℓ will be called a low degree vertex, let G0 be the
subgraph induced by these vertices. A vertex v with degree more than k + ℓ cannot be part
of X : at most k neighbors of v can be in S, hence v would have more than ℓ neighbors in X ,
which is impossible if |X | = ℓ. Therefore, X is a connected subgraph of G0. As in the proof
of Theorem 4.2, a bounded-degree graph has a linear number of connected subgraphs of size
ℓ. For each such subgraph, it has to be checked whether it can be separated from the rest of
the graph by deleting at most k vertices, i.e., whether its neighborhood has size at most k.

�

However, if only k is chosen as the parameter, then the problem is W[1]-hard. This follows
from the proof of Theorem 4.1. We construct the n+m vertex graph as before, but instead of
asking whether it is possible to separate

(

k
2

)

vertices by deleting k vertices, we ask whether it

is possible to separate ℓ := n+m−
(

k
2

)

− k connected vertices by deleting k vertices. (Notice
that ℓ is not a function of k, but this is not a problem, as now ℓ is not a parameter.) It is
easy to see that the two questions have the same answer, thus
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Theorem 4.4. Cutting ℓ Connected Vertices is W[1]-hard with parameter k. �

Similarly, the problem is W[1]-hard if only ℓ is the parameter.

Theorem 4.5. Cutting ℓ Connected Vertices is W[1]-hard with parameter ℓ.

Proof. The reduction is from Maximum Clique. It is not difficult to show that Maximum

Clique remains W[1]-hard for regular graphs (by attaching appropriate gadgets, we can
make the graph regular without modifying the maximum clique size). Assume that we are
given an r-regular graph G, and it has to be decided whether there is a clique of size k. If
r ≤ k4, then the problem is fixed-parameter tractable: for every vertex v, we select k − 1

neighbors of v in at most
(

k4

k−1

)

possible ways, and test whether these k vertices form a clique.

Thus in the following it will be assumed that r > k4.
Consider the line graph L(G) of G, i.e., the vertices of L(G) correspond to the edges of

G. Set ℓ′ :=
(

k
2

)

and k′ := k(r− k + 1) (r can be up to n− 1, but this is not a problem, since
k′ is not a parameter). We claim that ℓ′ connected vertices can be separated from L(G) by
deleting k′ vertices if and only if G has a size k clique. If G has a size k clique, then the ℓ′

edges induced by the clique can be separated from the rest of the line graph: for each vertex
of the clique, we have to delete the r − k + 1 edges leaving the clique. On the other hand,
assume that ℓ′ vertices of L(G) can be separated by deleting k vertices. The corresponding
ℓ′ edges in G span a set T of vertices of size t ≤ 2ℓ′. We show that t = k, thus T is a clique
of size k in G. Assume that t > k. Each vertex of T has at least r − t + 1 edges that leave
T . The corresponding t(r− t+1) vertices have to be deleted from the line graph of G, hence
k′ ≥ t(r − t + 1). However, this is not possible since

t(r − t + 1) − k′ = (t − k)r − t(t − 1) + k(k − 1) ≥ (t − k)r − 4ℓ′2 ≥ r − k4 > 0

(in the first inequality we use t2 ≤ 4ℓ′2, in the second t > k and ℓ′ < k2/2). �

The vertex connectivity of a graph is the minimum number of vertices that has to be
deleted to make the graph disconnected. Using network flow techniques, vertex connectivity
can be determined in polynomial time. However, if we want to disconnect the graph into at
least ℓ ≥ 3 components by deleting as few vertices as possible, then the problem becomes
hard. By essentially the same proof as in Theorem 4.1, we can show hardness for this problem
as well:

Cutting into ℓ Components

Input: A graph G(V, E), integers k and ℓ

Parameter 1: k

Parameter 2: ℓ

Question: Is there a set S of k vertices such that G\S has at least
ℓ connected components?

Theorem 4.6. Cutting into ℓ Components is W[1]-hard with parameters k and ℓ.

Proof. The construction is the same as in Theorem 4.1, but this time we set ℓ′ =
(

k
2

)

+1 and
k′ = k. By deleting the vertices corresponding to a clique of size k the graph is separated into
ℓ′ components. The converse is also easy to see, the argument is the same as in Theorem 4.1.

�
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5 Conclusions

In this paper we have studied a bunch of loosely related graph separation problems. The
common theme in all these problems is that vertices have to be deleted to make the graph
disconnected in a certain way. We have shown that the Minimum Node Multiway Cut

problem is fixed-parameter tractable if the number of nodes to be deleted is chosen as pa-
rameter. For the more general Minimum Node Multicut problem, we were only able to
show that it is fixed-parameter tractable if both the number of pairs and the number of
vertices to be deleted are parameters. It remains an intriguing open question to determine
the complexity of Minimum Node Multicut in the case when only k is the parameter.
This question restricted to planar graphs would be also worth studying.

Another natural generalization is to consider directed graphs. Lemma 3.4 and 3.6 go
through for the directed case, giving a uniformly polynomial algorithm for the directed version
of Minimum Node Multiway Cut. However, Lemma 3.8 breaks down in the directed case.
Hence the complexity of the directed version of Minimum Node Multicut remains open.
The problem would be interesting to study even on acyclic graphs.

In the second part of the paper, we have considered problems where “something” has to
be cut away from the rest of the graph by deleting vertices. Edge-deletion variants of some
of these problems were studied in [7]. However, parameterizing by the number of edges to be
deleted is not investigated in [7]. It would be interesting to determine the complexity of all
the possible parameterizations of the edge-deletion variants.
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