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Department of Computer Science and Information Theory,
Budapest University of Technology and Economics,

Budapest, H-1521, Hungary.
{dmarx,ildi}@cs.bme.hu

Abstract. In the k-Apex problem the task is to find at most k vertices
whose deletion makes the given graph planar. The graphs for which there
exists a solution form a minor closed class of graphs, hence by the deep
results of Robertson and Seymour [34, 35], there is a cubic algorithm for
every fixed value of k. However, the proof is extremely complicated and
the constants hidden by the big-O notation are huge. Here we give a
much simpler algorithm for this problem with quadratic running time,
by iteratively reducing the input graph and then applying techniques for
graphs of bounded treewidth.
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1 Introduction

Planar graphs are subject of wide research interest in graph theory. There are
many generally hard problems which can be solved in polynomial time when
considering planar graphs, e.g., Maximum Clique, Maximum Cut, and Sub-

graph Isomorphism [16, 22]. For problems that remain NP-hard on planar
graphs, we often have efficient approximation algorithms. For example, the prob-
lems Independent Set, Vertex Cover, and Dominating Set admit an
efficient linear-time approximation scheme [3, 27]. The research for efficient al-
gorithms for problems on planar graphs is still very intensive.

Many results on planar graphs can be extended to almost planar graphs,
which can be defined in various ways. For example, we can consider possible
embeddings of a graph in a surface other than the plane. The genus of a graph is
the minimum number of handles that must be added to the plane to embed the
graph without any crossings. Although determining the genus of a graph is NP-
hard [37], the graphs with bounded genus are subjects of wide research. A similar
property of graphs is their crossing number, i.e., the minimum possible number
of crossings with which the graph can be drawn in the plane. Determining the
crossing number is also NP-hard [20].

In [7] Cai introduced another notation to capture the distance of a graph G
from a graph class F , based on the number of certain elementary modification
steps. He defines the distance of G from F as the minimum number of modifying
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steps needed to make G a member of F . Here, modification can mean the deletion
or addition of edges or vertices. In this paper we consider the following question:
given a graph G and an integer k, is there a set of at most k vertices in G, whose
deletion makes G planar?

It was proven by Lewis and Yannakakis in [26] that the node-deletion prob-
lem is NP-complete for every non-trivial hereditary graph property decidable
in polynomial time. As planarity is such a property, the problem of finding a
maximum induced planar subgraph is NP-complete, so we cannot hope to find a
polynomial-time algorithm that answers the above question. Therefore, follow-
ing Cai, we study the problem in the framework of parameterized complexity
developed by Downey and Fellows [14]. This approach deals with problems in
which besides the input I an integer k is also given. The integer k is referred to
as the parameter. In many cases we can solve the problem in time O(|I|f(k)) for
some function f . Clearly, this is also true for the problem we consider. Although
this is polynomial time for each fixed k, these algorithms are practically too
slow for large inputs, even if k is relatively small. Therefore, the standard goal
of parameterized analysis is to take the parameter out of the exponent in the
running time. A problem is called fixed-parameter tractable (FPT) if it can be
solved in time f(k)p(|I|), where p is a polynomial not depending on k, and f is
an arbitrary computable function. An algorithm with such a running time is also
called FPT. For more on fixed-parameter tractability see e.g. [14], [30] or [19].

The standard parameterized version of our problem is the following: given a
graph G and a parameter k, the task is to decide whether deleting at most k
vertices from G can result in a planar graph. Such a set of vertices is some-
times called a set of apex vertices or apices, so we will denote the class of graphs
for which the answer is ‘yes’ by Apex(k). We note that Cai [7] used the nota-
tion Planar + kv to denote this class.

In the parameterized complexity literature, numerous similar node-deletion
problems have been studied. A classical result of this type by Bodlaender [4]
and Downey and Fellows [13] states that the Feedback Vertex Set problem,
asking whether a graph can be made acyclic by the deletion of at most k vertices,
is FPT. The parameterized complexity of the directed version of this problem
has been a long-standing open question, and it has only been proved recently
that it is FPT as well [8]. Fixed-parameter tractability has also been proved for
the problem of finding k vertices whose deletion results in a bipartite graph [32],
or in a chordal graph [29]. On the negative side, the corresponding node-deletion
problem for wheel-free graphs was proved to be W[2]-hard [28].

Considering the graph class Apex(k), we can observe that this family of
graphs is closed under taking minors. The celebrated graph minor theorem by
Robertson and Seymour states that such families can be characterized by a set
of excluded minors [35]. They also showed that for each graph H it can be tested
in cubic time whether a graph contains H as a minor [34]. As a consequence,
membership for such graph classes can be decided in cubic time. In particu-
lar, we know that there exists an algorithm with running time f(k)n3 for some
function f that can decide whether a graph on n vertices belongs to Apex(k).



However, the proof of the graph minor theorem is non-constructive in the fol-
lowing sense. It proves the existence of an algorithm for the membership test
that uses the excluded minor characterization of the given graph class, but does
not provide any algorithm for determining this characterization. The existen-
tial nature of the graph minor theorem is inherent in the sense that there is
no algorithm that, given a Turing machine which is a membership test for a
minor closed family of graphs, computes an excluded minor characterization of
this family [17], and a similar theorem applies for minor closed graph classes
determined by some monadic-second order formula [11].

Despite the fact that the graph minor theorem is non-constructive, the ex-
cluded minor characterization is already known in some cases. Recently, Adler
et al. [1] presented an algorithm that, given an excluded minor characterization
of a minor closed graph class F , computes the set of excluded minors for the
graph class F + kv, containing those graphs G for which there exists a set S
of at most k vertices whose deletion yields a graph in F . We remark that this
result follows also from [17], as pointed out by Fellows. Given the excluded minor
characterization of planar graphs by Kuratowski, this yields a way to explicitly
construct a cubic recognition algorithm for the class Apex(k).

Although these results provide a general tool that can be applied to our
specific problem, no direct FPT algorithm has been proposed for it so far. In this
paper we present an algorithm which decides membership for Apex(k) in f(k)n2

time for any input graph on n vertices, for some function f . Note that the
presented algorithm runs in quadratic time, and hence yields a better running
time than any algorithm using the minor testing algorithm that is applied in the
above mentioned approaches. Moreover, if G ∈ Apex(k) then our algorithm also
returns a solution, i.e., a set S ∈ V (G), |S| ≤ k such that G − S is planar.

The presented algorithm is strongly based on the ideas used by Grohe in [21]
for computing crossing number. Grohe uses the fact that the crossing number of
a graph is an upper bound for its genus. Since the genus of a graph in Apex(k)
cannot be bounded by a function of k, we need some other ideas. As in [21],
we exploit the fact that in a graph with large treewidth we can always find
a large grid minor [36]. Examining the structure of the graph with such a grid
minor, we can reduce our problem to a smaller instance. Applying this reduction
several times, we finally get an instance with bounded treewidth. Then we make
use of Courcelle’s Theorem [9], which states that every graph property that is
expressible in monadic second-order logic can be decided in linear time on graphs
of bounded treewidth.

It is worth mentioning that for every fixed k there is a linear-time algorithm
by Kawarabayashi and Reed that decides whether a given graph has crossing
number at most k [25]. In the same paper, the authors also present a linear-time
FPT algorithm for the edge deletion version of the k-Apex problem, which given
some graph G and some integer k, asks if G can be made planar by deleting at
most k edges from it.

Remark 1. Very recently, a paper by Ken-ichi Kawarabayashi with title Pla-
narity allowing few error vertices in linear time has been presented at FOCS 2009



Fig. 1. The hexagonal grids H1, H2, and H3.

proposing a linear-time algorithm for the k-Apex problem [24]. This result re-
solves an issue that has been posed as an open question also in [25], by solving
the k-Apex problem in linear time.

The paper is organized as follows. Section 2 summarizes our notation, Sec-
tion 3 outlines the algorithm, Sections 4 and 5 describe the two phases of the
algorithm.

2 Notation

Graphs in this paper are assumed to be simple, since both loops and multiple
edges are irrelevant in the k-Apex problem. The vertex set and edge set of a
graph G are denoted by V (G) and E(G), respectively, and we use n for |V (G)|.
The edges of a graph are unordered pairs of its vertices. If G′ is a subgraph
of G then G−G′ denotes the graph obtained by deleting G′ from G. For a set of
vertices S in G, we will also use G−S to denote the graph obtained by deleting S
from G.

A graph H is a minor of a graph G if it can be obtained from a subgraph of G
by contracting some of its edges. Here contracting an edge e with endpoints a
and b means deleting e, and then identifying vertices a and b.

A graph H is a subdivision of a graph G if H can be obtained from G by
replacing some of its edges with newly introduced paths such that the inner
vertices of these paths have degree two in H . We refer to these paths in H
corresponding to edges of G as edge-paths. A graph H is a topological minor
of G if G has a subgraph that is a subdivision of H . We say that G and G′ are
topologically isomorphic if they both are subdivisions of a graph H .

The g × g grid is the graph Gg×g where V (Gg×g) = {vij | 1 ≤ i, j ≤ g}
and E(Gg×g) = {vijvi′j′ | |i − i′| + |j − j′| = 1}. Instead of giving a formal
definition for the hexagonal grid of radius r, which we will denote by Hr, we
refer to the illustration shown in Figure 1. A cell of a hexagonal grid is one of
its cycles of length 6.

A tree decomposition of a graph G is a pair (T, (Vt)t∈V (T )) where T is a
tree, Vt ⊆ V (G) for all t ∈ V (T ), and the following are true:

– for all v ∈ V (G) there exists a t ∈ V (T ) such that v ∈ Vt,
– for all xy ∈ E(G) there exists a t ∈ V (T ) such that x, y ∈ Vt,



– if t lies on the path connecting t′ and t′′ in T , then Vt ⊇ Vt′ ∩ Vt′′ .

The width of such a tree decomposition is the maximum of |Vt| − 1 taken
over all t ∈ V (T ). The treewidth of a graph G, denoted by tw(G), is the smallest
possible width of a tree decomposition of G. For an introduction to treewidth
see e.g. [6, 12].

3 Problem Definition and Overview of the Algorithm

We are looking for the solution of the following problem:

k-Apex problem:

Input: A graph G = (V, E) and an integer k.
Task: Find a set X of at most k vertices in V such that G − X is

planar.

Here we give an algorithm A which solves this problem in time f(k)n2 for
some function f , where n is the number of vertices in the input graph. Algo-
rithm A works in two phases. In the first phase (Section 4) we compress the
given graph repeatedly, and finally either conclude that there is no solution for
our problem or construct an equivalent problem instance with a graph having
bounded treewidth. In the latter case we solve the problem in the second phase
of the algorithm (Section 5) by applying Courcelle’s Theorem which gives a
linear-time algorithm for the evaluation of MSO-formulas on bounded treewidth
graphs.

To describe the first step of our algorithm, we need some deep results from
graph minor theory. The following result states that every graph having large
treewidth must contain a large grid as a minor.

Theorem 1 (Excluded Grid Theorem, [33]). For every fixed integer r there
exists an integer w(r) such that if tw(G) > w(r) then G contains Gr×r as a
minor.

The grid minor guaranteed by this theorem in the case when the treewidth of
the graph G is large can be found in cubic time. However, we need a linear-time
algorithm for finding a large grid minor, so we have to make use of the following
result, which states that if the graph is planar, then the bound on w(r) is linear:

Theorem 2 (Excluded Grid Theorem for Planar Graphs, [36]). For ev-
ery integer r and every planar graph G, if tw(G) > 6r−5 then G contains Gr×r

as a minor.

Also, we will use the following algorithmic results:

Theorem 3 ([5, 31]). For every fixed integer w there exists a linear-time algo-
rithm that, given a graph G, does the following:



– either produces a tree decomposition of G of width at most w, or
– outputs a subgraph G′ of G with tw(G′) > w, together with a tree decompo-

sition of G′ of width at most 2w.

Theorem 4 ([2]). For every fixed graph H and integer w there exists a linear-
time algorithm that, given a graph G and a tree decomposition for G of width w,
returns a minor of G isomorphic to H, if this is possible.

Now, we are ready to state our first lemma, which provides the key structures
for the mechanism of our algorithm. In this lemma, we focus on hexagonal grids
instead of rectangular grids. The reason for this is the well-known fact that if
a graph of maximum degree three is a minor of another graph, then it is also
contained in it as a topological minor [12]. This property of the hexagonal grid
will be very useful later on.

Lemma 1. For every pair of fixed integers r and k there is a linear-time algo-
rithm B, that, given an input graph G, does the following:

– either produces a tree decomposition of G of width w(r, k) = 24r− 11+ k, or
– finds a subdivision of Hr in G, or
– correctly concludes that G /∈ Apex(k).

Proof. Let r and k be arbitrary fixed integers. Run the algorithm provided by
Theorem 3 for w = w(r, k) on graph G. If it produces a tree decomposition of
width w(r, k) for G, then we output it. Otherwise let G′ be the subgraph of G
with tw(G′) > w(r, k) that has been provided together with a tree decomposi-
tion T ′ for it having width at most 2w(r, k).

On the one hand, if G′ /∈ Apex(k), then G /∈ Apex(k) also holds as G′ is a
subgraph of G. On the other hand, if G′ ∈ Apex(k), then there exists a set S ⊆
V (G) with |S| ≤ k such that G′ − S is planar. Deleting a vertex of a graph can
only decrease its treewidth by at most one, so tw(G′−S) > w(r, k)−k = 6(4r−
1)− 5. Now, Theorem 2 implies that G′ −S contains G(4r−1)×(4r−1) as a minor.
Since the hexagonal grid with radius r is a subgraph of the (4r−1)×(4r−1) grid,
we get that G′ − S must also contain Hr as a minor, and hence as a topological
minor.

Thus, we get that either G /∈ Apex(k), or G′ (and hence G) contains Hr as a
(topological) minor. Now, using the algorithm of Theorem 4 for G′ and T ′, we
can find Hr as a minor in G in linear time, if possible. Such a minor can be easily
used to obtain a subgraph of G′ isomorphic to a subdivision of Hr in linear time.
If the algorithm produces such a subgraph, then we output it, otherwise we can
correctly conclude that G /∈ Apex(k). ut

In algorithm A we will run B several times. As long as the result is a hexag-
onal grid of radius r as topological minor, we will run Phase I of algorithm A,
which compresses the graph G. If at some step algorithm B gives us a tree decom-
position of width w(r, k), we run Phase II. (The constant r will be fixed later.)
And of course if at some step B finds out that G /∈ Apex(k), then algorithm A
can stop with the output “No solution.”



Clearly, we can assume without loss of generality that the input graph is
simple, and it has at least k + 3 vertices. So if G ∈ Apex(k), then deleting k
vertices from G (which means the deletion of at most k(|V (G)|−1) edges) results
in a planar graph, which has at most 3|V (G)| − 6 edges. Therefore, if |E(G)| >
(k+3)|V (G)| then surely G /∈ Apex(k). Since this can be detected in linear time,
we can assume that |E(G)| ≤ (k + 3)|V (G)|.

4 Phase I of Algorithm A

In Phase I we assume that after running B on G we get a subgraph H ′

r that is
a subdivision of Hr. Our goal is to find a set of vertices X such that G − X is
planar, and |X | ≤ k. Let ApexSets(G, k) denote the family of sets of vertices that
have these properties, i.e., let ApexSets(G, k) = {X ⊆ V (G) | |X | ≤ k and G−X
is planar}. Since the case k = 1 is very simple we can assume that k > 1.

Reduction A: Flat zones. In the following we regard the grid H ′

r as a
fixed subgraph of G. Let us define z zones in it. Here z is a constant depending
only on k, which we will determine later. A zone is a subgraph of H ′

r which is
topologically isomorphic to the hexagonal grid H2k+5. We place such zones next
to each other in the well-known radial manner with radius q, i.e., we replace each
hexagon of Hq with a subdivision of H2k+5. It is easy to show that in a hexagonal
grid with radius (q − 1)(4k + 9) + (2k + 5) we can define this way 3q(q − 1) + 1
zones that only intersect in their outer circles. So let r = (q−1)(4k+9)+(2k+5),
where we choose q big enough to get at least z zones, i.e. q is the smallest integer
such that 3q(q− 1)+ 1 ≥ z. Let the set of these innerly disjoint zones be Z, and
the subgraph of these zones in H ′

r be R.
Let us define two types of grid-components. An edge which is not contained

in R is a grid-component if it connects two vertices of R. A subgraph of G is
a grid-component if it is a (maximal) connected component of G − R. A grid-
component K is attached to a vertex v of the grid R if it has a vertex adjacent
to v, or (if K is an edge) one of its endpoints is v. The core of a zone is the
(unique) subgraph of the zone which is topologically isomorphic to H2k+3 and
lies in the middle of the zone. Let us call a zone Z ∈ Z open if there is a vertex in
its core that is connected to a vertex v of another zone in Z, v /∈ V (Z), through
a grid-component. A zone is closed if it is not open.

For a subgraph H of R we let T (H) denote the subgraph of G induced by the
vertices of H and the vertices of the grid-components which are only attached
to H . Let us call a zone Z flat if it is closed and T (Z) is planar. Let Z be
such a flat zone. See Figure 2 (a) for an illustration of a flat zone together with
its grid-components. A grid-component is an edge-component if it is either only
attached to one edge-path of Z or only to one vertex of Z. Otherwise, it is a
cell-component if it is only attached to vertices of one cell. As a consequence of
the fact that all embeddings of a 3-connected graph are equivalent (see e.g. [12]),
and Z is a subdivision of such a graph, every grid-component attached to some
vertex in the core of Z must be one of these two types. Note that we can assume
that in an embedding of T (Z) in the plane, all edge-components are embedded



(a) (b)

Fig. 2. (a) An induced subgraph of a flat zone, together with its grid components.
Among them, there are two edges, four edge-components (shown in light gray) and five
cell-components (dark gray). (b) The ring R3 of Z.

in an arbitrarily small neighborhood of the edge-path (or vertex) which they
belong to.

Let us define the ring Ri (1 ≤ i ≤ 2k + 4) as the union of those cells in Z
that have common vertices both with the i-th and the (i + 1)-th concentric
circle of Z. Let R0 be the cell of Z that lies in its center. The zone Z can be
viewed as the union of 2k+5 concentric rings, i.e., the union of the subgraphs Ri

for 0 ≤ i ≤ 2k + 4. Figure 2 (b) depicts the ring R3.

Lemma 2. Let Z be a flat zone in R, and let G′ denote the graph G − T (R0).
Then X ∈ ApexSets(G′, k) implies X ∈ ApexSets(G, k).

Proof. Suppose X ∈ ApexSets(G′, k). Since G−T (R0)−X is planar, we can fix
a planar embedding φ of it. If Ri ∩X = ∅ for some i (2 ≤ i ≤ 2k+2) then let Wi

denote the maximal subgraph of G−T (R0)−X for which φ(Wi) is in the region
determined by φ(Ri) (including Ri). If Ri ∩ X is not empty then let Wi be the
empty graph. Note that if 2 ≤ i ≤ 2k then Wi and Wi+2 are disjoint. Therefore,
there exists an index i for which Wi ∩ X = ∅ and Wi is not empty. Let us fix
this i.

Let Qi denote T (
⋃i

j=0 Rj). We prove the lemma by giving an embedding
for G−X ′ where X ′ = X \ V (Qi−1). The region φ(Ri) divides the plane in two
other regions. As Z is flat, vertices of Qi−1 can only be adjacent to vertices of Qi.
Thus we can assume that in the finite region only vertices of Qi−1 are embedded,
so G−X ′−(Qi−1∪Wi) is entirely embedded in the infinite region. Let U denote
those vertices in Qi−1 which are adjacent to some vertex in G − Qi−1. Observe
that the vertices of U lie on the i-th concentric circle of Z, hence, the restriction
of φ to G − X ′ − (Qi−1 − U) has a face whose boundary contains U .

Now let θ be a planar embedding of T (Z), and let us restrict θ to Qi−1. Note
that U only contains vertices which are either adjacent to some vertex in Ri or
are adjacent to cell-components belonging to a cell of Ri. But θ embeds Ri and
its cell-components also, and therefore the restriction of θ to Qi−1 results in a
face whose boundary contains U . Here we used also that Ri is a subdivision of
a 3-connected graph whose embeddings are equivalent.
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Fig. 3. Illustration for Lemma 3. The edges of Cx and Cy are shown in bold.

Now it is easy to see that we can combine θ and φ in such a way that
we embed G − X ′ − (Qi−1 − U) according to φ and, similarly, Qi−1 according
to θ, and then “connect” them by identifying φ(u) and θ(u) for all u ∈ U .
This gives the desired embedding of G − X ′. Finally, we have to observe that
X ′ ∈ ApexSets(G, k) implies X ∈ ApexSets(G, k), since X ′ ⊆ X and |X | ≤ k.

ut

This lemma has a trivial but crucial consequence: X ∈ ApexSets(G, k) if and
only if X ∈ ApexSets(G − T (R0), k), so deleting T (R0) reduces our problem to
an equivalent instance. Let us denote this deletion as Reduction A.

Note that whether a zone Z is closed can be decided by a simple breadth first
search, which can also produce the graph T (Z). Planarity can also be tested in
linear time [23]. Therefore we can test whether a zone is flat, and if so, we can
apply Reduction A on it in linear time.

Later we will see that assuming that the graph G is contained in Apex(k), a
flat zone can always be found in G, unless G contains some easily recognizable
vertices which must be included in every solution (Lemma 7). This yields an easy
way to handle graphs with large treewidth: compressing our graph by repeatedly
applying Reduction A we can reduce the problem to an instance with bounded
treewidth.

Reduction B: Well-attached vertices. A subgraph of R is a block if it
is topologically isomorphic to Hk+3. A vertex of a given block is called inner
vertex if it is not on the outer circle of the block. (We define the outer circle of
the block using the “standard” planar embedding of Hk+3. Instead of a formal
definition, we refer to the illustration in Figure 3.)

Lemma 3. Let X ∈ ApexSets(G, k). Let x and y be inner vertices of the dis-
joint blocks Bx and By, respectively. If P is an x − y path that (except for its
endpoints) does not contain any vertex from Bx or By, then X must contain a
vertex from Bx, By or P .

Proof. See Figure 3 for the illustration of this proof. Let Cx and Cy denote the
outer circle of Bx and By, respectively. Let us notice that since Bx and By are
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Fig. 4. A well-attached vertex.

disjoint blocks, there exist at least k+3 vertex disjoint paths between their outer
circles, which—apart from their endpoints—do not contain vertices from Bx

and By. Moreover, it is easy to see that these paths can be defined in a way such
that their endpoints that lie on Cx are on the border of different cells of Bx. To
see this, note that the number of cells which lie on the border of a given block
is 6k + 12. At least three of these paths must be in G − X also. Since x can lie
only on the border of at most two cells having common vertices with Cx, we get
that there is a path P ′ in G − X whose endpoints are ax and ay (lying on Cx

and Cy , resp.), and there exist no cell of Bx whose border contains both ax

and x.
Let us suppose that Bx∪By∪P is a subgraph of G−X . Since all embeddings

of a 3-connected planar graph are equivalent, we know that if we restrict an
arbitrary planar embedding of G − X to Bx, then all faces having x on their
border correspond to a cell in Bx. Since x and y are connected through P
and V (P ) ∩ V (Bx) = {x}, we get that y must be embedded in a region F
corresponding to a cell CF of Bx. But this implies that By must entirely be
embedded also in F .

Since V (P ′ − ax − ay) ∩ V (Bx) = ∅ and P ′ connects ax ∈ V (Bx) and ay ∈
V (By) we have that ay must lie on the border of F . But then CF is a cell of Bx

containing both ax and x on its border, which yields the contradiction. ut

Using this lemma we can identify certain vertices that have to be deleted.
Let x be a well-attached vertex in G if there exist paths P1, P2, . . . , Pk+2 and
disjoint blocks B1, B2, . . . , Bk+2 such that Pi connects x with an inner vertex
of Bi (1 ≤ i ≤ k + 2), the inner vertices of Pi are not in R, and if i 6= j then the
only common vertex of Pi and Pj is x.

Lemma 4. Let X ∈ ApexSets(G, k). If x is well-attached, then x ∈ X.

Proof. If x /∈ X , then after deleting X from G (which means deleting at most k
vertices) there would exist indices i 6= j such that no vertex from Pi, Pj , Bi,
and Bj was deleted. But then the disjoint blocks Bi and Bj were connected by
the path Pi − x − Pj , and by the previous lemma, this is a contradiction. ut

We can decide whether a vertex v is well-attached in time f ′(k)|E(G)| for
some function f ′, using standard flow techniques. This can be done by simply



testing for each possible set of k + 2 disjoint blocks whether there exist the
required disjoint paths that lead from x to these blocks. Since the number of
blocks in R depends only on k, and we can find p disjoint paths starting from a
given vertex of a graph G in time O(p|E(G)|), we can observe that this can be
done indeed in time f ′(k)|E(G)|.

Finding flat zones. Now we show that if there are no well-attached vertices
in the graph G but G ∈ Apex(k), then a flat zone exists in our grid.

Lemma 5. Let X ∈ ApexSets(G, k), and let G not include any well-attached
vertices. If K is a grid-component, then there cannot exist (k+1)2 disjoint blocks
such that K is attached to an inner vertex of each block.

Proof. Let us assume for contradiction that there exist (k + 1)2 such blocks.
Since |X | ≤ k, at least (k + 1)2 − k of these blocks do not contain any vertex
of X . So let x1, x2, . . . x(k+1)2−k be adjacent to K and let B1, B2, . . . , B(k+1)2−k

be disjoint blocks of G − X such that xi is an inner vertex of Bi.
Since G−X is planar, it follows from Lemma 3 that a component of K −X

cannot be adjacent to different vertices from {xi|1 ≤ i ≤ (k+1)2−k}. So let Ki be
the connected component of K−X that is attached to xi in G−X . K is connected
in G, hence for every Ki there is a vertex of T = K∩X that is adjacent to it in G.
Since there are no well-attached vertices in G, every vertex of T can be adjacent
to at most k + 1 of these subgraphs. But then |T | ≥ ((k + 1)2 − k)/(k + 1) > k
which is a contradiction since T ⊆ X . ut

Let us now fix the constant d = (k + 1)((k + 1)2 − 1).

Lemma 6. Let X ∈ ApexSets(G, k), let G not include any well-attached ver-
tices, and let x be a vertex of the grid R. Then there cannot exist B1, B2, . . . , Bd+1

disjoint blocks such that for all i (1 ≤ i ≤ d+1) an inner vertex of Bi and x are
both attached to some grid-component Ki.

Proof. As a consequence of Lemma 5, each of the grid-components Ki can be
attached to at most (k+1)2−1 disjoint blocks. But since x is not a well-attached
vertex, there can be only at most k+1 different grid-components among the grid-
components Ki, 1 ≤ i ≤ d + 1. So the total number of disjoint blocks that are
attached to x through a grid-component is at most (k +1)((k+1)2−1) = d. ut

Lemma 7. Let X ∈ ApexSets(G, k), and let G not include any well-attached
vertices. Then there exists a flat zone Z in G.

Proof. Let Z ∈ Z be an open zone which has a vertex w in its core that
is attached to a vertex v of another zone in Z (v /∈ V (Z)) through a grid-
component K. By the choice of the size of the zones and their cores, we have
disjoint blocks Bw and Bv containing w and v respectively as inner points. We
can also assume that Bw is a subgraph of Z which does not intersect the outer
circle of Z.

By Lemma 3 we know that Bw, Bv or K contains a vertex from X . Let Z1

denote the set of zones in Z with an inner vertex in X , let Z2 denote the set of



open zones in Z with a core vertex to which a grid-component, having a common
vertex with X , is attached, and finally let Z3 be the set of the remaining open
zones in Z. Since |X | ≤ k and a grid-component can be attached to inner
vertices of at most (k + 1)2 disjoint blocks by Lemma 5, we have that |Z1| ≤ k
and |Z2| ≤ k(k + 1)2.

Let us count the number of zones in Z3. To each zone Z in Z3 we assign a
vertex u(Z) of the grid not in Z, which is connected to the core of Z by a grid-
component. First, let us bound the number of zones Z in Z3 for which u(Z) ∈ X .
Lemma 6 implies that any v ∈ X can be connected this way to at most d zones,
so we can have only at most kd such zones.

Now let U = {v | v = u(Z), Z ∈ Z3}. Let a and b be different members of U ,
and let a be connected through the grid-component Ka with the core vertex za

of Za ∈ Z3. Let Ba denote a block which only contains vertices that are inner
vertices of Za, and contains za as inner vertex. Such a block can be given due to
the size of a zone and its core. Let us define Kb, zb, Zb, and Bb similarly. Note
that V (Ba) ∩ X = V (Bb) ∩ X = ∅ by Za, Zb /∈ Z1.

Now let us assume that a and b are in the same component of R−X . Let P
be a path connecting them in R−X . If P has common vertices with Ba (or Bb)
then we modify P the following way. If the first and last vertices reached by P
in Za (or Zb, resp.) are w and w′, then we swap the w − w′ section of P using
the outer circle of Za (or Zb, resp.). This way we can fix a path in R − X that
connects a and b, and does not include any vertex from Ba and Bb. But this
path together with Ka and Kb would yield a path in G − X that connects two
inner vertices of Ba and Bb, contradicting Lemma 3.

Therefore, each vertex of U lies in a different component of R − X . But we
can only delete at most k vertices, and each vertex in a hexagonal grid has at
most 3 neighbors, thus we can conclude that |U | ≤ 3k. As for different zones Z1

and Z2 in Z we cannot have u(Z1) = u(Z2) (which is also a consequence of
Lemma 3) we have that |Z3| ≤ 3k. So if we choose the number of zones in Z
to be z = 7k + k(k + 1)2 + kd + 1 we have that there are at least 3k + 1 zones
in Z which are not contained in Z1 ∪ Z2 ∪ Z3, indicating that they are closed.
Since a vertex can be contained by at most 3 zones, |X | ≤ k implies that there
exist a closed zone Z∗ ∈ Z, which does not contain any vertex from X , and
all grid-components attached to Z∗ are also disjoint from X . This immediately
implies that T (Z∗) is a subgraph of G − X , and thus T (Z∗) is planar. ut

Algorithm for Phase I. The exact steps of Phase I of the algorithm A
are shown in Figure 5. It starts with running algorithm B on the graph G and
integers w(r, k) and r. If B returns a hexagonal grid as a topological minor, then
the algorithm proceeds with the next step. If B returns a tree decomposition T
of width w(r, k), then Phase I returns the triple (G, W, T ). Otherwise G does
not have Hr as minor and its treewidth is larger than w(r, k), so by Lemma 1
we can conclude that G /∈ Apex(k).

In the next step the algorithm tries to find a flat zone Z. If such a zone
is found, then the algorithm executes a deletion, whose correctness is implied



Phase I of algorithm A:

Input: G = (V, E).

Let W = ∅.

1. Run algorithm B on G, w(r, k), and r.
If it returns a subgraph H ′

r topologically isomorphic to Hr then go to
Step 2. If it returns a tree decomposition T of G, then output(G, W , T ).
Otherwise output(“No solution.”).

2. For all zones Z do:
If Z is flat then G := G − T (R0), and go to Step 1.

3. Let U = ∅. For all x ∈ V : if x is well-attached, then U := U ∪ {x}.
If |U | = ∅ or |W |+ |U | > k then output(“No solution.”).
Otherwise W := W ∪ U , G := G − U and go to Step 1.

Fig. 5. Phase I of algorithm A.

by Lemma 2. Note that after altering the graph, the algorithm must find the
hexagonal grid again and thus has to run B several times.

If no flat zone was found in Step 2, the algorithm removes well-attached
vertices from the graph in Step 3. The vertices already removed this way are
stored in W , and U is the set of vertices to be removed in the actual step. By
Lemma 4, if X ∈ ApexSets(G, k) then W ∪U ⊆ X , so |W |+ |U | > k means that
there is no solution. By Lemma 7, the case U = ∅ also implies G /∈ Apex(k).
In these cases the algorithm stops with the output “ No solution.” Otherwise it
proceeds with updating the variables W and G, and continues with Step 1.

The output of the algorithm can be of two types: it either refuses the instance
(outputting “No solution.”) or it returns an instance for Phase II. For the above
mentioned purposes the new instance is equivalent with the original problem
instance in the following sense:

Theorem 5. Let (G′, W, T ) be the triple returned by A at the end of Phase I.
Then for all X ⊆ V (G) it is true that X ∈ ApexSets(G, k) if and only if W ⊆ X
and (X \ W ) ∈ ApexSets(G′, k − |W |).

Now let us examine the running time of this phase. The first step can be
done in time f ′′(k)n for some function f ′′. according to [36, 5, 31]. Since the al-
gorithm only runs algorithm B again after reducing the number of the vertices
in G, we have that B runs at most n times. This takes f ′′(k)n2 time. The sec-
ond step requires only linear time (a breadth first search and a planarity test).
Deciding whether a vertex is well-attached can be done in time f ′(k)|E(G)|, so
we need f ′(k)n|E(G)| time to check every vertex at a given iteration in Step 3.
Note that the third step is executed at most k + 1 times, since at each itera-
tion |W | increases. Hence, this phase of algorithm A uses total time f ′′(k)n2 +
f ′(k)kn|E(G)| = f(k)n2 for some function f , as the number of edges is O(kn).



5 Phase II of Algorithm A

At the end of Phase I of algorithm A we either conclude that G /∈ Apex(k),
or we have a triple (G′, W, T ) for which Theorem 5 holds. Here T is a tree
decomposition for G′ of width at most w(r, k). This bound only depends on r
which is a function of k. From the choice of the constants r, q, z, and d we can
derive by a straightforward calculation that tw(G′) ≤ w(r, k) ≤ 100(k + 2)7/2.

In order to solve our problem, we only have to find out if there is a set Y ∈
ApexSets(G′, k′) where k′ = k−|W |. For such a set, Y ∪W would yield a solution
for the original k-Apex problem.

A theorem by Courcelle states that every graph property defined by a for-
mula in monadic second-order logic (MSO) can be evaluated in linear time if
the input graph has bounded treewidth. Here we consider graphs as relational
structures of vocabulary {V, E, I}, where V and E denote unary relations inter-
preted as the vertex set and the edge set of the graph, and I is a binary relation
interpreted as the incidence relation. For instance, a formula stating that x and y
are neighboring vertices is the following: ∃e : Ixe ∧ Iye. We will denote by UG

the universe of the graph G, i.e., UG = V (G) ∪ E(G). Variables in monadic
second-order logic can be element or set variables, and the containment relation
between an element variable x and a set variable X is simply expressed by the
formula Xx. For the complete description of MSO logic refer to [15], and for a
survey on MSO logic on graphs see [10].

Following Grohe [21], we use a strengthened version of Courcelle’s Theorem:

Theorem 6. ([18]) Let ϕ(x1, . . . , xi, X1, . . . , Xj , y1, . . . , yp, Y1, . . . , Yq) denote a
given MSO-formula and let w ≥ 1. Then there is a linear-time algorithm that,
given a graph G with tw(G) ≤ w and b1, . . . , bp ∈ UG, B1, . . . , Bq ⊆ UG, decides
whether there exist a1, . . . , ai ∈ UG, A1, . . . , Aj ⊆ UG such that

G � ϕ(a1, . . . , ai, A1, . . . , Aj , b1, . . . , bp, B1, . . . , Bq),
and, if this is the case, computes such elements a1, . . . , ai and sets A1, . . . , Aj.

It is well-known that there is an MSO-formula ϕplanar that describes the

planarity of graphs, i.e. for every graph G the statement G � ϕplanar holds if

and only if G is planar. The following simple claim shows that we can also create
a formula describing the Apex(k) graph class.

Theorem 7. For every integer k′, there is an MSO-formula apex(x1, . . . , xk′ )
such that the statement G � apex(v1, . . . , vk′) holds for a set {v1, . . . , vk′} of
vertices in G if and only if {v1, . . . , vk′} ∈ ApexSets(G, k′).

Proof. We will use the simple characterization of planar graphs by Kuratowski’s
Theorem: a graph is planar if and only if it does not contain any subgraph
topologically isomorphic to K5 or K3,3. To formulate the existence of these
subgraphs as an MSO-formula, we need some more simple formulas.

First, it is easy to see that the following formula expresses the property
that (X, Y ) is a partition of the set Z:

partition(X, Y, Z) := ∀z : (Zz → ((Xz → ¬Y z) ∧ (¬Xz → Y z)))



Using this, we can express that the vertex set Z contains a path connecting a
and b, by saying that every partition of Z that separates a and b has to separate
two neighboring vertices:

connected(a, b, Z) := Za ∧ Zb ∧ ∀X∀Y :

((partition(X, Y, Z) ∧ Xa ∧ Y b) → (∃c∃d∃e : Xc ∧ Y d ∧ Ice ∧ Ide))

The following two formulas express that two sets are disjoint, or their intersection
is some given unique vertex.

disjoint(X, Y ) := ∀z : (Xz → ¬Y z)

almost-disjoint(X, Y, a) := ∀z : (Xz → (¬Y z ∨ (z = a)))

Now, we can state formulas expressing that a given subgraph has K5 or K3,3

as a topological minor. For brevity, we only give the formula which states that
there is a subdivision of K5 in the graph such that the vertices v1, v2, . . . , v5

correspond to the vertices of the K5, and the vertex sets P12, P13, . . . , P45 contain
the subdivisions of the corresponding edges of K5.

K5-top-minor (v1, v2, . . . , v5, P12, P13, . . . , P45) :=

connected(v1, v2, P12) ∧ . . . ∧ connected(v4, v5, P45) ∧

almost-disjoint(P12, P13, v1) ∧ . . . ∧ almost-disjoint(P35, P45, v5) ∧

disjoint(P12, P34) ∧ . . . ∧ disjoint(P23, P45)

The formula K3,3-top-minor can be similarly created. Now, we are ready to give
the apex formula, which uses the fact that G − X is planar if and only if every
subdivision of K5 or K3,3 in G must involve at least one vertex from X .

apex(v1, v2, . . . , vk′) :=

∀x1∀x2 . . .∀x5∀X1∀X2 . . . ∀X10 : (K5-top-minor(x1, . . . , x5, X1, . . . , X10)

→ ((x1 = v1) ∨ . . . ∨ (x5 = vk′ ) ∨ X1v1 ∨ . . . ∨ X10vk′ )) ∧

∀x1∀x2 . . .∀x6∀X1∀X2 . . . ∀X9 : (K3,3-top-minor(x1, . . . , x6, X1, . . . , X9)

→ ((x1 = v1) ∨ . . . ∨ (x6 = vk′ ) ∨ X1v1 ∨ . . . ∨ X9vk′ ))

ut

Now let us apply Theorem 6. Let C be the algorithm which, given a graph G
of bounded treewidth, decides whether there exist v1, . . . , vk′ ∈ UG such that
G � apex(v1, . . . , vk′ ) is true, and if possible, also produces such variables. By
Theorem 7, running C on G′ either returns a set of vertices U ∈ ApexSets(G′, k′),
or reports that this is not possible. Hence, we can finish algorithm A in the fol-
lowing way: if C returns U then output(U∪W ), otherwise output(“No solution”).

The running time of Phase II is g(k)n for some function g.

Remark 2. Phase II of the algorithm can also be done by applying dynamic
programming, using the tree decomposition T returned by B. This also yields
a linear-time algorithm, with a double exponential dependence on tw(G′) (and
hence on k). Since the proof is quite technical and detailed, we omit it.
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