
Parameterized Graph Cleaning Problems⋆

Dániel Marx and Ildikó Schlotter

Department of Computer Science and Information Theory,
Budapest University of Technology and Economics,

H-1521 Budapest, Hungary.
{dmarx,ildi}@cs.bme.hu

Abstract. We investigate the Induced Subgraph Isomorphism prob-
lem with non-standard parametrization, where the parameter is the dif-
ference |V (G)| − |V (H)| with H and G being the smaller and the larger
input graph, respectively. Intuitively, we can interpret this problem as
“cleaning” the graph G, regarded as a pattern containing extra vertices
indicating errors, in order to obtain the graph H representing the ori-
ginal pattern. We show fixed-parameter tractability of the cases where
both H and G are planar and H is 3-connected, or H is a tree and G is
arbitrary.

1 Introduction

Problems related to graph isomorphisms play a significant role in algorithmic
graph theory. The Induced Subgraph Isomorphism problem is one of the ba-
sic problems of this area: given two graphs H and G, find an induced subgraph
of G isomorphic to H , if this is possible. In this general form, Induced Sub-
graph Isomorphism is NP-hard, since it contains several well-known NP-hard
problems, such as Independent Set or Longest Induced Path.

As Induced Subgraph Isomorphism has a wide range of important appli-
cations, polynomial time algorithms have been given for numerous special cases,
such as the case when both input graphs are trees [16] or 2-connected outerpla-
nar graphs [14]. However, Induced Subgraph Isomorphism remains NP-hard
even if H is a forest and G is a tree, or if H is a path and G is a cubic planar
graph [10]. In many fields where researchers face hard problems, parameterized
complexity theory (see e.g. [7] or [9]) has proved to be successful in the analysis
and design of algorithms that have a tractable running time in many applica-
tions. In parameterized complexity, a parameter k is introduced besides the input
I of the problem. A parameterized problem is fixed-parameter tractable (FPT)
if it admits an algorithm with running time O(f(k)|I|c) where f is an arbitrary
function and c is a constant independent of k.

Note that Induced Subgraph Isomorphism is trivially solvable in time
O(|V (G)||V (H)||E(H)|) on input graphs H and G. As H is typically much smaller

⋆ Research funded by the Hungarian National Research Fund (OTKA grant 67651).
The first author is supported by Magyary Zoltán Felsőoktatási Közalaṕıtvány.

than G in many applications related to pattern matching, the usual parametriza-
tion of Induced Subgraph Isomorphism is to define the parameter to be
|V (H)|. FPT algorithms are known if G is planar [8], has bounded degree [3], or
if H is a log-bounded fragmentation graph and G has bounded treewidth [11].

We consider another parametrization of Induced Subgraph Isomorphism,
where the parameter is the difference |V (G)|− |V (H)|. Considering the presence
of extra vertices as some kind of error or noise, the problem of finding the original
graph H in the “dirty” graph G containing errors is clearly meaningful. In other
words, the task is to “clean” the graph G containing errors in order to obtain H .
For two graph classes H and G we define the Cleaning(H,G) problem: given a
pair of graphs (H, G) with H ∈ H and G ∈ G, find a set of vertices S in G such
that G−S is isomorphic to H . The parameter associated with the input (H, G)
is |V (G)| − |V (H)|. For the case when G or H is the class of all graphs, we will
use the notation Cleaning(H,−) or Cleaning(−,G), respectively.

In the special case when the parameter is 0, the problem is equivalent to the
Graph Isomorphism problem, so we cannot hope to give an FPT algorithm
for the general problem Cleaning(−,−). Thus, we consider two special cases.
We give FPT algorithms for the problems Cleaning(Tree,−) and Cleaning(3-

Connected-Planar, Planar) where Tree, Planar, and 3-Connected-Planar denote
the class of trees, planar graphs, and 3-connected planar graphs, respectively.
Note that these problems differ from the Feedback Vertex Set and the Mini-
mum Apex problems, where the task is to delete a minimum number of vertices
from the input graph to get an arbitrary acyclic or planar graph, respectively.
Both these problems are FPT [2, 15].

Without parametrization, Cleaning(Tree,−) is NP-hard because it con-
tains Longest Induced Path, and we show NP-hardness for Cleaning(3-

Connected-Planar, 3-Connected-Planar) too. A polynomial time algorithm is
known for Cleaning(Tree, Tree) [16], and an FPT algorithm is known for
Cleaning(Grid,−) where Grid is the class of rectangular grids [5].

2 Notation

We write [n] for {1, . . . , n}. The set of the neighbors of x ∈ V (G) is NG(x),
and for some X ⊆ V (G) we let NG(X) =

⋃
x∈X NG(x). The degree of x in G

is dG(x) = |NG(x)|. If Z ⊆ V (G) and G is clear from the context, then we let
NZ(x) = NG(x) ∩ Z and NZ(X) = NG(X) ∩ Z. For some X ⊆ V (G), G − X
is obtained from G by deleting X , and G[X] = G − V (G − X). For a subgraph
H of G, let G − H = G − V (H). By contracting a vertex of degree 2, we mean
deleting it and adding an edge between its neighbors.

A plane graph is a planar graph together with a planar embedding. For a
subgraph H of a plane graph G, an edge e ∈ E(H) is called an outer edge of
(H, G) if G has a face Fe incident to e which is not in H . In this case, Fe is
an outer face of e w.r.t. (H, G). An isomorphism from H into G is a bijection
ϕ : V (H) ∪ E(H) → V (G) ∪ E(G) preserving incidency. For a subgraph H ′ of
H , ϕ(H ′) consists of the images of the vertices and edges of H ′.

3 The Cleaning(3-Connected-Planar, Planar) problem

In this section, we present an algorithm for Cleaning(3-Connected-Planar, Pla-

nar). Since 3-connected planar graphs can be considered as “rigid” graphs in the
sense that they cannot be embedded in the plane in essentially different ways,
this problem seems to be easy. However, Theorem 1 shows that it is NP-hard.

Theorem 1. Cleaning(3-Connected-Planar, 3-Connected-Planar) is NP-hard.

Proof. We give a reduction from the NP-complete Planar 3-Colorability
problem [10]. Let F be the planar input graph given. We construct 3-connected
planar graphs H and G such that Cleaning(3-Connected-Planar, 3-Connected-

Planar) with input (H, G) is solvable if and only if F is 3-colorable.
The gadgets we construct are shown in Fig. 1. For every x ∈ V (F) we

set an integer 9|V (F)| ≤ b(x) ≤ 10|V (F)| such that b(x) 6= b(y) for any
x 6= y ∈ V (F). For every vertex x ∈ V (F) we build a node-gadget Nx in G by
taking vertices ax, bx

1 , . . . , bx
6b(x) and cx

1 , . . . , cx
3b(x) and edge set {axbx

j , bx
j bx

j+1 | j ∈

[6b(x)]} ∪ {cx
j bx

2j−1, c
x
j bx

2j, c
x
j bx

2j+1|j ∈ [3b(x)]} where bx
6b(x)+1 = bx

1 . The node-
gadget Nx can be considered as a plane graph, supposing that the vertices
bx
1 , bx

2 , . . . , bx
6b(x) (and so cx

1 , cx
2 , . . . , cx

3b(x)) are embedded in a clockwise order

around ax. We define the j-th block Bx
j of Nx to be (cx

3j−2, c
x
3j−1, c

x
3j), for every

j ∈ [b(x)]. The type of cx
j can be 0, 1 or 2, according to the value of j modulo 3.

We set Cx = {cx
j |j ∈ [3b(x)]}.

For each edge xy ∈ E(F) we build a connection Exy in G that uses 9-9 conse-
cutive blocks from Nx and Ny, say Bx

i , . . . , Bx
i+8 and By

j , . . . , By
j+8. These blocks

are the base blocks for Exy, and we also define b(x, y) = (i, j). Note that since
b(x) ≥ 9|V (F)| > 9dF (x), we can define connections such that no block is a base
block for different connections. To build Exy with b(x, y) = (i, j), we introduce
three new vertices dxy

1 , dxy
2 , dxy

3 and edges {cx
3(i+8)−6m+ℓ

dxy
m , cy

3j−2+6m−ℓd
xy
m |m ∈

[3], ℓ ∈ [6]}∪{cx
3i+6c

y
3j+18, c

x
3i+2c

y
3j+20, c

x
3i−2c

y
3j+22} (see Fig. 1). By choosing the

base blocks for each connection in a way that the order of the connections around
a node-gadget is the same as the order of the corresponding edges around the
corresponding vertex for some fixed planar embedding of F , we can give a planar
embedding of G. Moreover, it is easy to see that G is also 3-connected.

To construct H , we make a disjoint copy Ḡ of G, and delete some edges and
vertices from it as follows. For the copy of cx

j (ax, Cx, etc.) we write c̄x
j (āx,

C̄x, etc. respectively). To get H , we delete from Ḡ the three edges connecting
vertices of C̄x and C̄y for every x 6= y, and vertices c̄x

3j−2 and c̄x
3j−1 for every x ∈

V (F), j ∈ [b(x)]. Clearly, H is planar, and observe that it remains 3-connected.
Now, we prove that if Cleaning(3-Connected-Planar, 3-Connected-Planar)

has a solution S for the input (H, G), then F is 3-colorable. Let ϕ be an iso-
morphism from H to G − S. First, observe that since b(x) 6= b(y) if x 6= y, and
the integers {b(x)|x ∈ V (F)} are large enough, ϕ must map āx to ax because of
its degree. For each x ∈ V (F), the vertices in Cx \ S must have the same type,
so let the color of x be this type. If xy ∈ E(F), then the color of x and y must
differ, otherwise one of the edges cx

3i+6c
y
3j+18, c

x
3i+2c

y
3j+20, c

x
3i−2c

y
3j+22 would be

2

1 0

2

1

0 1

0

2

2
10

2

2 2

2 2

2

2 2

2

2

2

2 2 2

220 1 0 1 0 1

1 0 1 0 1 0

2 2 101010

1 0 1 0 1 0

0 1 0 1 0 1

010101

Fig. 1. A node-gadget and a connection for the proof of Theorem 1.

in G − S where b(x, y) = (i, j), as for every type t, one of these edges connects
two vertices of type t. Thus the coloring is proper.

For the other direction, let t : V (F) → {1, 2, 3} be a coloring of F . For each
x ∈ V (F), let S contain those vertices in Cx whose type is not t(x) modulo 3.
Let ϕ map āx and d̄xy

m (for every meaningful x, y, m) to ax and dxy
m , respectively,

and let ϕ map c̄x
j to cx

j+t(x)−3 (in a cyclic order). By adjusting ϕ on the vertices

b̄x
i in the natural way, we can prove that ϕ is an isomorphism. It is clear that

the restriction of ϕ on N̄x is an isomorphism. Note that the only vertex of
Bx

j present in G − S is cx
3j+t(x)−3 = ϕ(c̄x

3j), so independently from t(x) and

t(y), the neighborhood of d̄xy
m is also preserved. We only have to check that the

edges connecting Cx and Cy are not present in G − S. This is implied by the
properness of the coloring, as all such edges connect vertices of the same type,
but for xy ∈ E(F) the types of the vertices in Cx \ S and Cy \ S differ. ⊓⊔

We present an FPT algorithm for Cleaning(3-Connected-Planar, Planar)
where the parameter is k = |V (G)| − |V (H)| for input (H, G). We assume n =
|V (H)| > k + 2 as otherwise we can solve the problem by brute force. We also
assume that H and G are simple graphs.

Let S be a solution. First observe that if C is a set of at most 2 vertices such
that G − C is not connected, then there is a component K of G − C such that
G − S is contained in G[V (K) ∪ C]. Clearly, K has size at least n− 2, and it is
unique by n > k + 2. Since such a separating set of size at most 2 can be found
in linear time [12], K can also be found in linear time. If no component of G−C
has size at least n − 2, then the algorithm outputs ’No’, otherwise it proceeds
with G[V (K) ∪ C] as input.

So we can assume that G is 3-connected. First the algorithm determines a
planar embedding of H and G. Every planar embedding determines a circular
order of the edges incident to a given vertex. Two embeddings are equivalent, if
these orderings are the same for each vertex in both of the embeddings. It is well-
known that a 3-connected planar graph has exactly two planar embeddings, and
these are reflections of each other (see e.g. [6]). Let us fix an arbitrary embedding
θ of H . By the 3-connectivity of G, one of the two possible embeddings of G
yields an embedding of G − S that is equivalent to θ. The algorithm checks
both possibilities. From now on, we regard H and G as plane graphs, and we are
looking for an isomorphism ϕ from H into G−S which preserves the embedding.

In a general step of the algorithm, we grow a partial mapping, which is a
restriction of ϕ. We assume that ϕ is already determined on a subgraph D of
H having at least one edge, such that the vertices of H − D are embedded in
the unbounded face of D. As implied implicitly, ϕ(V (D)) ∩ S = ∅, so if at some
point the algorithm would have to delete vertices from ϕ(D), it outputs ’No’.

The algorithm grows the subgraph D on which ϕ is determined step by step.
At each step, it chooses an outer edge e of (D, H), and either deletes some vertices
of G−ϕ(D) or adds to D an outer face F of e w.r.t. (D, H). This implies that the
outer edges of (D, H) correspond to the outer edges of (ϕ(D), G). Moreover, the
algorithm chooses e and F in a way such that after the first step it will always
hold that the outer edges of (D, H) form a cycle. We refer to this as choosing
an appropriate face. This method ensures that every vertex in V (H) \ V (D) is
embedded in the unique unbounded region determined by the border of D in H .
(The border of D in H is the subgraph formed by the outer edges of (D, H)).
Note that it also follows that the vertices of V (G) \ ϕ(V (D)) are embedded in
the unique unbounded region determined by the border of ϕ(D) in G.

To find an initial partial mapping, we try to find a pair of edges ab and a′b′

in H and G, respectively, such that ϕ(a) = a′ and ϕ(b) = b′. To do that, the
algorithm fixes an arbitrary edge ab in H and guesses ϕ(a) and ϕ(b). This yields
2|E(G)| possibilities. After this, the algorithm applies one of the following steps.

3-connectivity test. As we can delete vertices from G, it may happen that
G ceases to be 3-connected. This can be handled as described above, by finding
a separating set C of size at most 2, and determining the component K of G−C
with at least |V (H)| − 2 vertices. If no such component exists, or if it does not
include ϕ(D), then the algorithm outputs ’No’, otherwise it deletes V (G−C−K).

Common neighbors test. Let M = {ϕ(v)|v ∈ V (D), dH(v) < dG(ϕ(v))}.
First, note that every vertex in M must have a neighbor in S, thus if |M | > 2k,
then some vertex in S is adjacent to at least three vertices in M . As the vertices
of S ⊆ V (G) \ ϕ(V (D)) are embedded in the unbounded region determined by
the border of ϕ(D) in G, the vertices of M lie on this border. The algorithm
checks every vertex q having at least three neighbors on the border of ϕ(D) in
G, and determines whether q ∈ S, using Lemma 1. If no such vertex of S can be
found in spite of |M | > 2k, then the algorithm outputs ’No’.

Lemma 1. Let q in V (G) \ ϕ(V (D)) be adjacent to different vertices x, y and
z on the border of ϕ(D) in G. Then q ∈ S if and only if there is no vertex
p ∈ V (H) \ V (D) which is a common neighbor of ϕ−1(x), ϕ−1(y) and ϕ−1(z).

Proof. For contradiction, let us assume q ∈ S and let a vertex p exist as de-
scribed. As D is connected and ϕ preserves the embedding, the outer edges of
(ϕ(D), G) and the edges ϕ(p)x, ϕ(p)y and ϕ(p)z cut the plane into four regions,
and the only region among these containing all three of x, y and z is the bounded
region determined by the outer edges of (ϕ(D), G). But as no vertex in S can
be embedded in this region (by our assumption on D), q cannot be adjacent to
all of x, y and z, a contradiction. On the other hand, if there is no vertex in
V (H) \ V (D) adjacent to ϕ−1(x), ϕ−1(y) and ϕ−1(z), then q ∈ S is trivial. ⊓⊔

Examining an outer face. In this step, the algorithm takes an outer edge
e = xy of (D, H) with an appropriate outer face F in H , and the corresponding
outer face F ′ of ϕ(e) w.r.t. (ϕ(D), G). If the algorithm finds that V (F ′)∩S = ∅
must hold because of a sufficient condition given in Lemma 2, then it extends ϕ
by adding F to D. Otherwise, V (F ′) may contain vertices in S, so the algorithm
branches into a bounded number of directions.

In the branch assuming V (F ′) ∩ S = ∅, the extension of ϕ is performed. In
the branches when V (F ′) ∩ S 6= ∅ is assumed, the algorithm tries to find and
delete the first vertex s on the border of F ′ in S, and branches according to the
choice of s. Lemma 2 bounds the possibilities to choose s.

Lemma 2. Let e = t0tf be an outer edge of (D, H) and F its outer face w.r.t.
(D, H) such that its vertices in clockwise ordering are t0, t1, . . . , tf . Similarly,
let F ′ be an outer face of ϕ(e) w.r.t. (ϕ(D), G), where the vertices of F ′ in
clockwise ordering are t′0 = ϕ(t0), t

′
1, . . . , t

′
f ′−1 and t′f ′ = ϕ(tf). Let also R =

{j ∈ [min(f, f ′)] | dH(tj) 6= dG(t′j)} and let the indices in R be r1 < . . . < r|R|.

(1) If |R| ≤ 1 and f = f ′, then V (F ′) ∩ S = ∅ and ϕ(ti) = t′i for every i ∈ [f].
(2) If V (F ′) ∩ S 6= ∅ and t′i∗ is the first vertex on the border of F ′ that is in S,

then i∗ − 1 ∈ {rj | j ∈ [min(|R|, 2k + 1)]}.

Proof. Let ei = titi−1 for every i ∈ [f], so ei+1 is followed by ei in the clockwise
circular order of the edges incident to ti. Now, if e′i+1 is followed by ϕ(ei) in
the clockwise circular order of the edges incident to ϕ(vi) and e′i+1 ∈ E(G− S),
then ϕ(ei+1) = e′i+1 as ϕ preserves the embedding. Thus if V (F ′) ∩ S = ∅, then
applying this argument iteratively, from ϕ(t0tf) = t′0t

′
f ′ we can deduce ϕ(ti) = t′i

for every i ∈ [f].
Now, if V (F ′) ∩ S 6= ∅ and t′i∗ is the first vertex on the border of F ′ that

is in S, then the vertices t′0, . . . , t
′
i∗−1 are not in S, so by applying the above

argument we get ϕ(tℓ) = t′ℓ for all ℓ < i∗. But t′i∗−1 has a neighbor in S, hence
dG(t′i∗−1) > dG−S(t′i∗−1) = dG−S(ϕ(ti∗−1)) = dH(ti∗−1). This implies i∗−1 ∈ R.
Letting j∗ to be the last vertex on the border of F ′ that is in S, and using f = f ′

and the same argument as above, we get j∗ + 1 ∈ R. Clearly i∗ − 1 < j∗ + 1,
so V (F ′) ∩ S 6= ∅ would imply |R| ≥ 2. Hence, the conditions of (1) imply
V (F ′) ∩ S = ∅, proving also ϕ(ti) = t′i for every i ∈ [f].

To prove (2), suppose V (F ′)∩ S 6= ∅. As i∗ − 1 ∈ R, if ℓ∗ is the last index in
R such that for any ℓ ≤ rℓ∗ + 1 the vertex t′ℓ is not in S, we get i∗ − 1 = rℓ∗+1.
We claim ℓ∗ ≤ 2k, which clearly implies i∗ − 1 ∈ {rj | j ∈ [min(|R|, 2k + 1)]}.
To see the claim, suppose ℓ ≤ ℓ∗. Since dH(trℓ

) 6= dG(t′rℓ
) but ϕ(trℓ

) = t′rℓ
, we

get that t′ℓ is adjacent to a vertex s ∈ S, and by the definition of ℓ∗ we know
that s /∈ V (F ′), so s is not in the region of G corresponding to the face F of H .
Note that in a 3-connected graph no three vertices on the border of a single face
can also lie on the border of another face, so no three vertices in V (F ′) can be
adjacent to the same s ∈ S. Using this we obtain ℓ∗ ≤ 2|S| = 2k. ⊓⊔

Now let us describe the key mechanism of our algorithm. The essential work
is done by a recursive algorithm that we call GrowSolution, described in Fig. 2.

GrowSolution(H,G, D, ϕ)

1. If k = |V (G)| − |V (H)| < 0 then output(’No’).
2. Perform the 3-connectivity test.
3. If D equals H then output(’Yes’).
4. Perform the common neighbors test.
5. Examine an outer face. If for the chosen pair (F, F ′) of faces |V (F)| = |V (F ′)|

and |R| ≤ 1, then extend ϕ on F , and go to Step 3. Otherwise branch as follows:
– for all j ∈ [2k + 1]: let i∗ = rj + 1 and call GrowSolution(H, G − t′i∗ , D, ϕ).
– if |V (F)| = |V (F ′)| then extend ϕ on F and call GrowSolution(H,G, D, ϕ).

Fig. 2. The algorithm GrowSolution.

The input of GrowSolution is a 4-tuple (H, G, D, ϕ), where H and G are plane
graphs, H is 3-connected, D is a subgraph of H which is either an edge (in
the first step) or the union of faces whose border in H is a cycle, and ϕ is an
embedding preserving isomorphism from D to an induced subgraph of G, such
that the border of ϕ(D) in G is also a cycle. The algorithm finds out whether
there is an S ⊆ V (G) such that ϕ can be extended to map H to G − S while
remaining an isomorphism that preserves embedding. In each call, GrowSolution
may stop or branch into a few directions. According to this, we will speak of
terminal and branching calls. In each branch of a branching call, GrowSolution
either deletes a vertex from G, or extends ϕ by adding a new face to D. If at
the end of a branch a vertex is deleted, then this is a deletion branch, otherwise
it is an extension branch. (Actually, the algorithm may extend ϕ also in the
deletion branches before performing the deletion.) At the end of each branch,
GrowSolution calls itself recursively with the modified input.

In a single call, the algorithm first checks whether |V (G)| < |V (H)|, and if so,
then correctly outputs ’No’. Next, it handles the case when G is not 3-connected.
If D equals H , then Step 3 outputs ’Yes’. Then it searches for common neighbors,
as described above. Now, if the algorithm does not stop or delete vertices, it
examines an outer face. If for the chosen pair of faces (F, F ′) the conditions of
(1) in Lemma 2 are fulfilled, then we know V (F ′) ∩ S = ∅, so the algorithm
proceeds by extending ϕ on F according to the lemma. When GrowSolution
performs this extension, it also adds F to D, and checks whether ϕ is still an
isomorphism on D, and if not, outputs ’No’. This is correct by Lemma 2. This
extension step is iterated until either a vertex is deleted or the algorithm stops
in Step 3, 4 or 5, or the conditions of (1) in Lemma 2 do not hold.

In the last case, we don’t know whether V (F ′) ∩ S is empty or not, so the
algorithm branches into at most 2k+2 directions. First we assume V (F ′)∩S 6= ∅,
in this case statement (2) of Lemma 2 implies that i∗ ∈ {rj + 1 | j ∈ [min(2k +
1, |R|)]} where t′i∗ is the first vertex on the border of F ′ being in S. The algorithm
branches on these at most 2k+1 possibilities to delete t′i∗ . The last branch is an
extension branch corresponding to the case V (F ′) ∩ S = ∅. Here, GrowSolution

performs the extension of ϕ on F as described above. Note that this branch is
only necessary if |V (F)| = |V (F ′)|.

Observe that the correctness of the algorithm directly follows from Lem-
mas 1 and 2. Although GrowSolution only answers the decision problem, it is
straightforward to modify it in order to output the set S.

To analyze the running time of the algorithm, we assign a search tree T (I)
to a run of GrowSolution with a given input I. The nodes of this tree correspond
to the calls of GrowSolution. The leaves represent the terminal calls and the
internal nodes represent branching calls. The edge(s) leaving a node represent
the branch(es) of the corresponding call of GrowSolution, so e heads from x to y
if y is called in the branch represented by e in the call corresponding to x. The
parameter of a node with input I = (H, G, D, ϕ) is kI = |V (G)| − |V (H)|. The
parameter clearly decreases in a deletion branch, which cannot happen more
than k + 1 times. However, in the extension branches this is not true, which
seems to make it problematic to bound the size of the search tree. The following
lemma shows that this problem does not arise, thanks to Step 4 of the algorithm.

Lemma 3. The size of T (I) is bounded by a function f(k) where k = kI .

Proof. Let E∗ denote the edges in T (I) that correspond to extension branches.
The value of the parameter decreases in each deletion branch, and it can only
be negative in a leaf. Thus a path P leading from the root to a leaf in T (I)
can include at most k + 1 edges which are not in E∗. Let Q = v0v1 . . . vq be a
subpath of P containing only edges in E∗.

First, we observe the fact that given a set L of vertices in a simple 3-connected
planar graph G and a set F of faces each having at least 2 vertices from L on
their border, we have |F| ≤ 6|L|−12. To see this, we define the planar graph G′

such that V (G′) = L and for each face F ∈ F there is an edge in G′ connecting
two vertices in V (F)∩L. As G is 3-connected, every edge in G′ has multiplicity
at most 2, so the planarity of G′ yields |E(G′)| ≤ 2(3|L| − 6). For each face in
F we defined an edge in G′, so |F| ≤ |E(G′)| ≤ 6|L| − 12.

For a node w representing a call with input (H, G, D, ϕ), we define M(w)
to be the set containing those vertices ϕ(t) on the border of ϕ(D) in G such
that dH(t) < dG(ϕ(t)). As |M(vi)| can only decrease after the deletion of some
vertices, we get M(vi−1) ⊆ M(vi) for every i ∈ [q]. Observe that in Step 5 of
the branch represented by the edge vi−1vi, a face is added to ϕ(D) that has at
least two vertices in M(vi) ⊆ M(vq). This follows because the conditions of (1)
in Lemma 2 cannot hold in this step, and so the set R ⊆ M(vi) in Step 5 has
cardinality least 2. By Step 4 of the algorithm, |M(vq)| ≤ 2k. As shown above,
there can be at most 12k − 12 faces in G that are adjacent to at least 2 vertices
in M(vq), so the number of extensions branches in Q, i.e. the length of Q is
at most 12k − 12. This enables us to bound the length of P , which is at most
k + 1 + (k + 1)(12k − 12) < 13k2. As every node in T (I) has at most 2k + 2

children, the number of nodes in T (I) is at most f(k) = (2k + 2)13k2

. ⊓⊔

By careful implementation, it can be assured that the amount of work done
when extending ϕ on a face F is linear in |V (F)|, as we only spend constant time

3-Connected Planar Cleaning (H,G)

1. Perform the 3-connectivity test.
2. Let Hθ denote an embedded version of H , and let Gθ1

and Gθ2
be the two possible

embedded versions of G. For i = 1, 2 do:
3. Let xy ∈ E(H) be arbitrary. For all (a, b) where ab ∈ E(G) do:

4. Let ϕa,b denote the function mapping x to a and y to b.
Output(’Yes’) if GrowSolution(Hθ, Gθi

, xy,ϕa,b) returns ’Yes’.
5. Output(’No’).

Fig. 3. The algorithm solving Cleaning(3-Connected-Planar, Planar).

at a given vertex. This implies that the consecutive iteration of Steps 3, 4, and
5 can be performed in a total of linear time in |V (G)|. As other steps also can
be performed in time linear in |V (G)|, by Lemma 3 we can conclude that the
running time of GrowSolution on input (H, G, D, ϕ) is O(f(k)|V (G)|) for some
function f , where k = |V (G)| − |V (H)|.

As a result, there is an algorithm that solves Cleaning(3-Connected-Planar,

Planar) in FPT time. The steps of the decision version of this algorithm are
described in Fig. 3. Its correctness easily follows from the discussion above. As
it calls GrowSolution at most 4|E(G)| times, we can conclude:

Theorem 2. The Cleaning(3-Connected-Planar, Planar) problem on input
(H, G) can be solved in time O(f(k)n2), where n = |V (H)| and |V (G)| = n + k.

4 The Cleaning(Tree,−) problem

The aim of this section is to present an FPT algorithm for Cleaning(Tree,−).
Note that since Cleaning(Tree,−) contains the Longest Induced Path prob-
lem, the standard parametrization where the parameter is |V (H)| yields a W[2]-
hard problem [4].

W.l.o.g. we can assume that G is simple, n = |V (T)| > k (otherwise we can
solve the problem by a brute force algorithm) and e = |E(G)| = O(kn) (as we
can automatically refuse instances where e > n − 1 + k(n + k − 1)). Let S be a
fixed solution, i.e. let G − S = TS be a tree isomorphic to T . Throughout the
run of the algorithm, we can assume that G is connected, since by n > k it is
trivial to find the unique connected component of G containing TS .

4.1 Preprocessing

First, we introduce two kinds of reductions, each deleting some vertices from G
which must be included in S.

Reduction A: cycles with one common vertex. If for some vertex x ∈
V (G) there exist cycles C1, C2, . . . , Ck+1 such that V (Ci)∩V (Cj) = {x} if i 6= j,

then x must be included in any solution. To see this, observe that if x is not in
the solution S, then S must contain at least one vertex from each cycle Ci, but
this would imply |S| ≥ k + 1. For each x, we can find such cycles by solving a
flow problem in an appropriately defined directed graph. Since we need to find
flows with value at most k+1, this can be done in time O(ke) for a single vertex
x. This means that Reduction A can be performed in time O(ken) = O(k2n2).

Reduction B: disjoint paths between two vertices. Let x, y ∈ V (G) be
vertices such that there exist at least k + 2 paths from x to y which are disjoint
apart from their endpoints. Then x or y must be included in any solution S of size
at most k, as assuming x, y /∈ S implies the existence of a cycle through x and y in
G−S. Using standard flow techniques we can check in time O(ke) whether (x, y)
is such a pair of vertices, so finding such a pair takes time O(ken2) = O(k2n3).
Given such a pair of vertices yields two possibilities for a reduction, so the
algorithm branches in two directions. Since |S| = k, we can apply Reduction B
at most k times, which means a total of at most 2k branches.

Now denote by K the minimal connected subgraph of G containing every
cycle of G. Note that K is unique, and is an induced subgraph of G. We can
construct K from G easily in linear time, as the 2-connected components of a
graph can be determined in linear time, e.g. by applying depth first search. Let
K3 denote the vertices of K whose degree in K is at least 3.

Lemma 4. If Reduction A and B cannot be applied, then dK(x) ≤ k2 + k for
every x ∈ V (K − S) and |K3| < g(k) = 2k3(k + 1) + 3k = O(k4).

Proof. Let us assume that x ∈ V (K − S) has neighbors v1, v2, . . . , vk2+k+1 in
K. Then the edges xvi (for i ∈ [k2 + k + 1]) can be extended to innerly disjoint
paths in K starting from x and ending in a vertex of S. As |S| ≤ k, there must
exist a vertex s ∈ S such that at least ⌈(k2 + k + 1)/k⌉ = k + 2 of these paths
end in s. These paths form at least k + 2 innerly disjoint paths between x and
s, yielding a possibility for Reduction B, a contradiction.

We claim that given a tree T ′ with maximum degree d and a set Z ⊆ V (T ′)
with cardinality at least pd+2, there always exists a set P of p+1 disjoint paths
connecting vertices of Z. This is easy to see if we regard T ′ as a rooted tree and
we always choose a new path to put in P such that its distance from the root
is the largest possible. For a vertex s ∈ S, let Ts denote the unique minimal
subtree of K −S containing Zs = NV (K−S)(s). Suppose |Zs| ≥ k(k2 + k)+ 2 for
some s. As every vertex in Ts has maximum degree k2 + k by the first claim of
the lemma, we get that there are k + 1 disjoint paths in Ts connecting vertices
of Zs. These paths together with s form k + 1 cycles whose only common vertex
is s, contradicting our assumption that Reduction A is not applicable.

Thus, we get |Zs| ≤ k(k2 + k) + 1 = k2(k + 1) + 1 for each s ∈ S. Let L
denote the leaves of K − S. Every vertex in L has a neighbor in S, so L ⊆
NV (K−S)(S) =

⋃
s∈S Zs, implying |L| ≤ |NV (K−S)(S)| ≤ k3(k + 1)+ k. Observe

that every vertex in K3 \ (S ∪NV (K−S)(S)) has degree at least 3 also in K − S.
Since the number of vertices in the tree K−S having degree at least 3 is less than
the number |L| of leaves, we get |K3| < |S| + |NV (K−S)(S)| + |L| ≤ |S| + 2|L|,
implying |K3| < 2k3(k + 1) + 3k. ⊓⊔

4.2 Growing a mapping

From now on, we assume that Reductions A and B cannot be applied. Let φ
denote the isomorphism from T to TS that we are looking for. As in Sect. 3,
we try to grow a partial mapping from T to TS, which is always a restriction
of φ. To begin, the algorithm chooses an arbitrary starting vertex r0 in T , and
branches on the choice of φ(r0) in G, which means |V (G)| possibilities.

Assume now that the algorithm has a subtree D of T on which φ is already
known. The algorithm proceeds step by step, at each step choosing a leaf r of D
such that dD(r) < dT (r). For the chosen vertex r, it determines φ on NT (r). This
means also that it adds NT (r) to D, deletes NG(φ(r)) ∩ S from G and checks
whether φ is still an isomorphism. When determining φ on NT (r), the algorithm
may branch into a bounded number of branches, or may proceed with a single
branch. Accordingly, we distinguish between branching and simple cases.

Let us describe the details of a single step of the algorithm. Let t1, . . . , tn1

denote the neighbors of r in T not in D, and let Ti be the tree component of
T − r containing ti. Similarly, let t′1, . . . , t

′
n2

be the neighbors of r′ = φ(r) not in
φ(D) that are connected to r′ by edges not in K. Let T ′

i denote the component
of G − r′ that includes t′i. Observe that either T ′

i is a tree, or r′ /∈ V (K) and T ′
i

contains K. Finally, let n3 be the number of vertices in NG(r′) not in φ(D) that
are connected to r′ by edges in K. Clearly, n1 ≤ n2 + n3, and the equality holds
if and only if NG(r′) ∩ S = ∅.

First, let us observe that if the tree Ti is isomorphic to T ′
j for some i and

j, then w.l.o.g. we can assume that φ(Ti) = T ′
j. As the trees of a forest can be

classified into equivalence classes with respect to isomorphism in time linear in
the size of the forest [1, 13], this case can be noticed easily. Given two isomorphic
trees, an isomorphism between them can also be found in linear time, so the
algorithm can extend φ on Ti, adding also Ti to the subgraph D. Hence, we only
have to deal with the following case: no tree Ti (i ∈ [n1]) is isomorphic to one of
the graphs T ′

j (j ∈ [n2]). This argument makes our situation significantly easier,
since every graph T ′

j must contain some vertex from S. Therefore n2 ≤ |S| = k.

By Lemma 4, r′ can have degree at most k2 + k in K, so we get n3 ≤ k2 + k,
implying also n1 ≤ n2 + n3 ≤ k2 +2k. If these bounds do not hold in some step,
then the algorithm outputs ’No’.

The algorithm faces one of the following two cases at each step.
Simple case: n2 + n3 ≤ 1. In this case n1 ≤ 1. If n2 + n3 = 0 then the

algorithm proceeds with the next step. Otherwise, let v be the unique vertex in
NG(r′)\V (φ(D)). If n1 = 0 then v must be in S, otherwise φ(t1) = v. According
to this, the algorithm deletes v or extends φ on t1, adding also t1 to D.

Branching case: n2 + n3 ≥ 2. In this case, the algorithm branches on
every possible choice of determining φ on NT (r). Guessing φ(v) for a vertex
v ∈ NV (T−D)(r) can result in at most n2 + n3 possibilities, so the number of

possible branches in a branching step is at most (n2 + n3)
n1 ≤ (k2 + 2k)k2+2k.

We claim that in a single branch of a run of the algorithm on a solvable input,
there can be at most g(k)+2k− 2 branching steps. Observe that n3 ≥ 2 implies
that r′ is either the first vertex in φ(D) that is in K or r′ ∈ K3, so n3 ≥ 2 can

happen at most |K3| + 1 ≤ g(k) times, by Lemma 4. If n2 ≥ 2, then G − φ(D)
has more connected components containing vertices of S than G−φ(D− r) has.
It is easy to see that this can be true for only at most |S| − 1 such vertex r, so
this case can happen at most k − 1 times. Finally, let S∗ denote those vertices
of S that are not contained in K. Clearly, if s ∈ S∗, then |NV (TS)(s)| ≤ 1. Now,
if n2 = n3 = 1, then r′ ∈ V (K) and the edge r′t′1 must be one of the edges that
connect to K a tree in G − K containing a vertex in S∗. Observe that there
can be at most |S∗| ≤ k − 1 such edges, thus the claim follows. Therefore, the
algorithm only executes at most g(k) + 2k − 2 branching steps.

At each vertex the algorithm uses time at most linear in |V (G)|. The number
of steps performed is at most |V (T)|. As both the number of branching cases
and the number of branches in a branching case is bounded by a function of k,
the algorithm needs quadratic time after choosing φ(r0) for the starting vertex
r0. Trying all possibities on φ(r0) enhances this to a cubic time. Reductions A
and B can also be executed in cubic time, as argued before, so we can conclude:

Theorem 3. The Cleaning(Tree,−) problem on input (T, G) can be solved in
time O(f(k)n3), where n = |V (T)| and |V (G)| = n + k.

References

1. A. V. Aho, J. E. Hopcroft, J. D. Ullman: The design and analysis of computer

algorithms, Addison-Wesley, 1974.
2. H. Bodlaender: On disjoint cycles. Int. J. Found. Comput. Sci., 5:59–68, 1994.
3. L. Cai, S. M. Chan, S. O. Chan: Random separation: a new method for solving

fixed-cardinality optimization problems. IWPEC 2006, LNCS 4169, 239–250, 2006.
4. Y. Chen, J. Flum: On parameterized path and chordless path problems. 22nd

Annual IEEE Conference on Computational Complexity, 250–263, 2007.
5. J. Dı́az, D. M. Thilikos: Fast FPT-algorithms for cleaning grids. STACS 2006,

LNCS 3884, 361–371, 2006.
6. R. Diestel: Graph Theory, Springer, Berlin, 2000.
7. R. G. Downey, M. R. Fellows: Parameterized Complexity, Springer, 1999.
8. D. Eppstein: Subgraph isomorphism in planar graphs and related problems. J.

Graph Algorithms Appl. 3(3):1–27, 1999.
9. J. Flum, M. Grohe: Parameterized Complexity Theory, Springer, 2006.

10. M. R. Garey, D. S. Johnson: Computers and Intractability. A Guide to the Theory

of NP-Completeness, Freeman, San Francisco, 1979.
11. M. T. Hajiaghayi, N. Nishimura: Subgraph isomorphism, log-bounded fragmenta-

tion and graphs of (locally) bounded treewidth. J. Comput. Syst. Sci. 73(5):755–
768, 2007.

12. J. E. Hopcroft, R. E. Tarjan: Dividing a graph into triconnected components. SIAM

J. Computing 2(3):135–158, 1973.
13. J. E. Hopcroft, R. E. Tarjan: Efficient planarity testing. J. Assoc. Comput. Mach.

21:549–568, 1974.
14. A. Lingas: Subgraph isomorphism for biconnected outerplanar graphs in cubic

time. Theoret. Comput. Sci. 63(3):295–302, 1989.
15. D. Marx, I. Schlotter: Obtaining a planar graph by vertex deletion. WG 2007,

LNCS 4769, 292–303, 2007.
16. D. Matula: Subtree isomorphism in O(n5/2). Ann. Discrete Math. 2:91–106, 1978.

