Cleaning Interval Graphs*

Déniel Marx and Ildiké Schlotter

Department of Computer Science and Information Theory,
Budapest University of Technology and Economics,
H-1521 Budapest, Hungary.
{dmarx,ildi}@cs.bme.hu

Abstract. We investigate a special case of the INDUCED SUBGRAPH ISO-
MORPHISM problem, where both input graphs are interval graphs. We
show the NP-hardness of this problem, and we prove fixed-parameter
tractability of the problem with non-standard parameterization, where
the parameter is the difference |V (G)| — |V (H)|, with G and H being
the larger and the smaller input graph, respectively. Intuitively, we can
interpret this problem as “cleaning” the graph G, regarded as a pattern
containing extra vertices indicating errors, in order to obtain the graph
H representing the original pattern. We also prove W[1]-hardness for the
standard parameterization where the parameter is |V (H)|.

1 Introduction

The GRAPH ISOMORPHISM problem plays a significant role in algorithmic graph
theory. It is neither known to be polynomial-time solvable, nor proven to be
NP-hard. Due to its importance in various practical applications, many re-
searchers concentrated on identifying special cases where GRAPH ISOMORPHISM
can be solved efficiently. Polynomial-time algorithms have been proposed for in-
terval graphs [16], permutation graphs [4], graphs having bounded genus [20, 10],
bounded treewidth [1], or bounded degree [17].

A commonly studied generalization of GRAPH [ISOMORPHISM is the INDUCED
SUBGRAPH [SOMORPHISM problem: given two graphs H and G, find an induced
subgraph of G isomorphic to H, if this is possible. In this general form, INDUCED
SUBGRAPH ISOMORPHISM is NP-hard, since it contains several well-known NP-
hard problems, such as INDEPENDENT SET or INDUCED PATH. As shown in
Sect. 3, the special case of INDUCED SUBGRAPH ISOMORPHISM when both input
graphs are interval graphs is NP-hard as well.

As INDUCED SUBGRAPH ISOMORPHISM has a wide range of important ap-
plications, polynomial time algorithms have been given for numerous special
cases, such as the case when both input graphs are trees [19] or 2-connected
outerplanar graphs [15]. However, INDUCED SUBGRAPH ISOMORPHISM remains
NP-hard even if H is a forest and G is a tree, or if H is a path and G is a
cubic planar graph [12]. In many fields where researchers face hard problems,

* Supported by the Hungarian National Research Fund OTKA 67651.

parameterized complexity theory (see e.g. [8] or [11]) has proved to be successful
in the analysis and design of algorithms that have a tractable running time in
many applications. In parameterized complexity, a parameter k is introduced
besides the input I of the problem, and the aim is to find an algorithm with
running time O(f(k)|I|¢) where f is an arbitrary function and ¢ is a constant
independent of k. A parameterized problem is fized-parameter tractable (FPT),
if it admits such an algorithm.

Note that INDUCED SUBGRAPH ISOMORPHISM is trivially solvable in time
O([V(G)|VUEDNE(H)|) on input graphs H and G. As H is typically much smaller
than G in many applications related to pattern matching, the usual parameter-
ization of INDUCED SUBGRAPH ISOMORPHISM is to define the parameter to be
|V(H)|. FPT algorithms are known if G is planar [9], has bounded degree [3], or
if H is a log-bounded fragmentation graph and G has bounded treewidth [14].
In Sect. 3, we show that the case when both input graphs are interval graphs is
W]1]-hard with this parameterization.

Our main objective is to consider another parameterization of INDUCED SUB-
GRAPH ISOMORPHISM, where the parameter is the difference |V(G)| — |V (H)|.
Considering the presence of extra vertices as some kind of error or noise, the
problem of finding the original graph H in the “dirty” graph G containing er-
rors is clearly meaningful. In other words, the task is to “clean” the graph G
containing errors in order to obtain H. For two graph classes H and G we define
the CLEANING(H,G) problem: given a pair of graphs (H,G) with H € H and
G € G, find a set of vertices S in G such that G — S is isomorphic to H. The
parameter associated with the input (H,G) is |V(G)| — |V(H)|. For the case
when G or H is the class of all graphs, we will use the notation CLEANING(H, —)
or CLEANING(—, G), respectively.

In the special case when the parameter is 0, the problem is equivalent to the
GRAPH [SOMORPHISM problem, so we cannot hope to give an FPT algorithm for
the general problem CLEANING(—, —). Several special cases have already been
studied. FPT algorithms were given for the problems CLEANING(Tree,—) [18],
CLEANING (3-Connected-Planar, Planar) [18] and CLEANING(Grid,—) [6], where
Tree, Planar, 3-Connected-Planar and Grid denote the class of trees, planar
graphs, 3-connected planar graphs, and rectangular grids, respectively. Without
parameterization, all of these problems are NP-hard.

Here we consider the special case where the input graphs are from Interval,
denoting the class of interval graphs. In Sect. 4, we present an FPT algorithm
for CLEANING (Interval, Interval).

2 Notation and preliminaries

We denote {1,...,n} by [n]. We denote the neighbors of a vertex x € V(G) in G
by Ng(z). For some X C V(G), let Ng(X) denote those vertices in V(G)\ X that
are adjacent to a vertex in X in G, and let Ng[X] = Ng(X)UX. If X C V(G)
then G — X is obtained from G by deleting X, and G[X] = G — (V(G)\ X). For
some vertex x, sometimes we will use only z instead of {z}, but this will not

cause any confusion. We say that two subsets of V(G) are independent in G if
no edge of G runs between them. Otherwise, they are neighboring.

Let G be an interval graph, meaning that G can be regarded as the inter-
section graph of a set of intervals. Formally, an interval representation of G is
aset {I; | i € [n]} of intervals, where I; and I; intersect each other if and only
if v; and v; are adjacent. We say that two intervals properly intersect, if they
intersect, but none of them contains the other.

Let C(G) be the set of all maximal cliques in G, and let C(v) = {C € C(G) |
v € C} for some v € V(G). It is known that a graph is an interval graph if
and only if its maximal cliques can be ordered consecutively, i.e. there is an
ordering of C(G) such that the cliques in C(v) form a consecutive subsequence
for every vertex v [13]. Note that any interval representation gives rise to a
natural ordering of C(G), which is always a consecutive ordering. The set of
all consecutive orderings of C(G) are usually represented by PQ-trees, a data
structure introduced by Booth and Lueker [2].

A PQ-tree of G is a rooted tree T'" with ordered edges with the following
properties: every non-leaf node is either a Q-node or a P-node, each P-node has
at least 2 children, each Q-node has at least 3 children, and the leaves of T
are bijectively associated with the elements of C(G). The frontier F(T) of the
PQ-tree T is the permutation of C(G) that is obtained by ordering the cliques
associated with the leaves of T' simply from left to right. Two PQ-trees 77 and
Ty are equivalent, if one can be obtained from the other by applying a sequence
of the following transformations: permuting the children of a P-node arbitrarily,
or reversing the children of a Q-node. The consecutive orderings of the maximal
cliques of a graph can be represented by a PQ-tree in the following sense: for
each interval graph G there exists a PQ-tree T', such that {F(T") | T’ is a PQ-
tree equivalent to T'} yields the set of all consecutive orderings of C(G). Such a
PQ-tree represents GG. For any interval graph G a PQ-tree representing it can
be constructed in linear time [2].

This property of PQ-trees can be used in the recognition of interval graphs.
However, to examine isomorphism of interval graphs, the information stored in
a PQ-tree is not sufficient. For this purpose, a new data structure, the labeled
PQ-tree has been defined [16,5]. For a PQ-tree T' and some node s € V(T),
let Ts denote the subtree of T' rooted at s. For each vertex v in G, let the
characteristic node R(v) of v in a PQ-tree T representing G be the deepest node
s in T such that the frontier of T, contains C(v). For a node s € V(T'), we will
also write R™1(s) = {z € V(G) | R(z) = s}, and if T" is a subtree of T', then
RYT") ={z e V(G)| R(x) € V(T")}.

It is not hard to prove that if R(v) is a P-node, then every clique in the
frontier of Tx(,) contains v. To see this, first observe that by definition, R(v)
must have two children y; and y» with y; # y» such that both F(Ty,) and
F(T,,) contain a clique in C(v); let Cy and Cs be such maximal cliques in C(v).
Now, suppose that there is a clique C3 ¢ C(v) present in the frontier of R(v),
and let y3 be the child of R(v) whose frontier contains C3 (note that y; = ys3
or Yo = ys is possible). In this case we can permute the children yi,y2, and y3

of R(v) in a way that Cs gets between Cy and Cy in the frontier of R(v). This
would yield an ordering of C(G) that is not consecutive, which cannot happen
if T represents GG, so we obtain a contradiction. Similarly, one can prove that
if R(v) is a Q-node with children x1,%s,..., %, then those children of R(v)
whose frontier contains v form a consecutive subseries of x1,...z,,. Formally,
there must exist two indices ¢ < j such that C(v) = {C | C € F(I,) for some
i < h < j}. It is worth mentioning that R~!(q) is never empty for any Q-node
q.

A labeled PQ-tree of G is a labeled version of a PQ-tree T of G where the
labels store the following information. If z is a P-node or a leaf, then its label is
simply the integer |[R™1(x)|. If ¢ is a Q-node with children z1, xo,...,z,, (from
left to right), then for each v € R~1(T,) we define Q,(v) to be the pair [a, b] such
that x, and x; are the leftmost and rightmost children of ¢ whose frontier in T
contains an element of C(v). Also, if Q4(v) = [a,b] for some vertex v, then we let
Q™ (v) = a and Q8" (v) = b. For some 1 < a < b < m, the pair [a, b] is a block
of ¢q. Considering blocks of a Q-node, we will use a terminology that treats them
like intervals, so two blocks can be disjoint, intersecting, they contain indices,
etc. In particular, we say that a block [a,b] contains another block [a’,b'], if
a < a <V < if in addition [a,b] # [d,¥] also holds, then [a,b] properly
contains [a’,b']. The label L(g) of ¢ encodes the values |L,(a,b)| for each a < b
in [m], where L,(a,b) is the set {v € R7(q) | Q4(v) = [a, b]}.

Note that a PQ-tree can be labeled in linear time. Two labeled PQ-trees are
identical, if they are isomorphic as rooted trees and the corresponding vertices
have the same labels. Two labeled PQ-trees are equivalent, if they can be made
identical by applying a sequence of transformations as above, with the modifica-
tion that when reversing the children of a Q-node, its label must also be adjusted
correctly. The key theorem that yields a way to handle isomorphism questions
on interval graphs is the following:

Theorem 1 ([16]). Let G1 and Gg be two interval graphs, and let T*(G1) and
TE(Gy) be the labeled version of a PQ-tree representing G1 and Ga, respectively.
Then Gy is isomorphic to Gy if and only if T*(G1) is equivalent to TT(Gy).

Given a Q-node g in a PQ-tree T, let x1,...,x,, denote its children from
left to right. For a given child z; of ¢, we define M,(i) to be the set of vertices
v € R7!(q) for which Q,(v) contains i, i.e. My(i) is the union of those sets
Ly(a,b) for which [a,b] contains . Clearly, M, (i) # My(j) if i # j, since this
would imply the interchangeability of the nodes x; and x;. We say that some
w € R™Y(q) starts or ends at i if Qi (v) = i or QUE"(v) = 4, respectively.
We also denote by MJ (i) and M, (i) the set of vertices that start or end at
i, respectively. The maximality of the cliques in F(T,) implies the following
observation.

Lemma 2. If q is a Q-node in a PQ-tree T' and x; is the i-th child of q, then
neither R™1(Ty,) U M (i) nor R~ (Ty,) UM (i) can be empty.

Proof. For contradiction, suppose first that R=1(T},) is empty, but no vertex
starts at ¢. Let C' be a clique in F(T,), and let v be an arbitrary vertex of

€ ——
€y ———
ai bl cf — — dl
- — — ¢
az as b bs 2 dz
c — d3
4 —— — dy

Fig. 1. An interval representation of an interval graph G and a labeled PQ-tree T
representing GG. Squares, white and black circles represent Q-nodes, P-nodes and leaves,
resp. For each node z in T, we listed the vertices in R™'(x), together with the values
Q:(v) for each v € R™!(z) where z is a Q-node. As an example, the frontier of ps is

({615627f7.g}7 {b37fa g})

C. By R~Y(T,,) = 0, the characteristic node of v is not in T, which implies
that at least one of the sets F'(T,,_,) and F(T},.,) contains an element of C(v).
But since v does not start at i, we get that F'(7,, ,) must contain a clique
in C(v). In particular, by the consecutive ordering of the cliques in F(Ty), the
rightmost clique C’" in F(T,, ,) contains v. As this argument holds for each
vertex in C, we get that C' C C’, contradicting the maximality of C'. This proves
RN (T,) UM (i) # 0.

The claim R~ (T,,) U M (i) # 0 follows by symmetry. 0

i

Given some interval representation p for an interval graph G, we denote by
vieft and v;‘ght the left and right endpoints of the interval representing v € V(G).

If no confusion arises, then we may drop the subscript p.

3 Hardness results

In this section, we prove the NP-hardness of INDUCED SUBGRAPH ISOMORPHISM
for the case of interval graphs, and we also show the parameterized hardness of
this problem, where the parameter is the size of the smaller graph.

Theorem 3. (1) The INDUCED SUBGRAPH ISOMORPHISM problem is W[1]-hard
if both input graphs are interval graphs, and the parameter is the number of
vertices in the smaller input graph.

(2) The INDUCED SUBGRAPH ISOMORPHISM problem is NP-complete, if both
input graphs are interval graphs.

S
=+

Fig. 2. Illustration of the construction of the graph G. (The picture assumes v;v; € E.)

Proof. To prove (1), we give an FPT reduction from the parameterized CLIQUE
problem. Let F' = (V, E) and k be the input graph and the parameter given for
CLIQUE. We assume w.l.o.g. that F' is simple, V = {v; | i € [n]}, and k& > 2. We
construct two interval graphs G and H with |V (H)| = O(k?) such that H is an
induced subgraph of G if and only if F' has a k-clique.

The vertex set of G consist of the vertices af, bf, cf, df, f; ; for each i € [n] and
s € {—,+}, vertices f; ;, fj; for each v;v; € E, and two vertices g~ and ¢g*. Note
that |V(G)| = 9n + 2|E| + 2, which is polynomial in n. We define the edge set
of G by giving an interval representation for G. The intervals I(z) representing
a vertex © € V(F) are defined below. See also the illustration of Fig. 2.

I(af) =[10i — 8,10i — 5] I(a;) = [-10i +5,—10i + 8] ifi € [n]
I(b}) =[10i — 6,10i — 3] I(b;) = [~10i + 3,—10i + 6] if i € [n]
I(cl) =[10i — 4,100 — 1] I(c;) = [~10i +1,—10i + 4] if i € [n]
I(df) = [10i — 2, 10i] I(d;) = [-10i,—10i + 2] if i € [n]
I(fi;) = [-10i + 5,10i — 5] if i € [n]
I(fi,]) [100+ 7, 10] —] I(fj7) = [—10j+7, 10i—7] if ViV € FE
I(g7) = [~10n, 1] I(g~) = [1,101]

Note that this construction is symmetric in the sense that for any interval
[x1, 2] in this interval representation, the interval [—xza, —x1] is also present.

Also, we define the graph H, having k2 + 8k + 2 vertices, as follows. Let the
vertex set of H consist of the vertices a, bf, cs, df foreachi € [k] and s € {—,+},
the vertices fi,j for each (i,7) € [k]?, and two vertices g~ and §g¥. Again, we
define the edge set of H by giving an interval representation for H as follows.

I(a) = [10i — 8,10i — 5] I(a;)=[-10i+5,—10i +8] ifi € [k]
I(bF) = [10i — 6,10i — 3] I(b;) = [~10i+3,—10i+ 6] ifi € [k]

1@ 1)2[101 4,100 — 1] I(¢;) = [-10i +1,—10i + 4] if i € [K]

I(d}) = [10i — 2,10i] I(d;) = [~10i, —10i + 2] if i € [k]
I(fm):[10i + 5,10 — 5] if i € [k]
I(fi;) = [-10i + 7,105 — 7) I(fss) = [-10j +7,10i — 7] ifi,je[Kk],i#j
I1(§™) = [-10k, —1] 1(3) = [1,10k]

=2}

First, if C'is a set of k vertices in F' that form a clique, then H is isomorphic
to the subgraph of G induced by the vertices af, b7, c;,d;, f;; for each v; € C
and s € {—, 4}, the vertices f; j, f;; for each {v;,v;} C C, and the two vertices
g~ and gT. This can be proven by presenting an isomorphism ¢ from H to the
subgraph of G induced by these vertices. It is easy to verify that the function ¢
defined below indeed yields an isomorphism. Here, ¢(¢) denotes the index of the
i-th vertex in the clique C, i.e. C' = {v.) | @ € [k]}.

(@) = a3 for each € {a,b,¢,d}, s € {—, +}, i € [K]
o(fij) = ff(i),c(j) for each i,j € [k]?
0(3°) = ¢° for each s € {—,+}

For the other direction, suppose that ¢ is an isomorphism from H to an
induced subgraph of G. We define Z to contain those vertices of G whose interval
contains 0.

Claim. If uj,us € V(H) and J C V(H) are such that the subgraph of H
induced by the vertices {ui,uz} U J is the disjoint union of two k-stars with
centers u; and ug, then {¢(u1), p(u2)} = {97,977} and p(J) N Z = (). To prove
this claim, note that the vertices of J are independent, so there can be at most
one vertex in ¢(J) whose interval contains 0. Thus, either ¢(u1) or ¢(ug) must
not be in Z, and must be adjacent to at least k vertices not in Z. By k£ > 2, this
implies that o(uy) or ¢(us) must indeed be g~ or gT. Assuming, say, ¢(u1) = g~
(the remaining cases are analogous), we obtain that the only common neighbor
of the k vertices of p(J) not adjacent to p(u1) can be g*. This immediately
implies {¢(u1),(u2)} = {g~,¢"}. From this, ¢(J) N Z = 0 is clear, since no
vertex of J is adjacent to both u; and uy. Hence, the claim is true.

Now, note that for some = € {a,b,c,d}, the vertex set {z{ | i € [k],s €
{—,+}}U{g7,9"} induces the disjoint union of two k-stars having centers g~
and g' in H. Therefore, applying the above claim to each of these vertex sets
with z € {a,b,c,d}, we obtain that {¢(g7),0(g")} = {97,97}, and also that
ga(X) N Z = () for the set X containing the vertices of the form z7 where = €
{a,b,c,d},s € {—,+} and i € [k]. By the symmetry of H and G, we can assume
w.l.o.g. that @(ﬁ_) =g~ and p(g") = g*.

From this, we have that exactly 4k vertices of w()?) are represented by an
interval whose left endpoint is positive, and the remaining 4k vertices of @()?)
are represented by an interval whose right endpoint is negative. Now, observe
that the vertices of X induce exactly 2k paths of length 4 in H, which leads us
to the fact that their images by ¢ must also induce 4-paths. Using this, it follows
that for each ¢ € [k] we can define ¢(i, +), ¢(¢, —) € [n] such that

p({a wav~fv dz}) = {ai(i,s)7 bi(i,s)’ Ci(i,s)? di(i,s)}

for each i € [k] and s € {—,+}.
Note also that for both s € {—,+}, the vertex f;; is adjacent to exactly two

vertices from {a3, b d:}, but the only vertex adjacent to exactly two vertices

7 l’ l’ 7

from {ac(z 5 b((7 5 C(z 5 C(i78)} is the vertex f.(;) c(i,s)- Using this, we get that

(fz z) f('(v —),e(i,—) = fc(z +),e(i,+)> implying also C(i _) = C(i +)
Fmally, note that if 7 # j, then f7 ;j is adjacent to exactly one vertex from each

of {a;, f, ~,d; } and {a*, b;r,N;r, d*} This implies that go(f”) feti,—), c(it)
must hold, but f.) c(j,4+) only exists if v.;) and Ue(j,+) are adjacent in F.

Clearly, this implies that the vertices {vc(;,—) = ve(i,4) | 7 € [k]} form a clique in
F', hence the second direction of the reduction is correct as well.

Observe that by the size of G and H, this yields an FPT-reduction from
the parameterized CLIQUE problem to the CLEANING(Interval, Interval) prob-
lem (i.e. the INDUCED SUBGRAPH ISOMORPHISM problem for interval graphs)
parameterized by the number of vertices in the smaller input graph, proving (1).
Also, note that the construction of G and H takes time polynomial in [V (F')| and
k, so by the NP-hardness of the (unparameterized) MaXiMuMm CLIQUE problem,
this proves that the (unparameterized) CLEANING (Interval, Interval) problem is
NP-hard as well. Its containment in NP is trivial, finishing the proof of (2). O

4 Cleaning an interval graph

In this section, we present an algorithm that solves the CLEANING(Interval,
Interval) problem. Given an input (G’, G) of this problem, we call a set S C V(G)
a solution for (G', @), if G’ is isomorphic to G — S. In this case, let ¢g denote
an isomorphism from G’ to G — S. Remember that k = |V (G)| — |[V(G")] is the
parameter of the instance (G, G). We denote by T' and T” the labeled PQ-tree
representing G and G’, respectively. Let us fix an interval representation of G.
For a subset X of V(G), let X' = min{z!*®* | z € X} and X" = max{z"8"* |
r e X}

Our algorithm for CLEANING(Interval, Interval) is based on an algorithm
denoted by A whose output on an input (G’,G) can be one of the following
three answers:

— a necessary set. We call a set N C V(G) a necessary set for (G',G),
if (G’,G) has a solution if and only if there is a vertex x € N such that
(G',G — z) has a solution. Given a necessary set for (G’, G), we can branch
on including one of its vertices in the solution.

— areduced input. For subgraphs H and H' of G and G’, respectively, we say
that (H', H) is a reduced input for (G', G), if (G’, G) is solvable if and only if
(H’, H) is solvable, the parameter of (H', H) equals the parameter of (G, G),
every solution for (H', H) is a solution for (G',G), and |V(H')| + |V(H)| <
[V(G")| + |V(G)|. Given a reduced input for (G', G), we can clearly solve it
instead of solving (G', G).

— an independent subproblem. For subgraphs H and H' of G and G,
respectively, we say that (H', H) is an independent subproblem of (G',G)
having parameter k, if its parameter is at least 1 but at most k — 1, for any
solution S of (G’, G) the set SNV (H) is a solution for (H', H), and if (G, G)
admits a solution then any solution S of (H', H) can be extended to be a

IntervalCleaning(G’', G)

1. If [V(G)| > |[V(G")]| then do:
for each s € NecessarySet(G’', G) do:
if IntervalCleaning(G', G — s) returns "Yes’, then return "Yes’.
2. Otherwise, if G is isomorphic to H then return "Yes’.
3. Reject.

NecessarySet(G', G)

1. Set N = 0.
2. Call A(G',@).
If it returns a reduced input (H', H), then N := NecessarySet(H', H).
If it branches, then
for each necessary set X returned in a branch:
set N:=NUX,
for each independent subproblem (H’, H) returned in a branch:
set N := N U NecessarySet(H', H).
3. Return N.

Fig. 3. Outline of algorithms IntervalCleaning and NecessarySet.

solution for (G’, G). Note that given an independent subproblem of (G’, G),
we can find a vertex of the solution by solving the independent subproblem
having parameter smaller than k.

Observe that if N is a necessary set for either an independent subproblem or a
reduced input for (G', G), then N must be a necessary set for (G, G) as well.

In Section 4.1 we make some useful observations about the structure of an
interval graph. In Sections 4.2 and 5, we describe algorithm A, that, given an
input instance of CLEANING(Interval, Interval) with parameter k, does one of
the followings in linear time:

— either determines a reduced input for (G', G),
— or branches into at most fi(k) = k) possibilities, in each of the branches
producing a necessary set of size at most 2k+1 or an independent subproblem

of (G',G).

Note that in the first case no branching is involved. If the second case applies
and A branches, then the collection of outputs returned in the obtained branches
must contain a correct output. In other words, at least one of the branches must
produce an output that is indeed a necessary set of the required size or an
independent subproblem of (G, G).

Let us show how such an algorithm can be used as a sub-procedure in order
to solve the CLEANING (Interval, Interval) problem. (See Fig. 3 for an outline of
the algorithm.) First, we construct an algorithm called NecessarySet that given
an instance (G’,G) of CLEANING(Interval, Interval) finds a necessary set for

(G', G) in quadratic time. NecessarySet works by running A repeatedly, starting
with the given input. In the case when A returns a reduced input, NecessarySet
runs A with this reduced input again. In the case when A branches, returning a
necessary set or an independent subproblem in each branch, NecessarySet runs A
on each independent subproblem produced in any of the branches. Applying this
method iteratively (and thus possibly branching again), we will get a necessary
set at the end of each branch. Note that the parameter of the input decreases
whenever a branching happens, and thus the corresponding search tree has at
most f1(k)* leaves. Since at least one of the branches is correct, by taking the
union of the necessary sets produced in the leaves of the search tree, we get
a necessary set of size fo(k) = (2k + 1)f1(k)* for (G',G). As each run of A
takes linear time, and the number of calls of A is also linear in a single chain of
branches, the whole algorithm takes quadratic time.

Now, we can solve CLEANING (Interval, Interval) by using NecessarySet. First,
given an input (G’,G), we run NecessarySet on it. We branch on choosing a
vertex s from the produced output to put into the solution, and repeat the whole
procedure with input (G, G — s). This means a total of fo(k) = (2k + 1) f1(k)*
new inputs to proceed with. We have to repeat this at most k times, so the whole
algorithm has running time O(f2(k)*|I|?), where |I| is the size of the original
input of the problem. We can state this in the following theorem:

Theorem 4. CLEANING (Interval, Interval) on input (G',G) can be solved in
time O(f(k)n?) for some function f, where |V(G')| =n and |V(G)| =n + k.

4.1 Some structural observations

A nonempty set M C V(G) is a module of G, if for every z € V(G) \ M, Ng(x)
either includes M or is disjoint from M. A module M in G is closed!, if G[M]
is connected and there is no vertex in © € Ng(M) such that Ng(x) C Ng[M].
Lemma 5 gives a characterization of the closed modules of an interval graph. For
an illustration, see Fig. 1. Note that {a1} and {az, as} are modules of G that are
not closed. The sets {a1,a2,as}, {b1,b2} and {c1,ca,c3,cq,d1,da,ds,dy, e1,€2}
are examples of closed module characterized by (a) of Lemma 5, and the set
{e1, €2} illustrates the closed modules characterized by (b) of Lemma 5.

Lemma 5. Given an interval graph G and a labeled PQ-tree T representing G,
some set M C V(@) is a closed module of G, if and only if one of the following
statements holds:

(a) M = R™Y(T,) for some z € V(T), and if z is a P-node then R=*(z) # ()
(b) M = Lg(a,b) for some Q-node ¢ € V(T) having children x1,...,2, and
some pair (a,b) with a < b, such that R~ (Ty,) = 0 for each i contained in [a,b],
and Ly(a',b') =0 for each [/, V'] properly contained in [a,b].

! While we define modules in the standard way, our notion of closed modules is non-
standard.

10

Proof. First, let M be a closed module in G. Let us choose a vertex v € M such
that R(v) is the closest possible to the root of T'. Since G[M] is connected, v is
unique, and we also get R_l(TR(U)) D M. First, suppose that R(v) is a P-node
or a leaf. Then v is contained in each clique of F'(Tg(,)). Thus, if R(z) is in
Tr(v) for some vertex z, then Ng(z) € Ng(v) € Ng[M]. Since M is closed, we
get & € M. Hence, R™!(Tr(,y) € M implying R~ (Tg()) = M. Therefore, (a)
holds in this case.

Now, suppose that R(v) is a Q-node ¢ with children z, ..., Zs, and let M, =
MNR™*(q). Let a = min{Q\(w) | w € Mg} and b = max{Q5&" (w) | w € M,}.
Note that since G[M] is connected, the union of the intervals {Qq(w) | w € Mg}
must be [a,b]. Using that M is closed, we can argue again that R=*(T,,) C M
for each h contained in [a,b] and that w € M holds for each w € R~1(q) such
that Qg(w) is contained in [a,b]. Thus, if [a,b] = [1,m] then M = R™Y(T,),
implying that (a) holds. Otherwise, as ¢ is a Q-node, there must exist a vertex
u € R7'(q)\ M such that Q,(u) properly intersects [a, b]. As u must be adjacent
to each vertex of M (as M is a module), we get that R~1(T},) = () for every h in
[a, b] that is not contained in @, (u). In particular, we get that either R™1(T},,) =
0 or R~Y(Ty,) = 0. We can assume w.l.o.g. that R=(T},) = 0 holds. Thus by
Lemma 2, M (a) #), and since Ng(M, (a)) N M # (), using again that M is a
module, we obtain that each w € M, must start in a and also that R_l(Tmh) =0
for every h in [a,b]. Note that this implies M, = M. Now, from R~(T,,) = 0
we get in a similar way that each w € M must end in b, proving Q,(w) = [a,]
for every w € M. Using that M is closed and putting together these facts, we
get that the conditions of (b) must hold.

For the other direction, it is easy to see that if (a) holds for some M, then
M indeed must be a closed module of G. Second, if M = L(a,b) for some ¢ and
[a,b], then M is clearly a module, and the remaining conditions of (b) ensure
that M is closed. O

We will say that a closed module M is simple, if the conditions in (b) hold
for M. In Fig. 1, {e1, e2} is a simple closed module. Clearly, if M is simple, then
G[M] is a clique.

Furthermore, Ng(M) is a clique if and only if M is not simple. To see this,
note that if M = R™Y(T.) for some z € V(T), then all vertices of Ng(M) are
contained in each clique of F(T,). This shows that Ng(M) is a clique if M is
not simple. If M is simple, then M = Ly(a,b) for some Q-node ¢ having children
Z1,...,ZTm and some block [a,b] fulfilling the conditions (b) of Lemma 5. In
particular, R~Y(T},) = R~'(Ty,) = 0. By Lemma 2, this implies that neither
M, (a) nor M (b) is empty. Since these two vertex sets are independent in G,
and both of them are subsets of Ng (M), we obtain that Ng(M) indeed cannot
be a clique.

For a graph H, some set M C V(G) is an occurrence of H in G as a closed
module, if M is a closed module for which G[M] is isomorphic to H. Let M(H, G)
be the set of the occurrences of H in G as a closed module. The characterization
of closed modules given by Lemma 5 implies that for any two closed modules M;
and My, either M1 N My = () or one of them contains the other one. Hence, using

11

S6
S4 S5
S3
S1 52
| J | J | J
M;_1 M; M;1

Fig.4. M;_1, M;, and M, illustrate closed modules of G—S. The set M; is untouched
by s1, s2, and s3, but this is not true for any vertex s;, j > 4.

that each element of M(H, G) is a subset of V(G) having size |V (H)| since-:,.m
we obtain the following consequence of Lemma 5.

Proposition 6. For a graph H, the elements of M(H,G) are pairwise disjoint.
Moreover, if the graph H is not a clique, then the elements of M(H,G) are
(pairwise) independent.

The second statement of Proposition 6 follows from the observation that if
H is not a clique, then none of the occurrences of H in G as a closed module
can be simple, so each set in M(H,G) must be of the form R~1(T},) for some
non-leaf node z of T'. This yields that no edge can run between any two sets in
M(H,G). Lemma 7 below states some observations about what happens to a set
of disjoint and independent closed modules in a graph after adding or deleting
a vertex.

Lemma 7. Suppose that s € V(G).

(1) If M, ..., My are disjoint independent closed modules in G — s, then M; is
a closed module in G for at least £ — 4 indices i € [£].

(2) If My,..., M, are disjoint independent closed modules in G, then M; is a
closed module in G — s for at least £ — 4 indices i € [{].

Proof. As M; and M, are independent if i # j, we can assume that Mjeft <
eright << Mt < Méight. Recall that each M; is connected by the definition
of a closed module. _

We say that M; is untouched (by s), if either s'** < M8 and s/t > prleft,
or s'eht < MTEM o gleft S A7l Tn other (more intuitive but less accu-
rate) words, M; is untouched by s if the interval representing s either contains
[Mfl_glh ‘ Milif{], or is disjoint from it; we hope the definition is clear in the cases
1 =1 and i = ¢ as well. See also Fig. 4 for an illustration. Note that if M, and
My, are the first and the last one, respectively, among the sets M, ..., M, that
have a vertex adjacent to s, then each M; except for M,_1, My, My, and My
must be untouched by s.

To see (1), we show that if a closed module of G — s is untouched, then
it is a closed module of G. So assume that M; is untouched. Clearly, s ¢ M;.
Since either Ng(s) 2 M; or Ng(s) N M; = 0, M; remains to be a module in

12

G. Also, if s € Ng(M;), then s must have a neighbor in M;_; and M; ;. Thus,
Ng(s) € Ng[M;], so the closure of M; in G — s implies its closure in G as well.

To prove (2), suppose that M; is an untouched closed module in G. Clearly,
M; is amodule in G —s as well, and since s ¢ M;, M, remains connected in G —s.
Let = be a vertex in Ng(M;) different from s. Since M; is closed, x is adjacent
to some vertex y ¢ Ng[M;]. Suppose that z doesn’t have a neighbor outside
Ng_s[M;] in G — s. This can only happen if y = s. Now, since y ¢ Ng[M;] and
M; is untouched by s, vertex x must also be adjacent to a vertex of M; 1 or
M 1. Thus, z has a neighbor in V(G — s)\ Ng—s[M;], proving the closure of M;.
As M; is untouched for at least £ — 4 indices ¢ € [¢], the statement follows. O

In the case when H is a clique and K is an occurrence of H in G as a closed
module, we get that either K = R™1(¢) for some leaf £ € V(T), or K is simple,
ie. K = Ly(a,b) for some Q-node ¢ € V(T') and some block [a, b]. In the latter
case, Lemma 8 states a useful observation about the block [a,b]. This lemma
uses the following definition: we say that a closed module K of G is h-short, if
either K = R™!(¢) for some leaf ¢ € V(T), or K = Ly(a,b) for some Q-node
q € V(T) and some block [a, b] with b —a < h. The sets {e1, e2} and {b1, b2} are
2-short closed modules of G in Fig. 1.

Lemma 8. If K is a closed module in G such that G[K] is a cliqgue but K is
not h-short, then |Ng(K)| > 2(h + 1).

Proof. By the conditions of the lemma, we know that K = Ly(a,b) for some Q-
node ¢ € V(T) with children z1,..., 2z, and some block [a,] such that b —a >
h+1. As K is closed, we get that R=(T};,) = 0 for any h contained in [a, b], so
M (h) and M~ (h) cannot be empty by Lemma 2. Taking these sets for all h in
[a, b], with the exception of the sets Mt (a) and M~ (b), we get 2(b—a) > 2(h+1)
nonempty sets that are pairwise disjoint, each containing some vertex of Ng(K).
This implies the bound Ng(K) > 2(h + 1). O

Observe that if two different hA-short closed modules K7 and K5 in G are not
independent, then K3 = Ly(a,b) and K2 = Ly(c,d) must hold for some Q-node
q in T and some blocks [a, b] and [c, d] that properly intersect each other. Now, if
b—a < h, then there can be at most h(h+ 1) blocks [¢, d] that properly intersect
[a, b]. However, if we consider a set B consisting of blocks properly intersecting
[a, b] for which we require that no block in B contains another block in B, then
we can derive that B can contain at most 2k blocks. This implies that given
a h-short closed module K, there can be at most 2h different h-short closed
modules of G neighboring K (but not equal to K). It is also easy to see that the
maximum number of pairwise neighboring h-short closed modules in a graph is
at most h + 1. Making use of these facts, Lemma 9 states some results about
h-short closed modules of a graph in a similar fashion as Lemma 7. As opposed
to Lemma 7, here we do not require the closed modules to be independent.

Lemma 9. Suppose that s € V(G).
(1) If My, ..., M; are disjoint h-short closed modules in G — s, then M; is a

13

closed module in G for at least £ — (3h + 5) indices i € [(].
(2) If My, ..., My are disjoint h-short closed modules in G, then M; is a closed
module in G — s for at least £ — (4h + 3) indices i € [(].

Proof. The proof relies on the observation that there are at most 2(h + 1) in-
dices i such that [M*ft M8 contains s'° or 57180 because any set of pairwise
neighboring h-short closed modules has cardinality at most h + 1. Recall that
the intervals M, M""] need not be disjoint.

To see (1), suppose that M; is not a h-short closed module in G for some .
Clearly, G[M;] is connected. First, assume that M; is not a module because there
are some x,y € M; such that s is adjacent to but not to y. In this case, either
gleft < gright o gleft op gright - gleft - gright 1t i5 not hard to see that this
implies that there can be at most two such modules M;. Now, assume that M;
is a module, but is not closed. This implies that M; C Ng(s) C Ng[M;] is true.
Note that if j # ¢, then M; C Ng(s) € Ng[M;] is only possible if M; and M;
are neighboring. Thus, there can be at most A + 1 such indices 1.

Finally, if M; is closed module in G but it is not h-short, then the number
of maximal cliques containing the vertices of M; must be more in G than in
G — s, implying that either M} < gleft < M;ight or Meft < gright < M;ight. As
Mt < gleft < ppt ieht and M J]»Eft < gleft < M ;ight can only hold simultaneously
if M; and M; are neighboring, and such a statement is also true for the latter
condition, we get that there can be at most 2(h + 1) indices ¢ for which M; is
h-short in G — s but not in G. Summing up these facts, we obtain that there
can be at most 2+ (h+ 1) 4+ 2(h 4+ 1) = 3h + 5 indices ¢ for which M; is not a
h-short closed module in G.

To prove (2), notice that each M; remains a module in G — s as well. Observe
also that if s ¢ M;, then M; remains connected in G — s. By the disjointness of
the sets M1, .. Mg, each of them is connected in G — s except for at most one.
Suppose that M;,, M,;,, and M,;, are independent, and for each j € {1,2,3},
M;, is a connected module in G — s but it is not closed. This means that there
are vertices 1, o2, and 3 such that z; € Ng(M;,), but Ng(z;) € Ng[M;,] for
each j. Since these modules are closed in G, this implies that each of x1, xo,
and z3 are adjacent to s, and s ¢ Ng[M;,] for any j. But this can only hold if
some x; is adjacent to each vertex of M7 ,, for some j # j', and since M;; and
M; , are independent, this contradicts the assumption that Ng(z;) C Ng [M 1.
Thus, there cannot exist such indices iy, is and i3, implying that we can fix two
indices j and j’ such that for any M; that is a connected module in G — s but
not closed, M; is neighboring either M; or M/, implying that there can be at
most 2(2h) + 2 such indices i. To finish, observe that if M; is a closed module in
G — s, then it must be h-short, as the deletion of s cannot increase the number
of maximal cliques that contain M;. a

4.2 Reduction rules

In this section, we introduce some reduction rules, each of which can be applied
in linear time, and provides a necessary set, an independent subproblem, or a

14

reduced input, as described earlier. Our aim is to handle all cases except for the
situation when both G and G’ have a PQ-tree with a Q-node root; this last case
will be treated in Section 5. We always apply the first possible reduction. From
now on, we assume that S is a solution for (G’,G) and ¢g is an isomorphism
from G’ to G — S.

Rule 1. Isomorphic components. Lemma 10 yields a simple reduction: if
G and G’ have isomorphic components, then algorithm .4 can output a reduced
input of (G’, G). Note that partitioning a set of interval graphs into isomorphism
equivalence classes can be done in linear time [16] (see also [7,21,22]). Hence,
this reduction can also be performed in linear time.

Lemma 10. If K and K’ are connected components of G and G', respectively,
and K is isomorphic to K', then (G' — K',G — K) is a reduced input of (G, G).

Proof. Trivially, G’ — K’ has fewer vertices than G’, and any solution for (G’ —
K',G — K) is a solution for (G',G) as well, by the isomorphism of K’ and K.
Therefore, we only have to prove that if (G', G) is solvable, then (G' — K',G—K)
is also solvable. Clearly, if S N V(K) = 0, then we can assume w.l.o.g. that
¢s(K') = K. In this case, S is a solution for (G' — K',G — K).

On the other hand, if SNV (K) #), then K and ¢s(K’) are disjoint. More-
over, K and ¢g(K') are disjoint isomorphic connected components of G — S
where Sop = S\ V(K). Let k£ be an isomorphism from K to ¢g(K’). Notice that
the role of K and ¢g(K') can be interchanged, and we can replace S NV (K)
with k(SNV(K)) in the solution. Thus, SyUrx(SNV (K)) is a solution for (G, G)
that is disjoint from K. Since this yields a solution for (G’ — K’, G — K) as well,
the lemma follows. a

Rule 2. Many components in the smaller graph G’. This reduction
is possible in the case when G’ has at least 4k + 1 components. Since Rule 1
cannot be applied, none of the components of G is isomorphic to a component
of G'. Our aim is to locate ¢s(K’) in G for one of the components K’ of G'.
If we find ¢s(K'’), then we know that Ng(éds(K')) must be contained in S, so
we can produce a necessary set of size 1 by outputting any of the vertices of
No(6s(K")).

Given a graph H, recall that M(H,G) denotes the occurrences of H in G
as a closed module. By Prop. 6, the elements of M(H, G) are disjoint subsets of
V(G). We can find M(H,G) in linear time, using the labeled PQ-tree of G and
the characterization of Lemma 5.

Relying on Lemmas 7 and 9, the algorithm performs the following reduction.
Suppose that K{, K}, ..., K}, are the k' = 4k + 1 largest connected components
of G', ordered decreasingly by their size, and let S be a solution for (G, G). As
the vertex sets of the connected components of G’ are closed modules of G’, the
sets K; = ¢s(V(K])) for i € [k'] are closed modules of G — S. By definition,
these sets are also disjoint and independent. As a consequence of k applications
of Lemma 7(1), we get that for at least k' — 4k = 1 indices i € [k] the set K
is a closed module of G. We branch on the choice of ¢ to find such a set Kj,
resulting in at most k' possibilities. Observe that w.l.o.g. we can assume that

15

c(Coo Bo] o & &

o

¢ 0o O] ag) S -

¢s(B) ¢s(C) ¢s(D) Ki ¢s(A) ¢s(F)

Fig. 5. An illustration of Rule 2. In this example, the small rectangles denote elements
of M(K;,G") and M(K;,G). Rectangles with a skew pattern are elements of M(K;, G)
that are not closed modules of G — S. Crossed rectangles with a dashed border indicate
if some set ¢5(X) is not a closed module of G for some X € M(K;, G’). In this example,
i=5,61)=0,62) =03)=64) =1, |M|=4andi* =6.

the subgraph G[K;] is the first one (according to the given representation of G)
among the components of G — S isomorphic to K.

It remains to describe how we can find K; in G. We distinguish between two
cases depending on whether K is a clique or not.

Case 1. Suppose that K| is not a clique. Let us discuss a simplified case
first, where we assume that K/ is not contained as an induced subgraph in any
of the components K7 if j # i. Let M(K],G) = {Ai1, Az,...}, where the sets
in M(K/,G) are ordered according to their order in the interval representation
of G. Let i* denote the smallest integer for which A;- is an element of M (K, G)
that is a closed module in G— S as well. Since K is not contained in a component
of G’ having more vertices than |V (K7)|, G[A;+] must be a connected component
of G — S. Also, G[A;+] is isomorphic to K, and by the definition of A;«, it must
be the first such component of G — S. Thus, we can conclude that A;- equals
K;. By (2) of Lemma 7, there can be at most 4k sets in M(K/, G) that are not
closed modules in G — S, so we get that i* < 4k +1 = k’. Hence, we can find K;
by guessing i* and branching into k' directions. (Recall that finding K; yields a
necessary set of size 1.)

Let us consider now the general case, where some of the components KJ’ can
contain K/ in G'. (We still suppose that K; is not a clique.) For each j < i, we
define an indicator variable §(j) which has value 1 if and only if K, precedes
K; in G — 5. We guess 6(j) for each j € [i — 1], which means at most 2% ~1
possibilities.

Again, let M(K/,G) = {A1, Aa, ...}, where the sets A, are ordered accord-
ing to their order in the interval representation of G. Let ¢* denote the index
for which K; = A;«, and let M’ stand for Uj<i}5(j):1 M(K], K}), which is a
collection of subsets of V(G’), each inducing a subgraph of G’ isomorphic to K.
As K, is not a clique, the elements of M’ in G’ are disjoint and independent by
Prop. 6, so by (1) of Lemma 7 we get that for at least |M’| — 4k sets A € M/,
the set ¢s(A) will be a closed module of G as well. As all these sets precede

16

K; in G, we get that ¢g5(A) € {A1,..., Aj=_1} holds for at least |M'| — 4k sets
A € M'. From this, i* — 1 > | M| — 4k follows.

On the other hand, for all those sets A € {A4,..., A;«_1} which are closed
modules in G — S as well, ¢§1(A) must be contained in a component of G’
which is larger than K. Here we used again the assumption that G[K;] is the
first one among the components of G — S isomorphic to K;. Since such an
A precedes K;, we obtain ¢g'(A) € M’. By k applications of Lemma 7(2),
there can be at most 4k sets among A1,..., A;~_1 that are not closed modules
in G — S, so we get that ¢5'(A) € M’ for at least i* — 1 — 4k sets A in
{A1,..., A;~_1}. This implies i* — 1 < |M'| 4 4k. Altogether, we get the bounds
M| =4k +1 < * < |M’|+4k+1. Since | M’| can be determined in linear time,
by branching on the at most 8%k 4+ 1 possibilities to choose i*, we can find the
vertex set K.

Case 2. Suppose that K/ is a clique. As K; is a component of G — S,
|Ng(K;)| < k, which by Lemma 8 implies that K; must be k/2-short. Using
Lemma 9, we can find K; in a similar manner to the previous case. We denote
by N(H,G) the occurrences of a graph H in G as a k/2-short closed module.
Analogously to the previous case, let N(K/},G) = {B1, Ba, ...}, where the sets
in N(K/,G) are ordered according to their order in the fixed representation of
G. We also let K; = Bi» and N = {J;_; 5(5y=1 N(K], K}). Now, using Lemma 9
just as in the reasoning above, we get the bounds |N'| — k(3k/2 +5) <i* —1 <
IN'| 4+ k(2K + 3). Again, |N'| can be determined in linear time, so by branching
on the at most k(7k/2 + 8) + 1 possibilities to choose i*, we can find the vertex
set K.

Since Rule 1 cannot be applied, none of the components of G can be isomor-
phic to a component of G’, hence S; = Ng(K;) is not empty. Clearly S; C S, so
we get that {s} is a necessary set for any s € S;. The total number of possible
branches in this reduction is at most (4k + 1)2*%(k(7k/2 4 8) + 1) = 200,

Rule 3. The larger graph G is disconnected. Here we give a reduction
for the case when G is not connected, but the previous reductions cannot be
performed. First, observe that each component of G contains at least one vertex
from S, as none of them is isomorphic to a component of G’. Thus, if G has
more than k components, then there cannot exist a solution of size k, so we can
reject. Otherwise, let us fix an arbitrary component K of G. We branch on the
choice of those components of G’ whose vertices are in ¢g* (K — S), for some
fixed solution S. Let the union of these components be G’%. Note that guessing
G’ yields at most 2% possibilities, since G has at most 4k components. By our
assumptions, 1 < k' < k holds for the parameter &' of the instance (G, K), so
(G, K) is clearly an independent subproblem of (G, G).

Rule 4. The smaller graph G’ is disconnected. Suppose that none of
the previous reductions can be applied, and G’ is disconnected. This means
that G must be connected, and G’ has at most 4k components. Let S be
a solution. For each component K’ in G’, let I(K’) be the union of the in-
tervals representing ¢s(K’) in the fixed representation of G, i.e. let I(K') =
[ps(V(K"))ef ¢s(V (K'))8M]. Since the components of G’ are connected and

17

independent, the intervals I(K{) and I(K}) are disjoint for two different com-
ponents K| and K} of G'.

Let @ be the component of G’ such that I(Q) is the first among the intervals
{I(K") | K’ is a component of G'}. Clearly, if 278" < ¢5(V(Q))" 8" for some
vertex x € V(G), then either x € S or z € ¢5(Q), thus the number sg of such
vertices is at least |V (Q)| but at most |V (Q)|+k. Therefore, we first guess), and
then we guess the value of sq, which yields at most 4k(k + 1) possibilities. Now,
ordering the vertices of G such that = precedes y if 'ight < right and putting
the first s vertices in this ordering into a set B, we get ¢5(Q) C B C ¢5(Q)US.
Since G is connected, there must exist an edge e = zy running between B and
V(G) \ B. Clearly, at least one endpoint of e must be in S, thus we can output
the necessary set {z,y}.

Rule 5. Universal vertex in the larger graph G. A vertex z is universal
in G, if Ng(z) = V(G —x). Such vertices imply a simple reduction by Lemma 11
which allows A to output either a necessary set of size 1 or a reduced input
of (G, Q).

Lemma 11. Let x be universal in G. If there is no universal verter in G', then
{z} is a necessary set for (G',G). If ¥’ is universal in G', then (G' —z',G — x)
is a reduced input of (G, G).

Proof. Clearly, if x is universal in G and x ¢ S for a solution S, then it remains
universal in G — S. Thus, if no vertex is universal in G’, then x € S must hold.

Suppose 2’ is universal in G’ and S is an arbitrary solution. Clearly, if x ¢ S,
then z and y = ¢g(z’) are both universal in G — S, so if # y then we can swap
the role of x and y such that ¢g maps 2’ to x. Now, if z € S then §' = SU{y}\{z}
is a solution in which the isomorphism from G’ to G — S’ can map 2z’ to . This
implies that (G — 2/, G — z) is a reduced input of (G', G). O

Rule 6. Universal vertex in the smaller graph G’. Suppose that some
vertex z’ is universal in G’. Let a and b be vertices of G defined such that
a*#ht = min{z"ett | x € V(Q)} and b = max{z'*®* | x € V(G)}. As there
is no universal vertex in G, we know that z'°ft > gright op gright pleft for
each z € V(G). Thus, in particular, a and b are not adjacent, and no vertex
in G is adjacent to both a and b. As ¢g(z’) is universal in G — S for any fixed
solution S, we get that either a € S or b € S must hold. (Note the special cases
where ¢g(z') = a or ¢pg(x’) = b, implying b € S or a € S, respectively.)

Hence, A can output the necessary set {a,b}.

5 The Q-Q case

From now on, we assume that none of the reductions given in Sect. 4.2 can
be applied. Thus, G and G’ are connected, and none of them contains universal
vertices, so in particular, none of them can be a clique. This implies that if r and
r’ is the root of T and T”, respectively, then both r and v’ are Q-nodes. Let m and
m’ denote the number of the children of r and 7/, respectively. When indexing

18

elements of [m] and [m/], we will try to use ¢ and j, respectively, whenever it
makes sense. Let x; and x’ denote the i-th and j-th child of r and r’, respectively,
and let X; = R™Y(T},) and X} =R"NT.,), for alli € [m] and j € [m'].

Let us call a solution S local, if there is an i € [m] such that S 2 V(G) \
N¢g[X;], i.e. S contains every vertex of G except for the closed neighborhood of
some X;. Suppose that S is a solution that is not local, and ¢g is an isomorphism
from G’ to G — S. The following definitions try to give a bound on those indices
i in [m] which somehow contribute to ¢5(X}) for some j € [m/]. For an index
Jj € [m], let:

as(j) = min{Q; " (¢s(v)) | v € X; UM ()}
Bs(j) = max{Q#"(¢s(v)) [v € Xj UM ()}
Observe that by
min{Q;"(¢s(v)) [v € X; UM (j)} < min{Q;"(¢s(v)) | v € X[}

< max{Qiight(qéS(v)) |ve X’.} < maX{Qright(qéS(v)) |ve X’» UM (j)}

we obtain that ag(j) < Os(j) holds for any j € [m’]. We let Ig(j) to be the

block [evs (5), Bs (5)]-
The following lemma summarizes some useful observations.

Lemma 12. Suppose that S is a solution for (G',G) that is not local. Then
either all of the following statements hold, or all of them hold after reversing the
children of r':

(1) QU (v) < QU2 (w) for some v,w € V(G') and diry,diry € {left, right}
implies that Q¥ (¢g(v)) < Qdir2 (gbs()) holds as well.

(2) For any j1 < jo in [m'], the block Is(j1) precedes Is(jz).

(3) If m =m’, then Is(j) = [J, 4] for each j € [m/].

(4) For each i € [m], the set X; \ S is contained in ¢5(X}) for some j € [m'].

(5) ¢s(R™H(r")) € R7H(r).

Proof. Let Aq,..., As be disjoint subsets of some set U. We say that a permu-
tation uy,...,ujy| of the elements of U respects the series Ay,. .., As, if for any
p € [s — 1] the elements of A, precede the elements of Apy1 in uy,...,uy|.

For some j € [m'], let C} be the set of maximal cliques of G’ contained in
F(T! /). As T" represents G’ and its root is a Q-node, any consecutive ordering of
the maximal cliques of G respects either C},C5, ..., cl,orCl,.ClL,_\, ...,C1.

Let C; be the set of maximal cliques of G that contain ¢g(K) for some
K € C}. Clearly, the sets C; (j € [m’]) are disjoint by the maximality of the
cliques in F(T"), however, the cliques contained in these sets need not be disjoint.
The interval representation of G yields an interval representation of G — S and
hence of G’, which implies that any consecutive ordering of the cliques in F(T)
must respect either Cq,...,Chp or Cpy,...,Cy. This implies that if j; # jo,
then the deepest node in 1" whose frontier contains every clique in C;, U Cj,
must be some unique Q-node ¢, the same for each pair (j1,j2). Note also that

19

if ¢ is contained in T}, for some i € [m], then every vertex of ¢s(V(G’)) must
be contained in some element of F(T,). This yields that S O V(G) \ Ng[X],
contradicting the assumption that S is not local. Hence ¢ = r. The definition of
q shows that by possibly reversing the children of r in T', we can find disjoint
blocks By, Ba, ..., By, following each other in this order in [1,m] such that for
each j € [m/] every clique of Cj is contained in (J;c g, F(T%,).

This observation can be easily seen to imply clalm (1), by simply recall-
ing what Q%" (v) < Q%*(w) means by definition for some v,w € V(G') and
diry, diry € {left, right}, considering the maximal cliques of G’.

Now, it is easy to prove (2), (3), (4), and (5), using the assumption that
(1) holds (which can indeed be achieved by possibly reversing the children of
). To prove (2), observe that for any j € [m/], we have that Q!$®(v) = j
for each v € X} U M (j) and QUEM (y) = j for each v € X5 UM, (j). Thus,
for any ji < j2 in [m'], v € X} UM (j1), and w € X, UMT (j2) we obtain
QUEM (1) < QSft(w), which immediately implies QUM (¢g(v)) < QM (¢g(w)) b
using the assumption that (1) holds. By definition, this means 8s(j1) < ag(jz2),
from which (2) follows.

Note that (3) is directly implied by (2).

To see (4), consider an z € X; \ S and let 2’ be the vertex in G’ for which
r = ¢g(2'). Since QI (x) = QMM (z) = 4, by (1) we must have QS (2) =
Qii,ght(x’) as well. Thus, 2’ € X for some j € [m']. Now, assuming that there
is a vertex y = ¢s(y’) in X; such that y" € X/, for some j' # j, we obtain that
cither QU™ (/) < Q'ft(y) or QUEM(y/) < Qbﬁ("). But using (1), these both
contradict ¢g(y’) € X;.

Finally, (5) follows immediately from (4). O

Lemmal3, which relies on Lemma 12, handles an easy case when no branching
is needed, and a reduced input can be constructed. Let L(r) and L(r’) denote
the labels of and 7’ in T' and T”, respectively.

Lemma 13. If m = m’, L(r) = L(r') and there is an i € [m] such that G[X}]
is isomorphic to G'[X] for all j # i, then (G'[X]], G[X;]) is a reduced input of
(G, Q).

Proof. First, we show that a solution S for (G'[X]], G[X,]) is a solution for
(G', G). Clearly, the conditions of the lemma imply that there is an isomorphism
from G’ — X] to G — X; mapping Ng/(X!) to Ng(X;). This isomorphism can be
extended to map X/ to X; \ S, since S is a solution for (G’'[X/], G[X;]). In the
other direction, suppose that S is a solution for (G’, G). Note that S need not
be a solution for (G'[X]], G[X;]), as S may contain vertices not in X;. However,
to prove the lemma it suffices to show that a solution exists for (G'[X]], G[X.]),
meaning that G'[X/] is isomorphic to an induced subgraph of G[X,].

Let us assume first that S is not local. Suppose S N X; # () for some j # i.
Since G[X;] is isomorphic to G'[X}], we have |¢ps(X})| = [X;] > |X; \ S|. By
Lemma 12, this implies that Is(j) = [J,j] becomes true only after reversing
the children of v/, meaning that Is(h) = [m — h + 1,m — h + 1] for each h €

20

[m] (according to the PQ-tree T”). In particular, this means that ¢g(X}) C
Xm—it1. Hence, G'[X/] is isomorphic to an induced subgraph of G[X,,—;11]. In
the special case when i = m—i+1, this immediately proves our claim. Otherwise,
i #m — i+ 1 implies that G[X,, ;1] is isomorphic to G'[X,, ;.], and hence
G'[X]] is also isomorphic to an induced subgraph of G'[X], _;;]. From this, by
¢s(X},_ip1) € X we get that G'[X]] is isomorphic to an induced subgraph of
G[X].

Now, suppose that S is a local solution, and S O V(G) \ Ng[X}] for some
h € [m]. Since each vertex of R71(r) \ S must be adjacent to every vertex in
N¢g[Xp], such vertices would be universal in G — S. Thus, as G’ contains no
universal vertices, S O R~1(r) follows. Hence, we get ¢5(V (G’)) C X}, and thus
| Xk > |V(G')| > |X}|, implying h = i. But ¢s(V(G')) C X; clearly implies
that G’ and therefore also G’[X] must be isomorphic to an induced subgraph

3

of G[X;]. This finishes the proof. O

Observe that it can be tested in linear time whether the conditions of Lemma
13 hold after possibly reversing the children of r’. If this is the case, algorithm
A proceeds with the reduced input guaranteed by Lemma 13. Otherwise it
branches into a few directions as follows. In each of these branches, A will output
either a necessary set of size at most 2k + 1, or an independent subproblem of
(G, G).

In the first branch, it assumes that the solution S is local. In this case, given
any two vertices a € X7 and b € X,,,, a solution must include at least one of a
and b. (Note that X7 and X,,, cannot be empty.) Thus, A outputs the necessary
set {a,b}. In all other branches, we assume that S is not local. Algorithm .4
branches into two more directions, according to whether the children of ' have
to be reversed to achieve the properties of Lemma 12. Thus, in the followings
we may assume that these properties hold.

First, observe that Lemma 12 implies that m > m’ must hold, so otherwise
the algorithm can reject. First, we examine the case m = m/’, and then we deal
with the case m > m’ in Section 5.1. Observe that Lemma 12 also implies that
¢s must map every L, (a,b) to a vertex in L,(a,b), for any block [a,d] in [1,m].
So, if there is a block [a, b] such that |L,(a,b)| < |L,/(a,b)|, then the algorithm
has to reject. If the converse is true, i.e. |L.(a,b)| > |L,(a,b)| for some block
[a, b], then some vertex v € L, (a,b) must be included in S. Since each vertex in
L,(a,b) has the same neighborhood, the algorithm can choose v arbitrarily from
L,(a,b) and output the necessary set {v}.

If none of these cases happen, then L(r) = L(r'), so as the conditions of
Lemma 13 do not hold, there must exist two indices i; # i2 € [m], such that
G[Xi,] and G[X;,] are not isomorphic to G'[X7 | and G'[X]], respectively. As
L(r) = L(r"), by Lemma 12 we get ¢ps(R™1(r")) = R71(r) and ¢s(X}) = X5 \
S for each h € [m]. Thus, it is easy to see that for each h € [m], the set
S N Xp, yields a solution for the instance (G'[X}], G[X}]), and conversely, if
(G’,G) is solvable then any solution for (G'[X}], G[X4]) can be extended to a
solution for (G',G). Now, using X;, NS # @ and X;, N S # 0, we know that
the parameter of the instance (G'[X] |, G[X;,]) must be at least 1 but at most

21

k — 1. If this indeed holds, then A outputs (G'[X] |, G[X,]) as an independent
subproblem, otherwise it rejects the instance.

5.1 Identifying fragments for the case m > m’.

The rest of the paper deals with the case where S is not local, and m > m/. In
this case, we will try to determine Ig(j) for each j € [m']. To do this, A will
branch several times on determining Ig(j) for some j € [m/]. Using Prop. 14
below, we will be able to guess Ig(j) for an index j € [m'] in a way that the
number of resulting branches is bounded. Naturally, we cannot guess Is(j) for
every j € [m/], since that would not yield an FPT running time, so we will have
to bound the number of indices j € [m’] for which we guess Is(j).

To state Prop. 14, we use the following notation: given some block [i1, 2]
in [1,m], let W,.(i1,42) contain those vertices v for which @, (v) is contained in
[i1,72]. Let also wy(i1,i2) = |W,(i1,12)|. We define W, (j1,j2) and w. (41, j2)
for some block [j1, j2] in [1,m'] similarly. Using Lemma 12 and the definition of
as(j) and Bg(4), it is easy to prove the following:

Proposition 14. Suppose that S is a solution that is not local, and the proper-
ties of Lemma 12 hold. This implies the followings.

(1) 65 (W (31, j2)) = We(as(ja), Bs(j2)) \ S for every block [jy, ja] in [1,m'].
(2) wr(1,5) < we(L,B5(5)) < we(L,5) + k and we(j,m") < we(as(j),m) <
wyr (4,m’) + k hold for every j € [m/].

Note that w,(1,i) < w, (1,44 1) for every i € [m—1], even if X;41 =0 (as in
this case M~ (i + 1) # 0), and similarly we get w,-(i,m) > w,(i + 1, m) for every
i € [m — 1]. Therefore, the bounds of Prop. 14 yield at most (k + 1)? possibilities
for choosing [as(j), Bs(4)], for some j € [m/].

Since determining Ig(j) for each j € [m'] using Prop. 14 would result in
too many branches, we need some other tools. Hence, we introduce a structure
called fragmentation that can be used to “approximate” the sets Ig(j) for each
J € [m]. By iteratively refining the fragmentation, we can get closer and closer to
actually determine these sets. Given a set of disjoint blocks {[a},,b}] | h € [f]} in
[1,m'] and a corresponding set of disjoint blocks {[an, b] | B € [f]} in [1, m] with
F}, denoting the pair ([a},, b,], [an, b)), the set {F}, | h € [f]} is a fragmentation
for (T,T",5), if

— ap é as(a;l) and ﬂs(b%) S bh fOI' eaCh h’ € [f]’ a’nd
— aj .y =b, + 1 and apy1 = by + 1 for each h € [f —1].

We will call the element Fj, for some h € [f] a fragment. We define o(Fy) =
(br, —an) — (b}, — a),) and §(F) = ap — a),, which are both clearly non-negative
integers. Note that §(Fj+1) = 6(Fp) + o(F})) holds for each h € [f — 1]. We
say that some j € [m/] is contained in the fragment Fj,, if @}, < j < b}. In this
case, we write d(j) = 6(Fy) and o(j) = o(F},). We will say that a fragment F'
is trivial if o(Fy) = 0, and non-trivial otherwise. We also call an index in [m/]
trivial (or non-trivial) in a fragmentation, if the fragment containing it is trivial

22

F1 F2 F3 F4

rie e e e//e e//e o o o ¢ o o o F §(F) o(F)
B0 1
F 1 0
;1 2
rle e e/ /e e /e e & e e 3 2

2 3 4 5 6 7 8 9

Fig. 6. Illustration of a fragmentation containing four fragments. An arrow leading
from j to 4 indicates ¢ € Is(j). There are three non-trivial fragments: Fi, F3, F4. The
indices 1,4, 5 are left-aligned, 2,3,4,5,7 are right-aligned, 6 is wide and 8,9 are skew.

(or non-trivial, respectively). An annotated fragmentation for (T,T’,S) is a pair
(F,U) formed by a fragmentation F for (T,7",S) and a set U C [m’] such that
each j € U is trivial in F. We say that the trivial indices contained in U are
important. See Fig. 6 for an illustration.

Let us suppose that we are given a fragmentation F for (7,7, S), and some
J € [m'] contained in a fragment F' € F. We will use the notation jier, = j+(F)
and Jright = j+06(F)+o(F). Also, we will write B} (i) = M, (i)UX; and B, (j) =
M (j) U X}. For some block [i1,i5] in [1,m] let B (i1,42) = Upep, 10 B (1),
and we define B (j1, j2) for some block [41, j2] in [1, m/] analogously. Proposition
15 is easy to prove using Lemma 12.

Proposition 15. For each j € [m/], the following holds:

(Z) jleft S aS() < ﬂS() < jrlght

(i1) ¢s(MS (7)) € Unerg(yy M (h) and ds(M (7)) S Upergy My (h)-

(iii) if Is(j) = [i,], then MF(i)\ S = ¢S(M+(J)) and M~ (i)\ S = ¢s(M,, ().
(iv) if j < ', as(j) = i and Bs(j') = ', then és(B;:(j.j')) = B (i,i') \ S

We will classify the index j as follows:

If |Is(j)] > 1, then j is wide.

— If Is(j) = [fiett, Jiett], then j is left-aligned.

If I5(j) = [Jright, Jright), then j is right-aligned.

If Is(j) = [i,4] such that jiess < @ < Jright, then j is skew.

If F is trivial, then by Prop. 15, only ag(j) = Bs(j) = Jiett = Jrignt 1S possible.
Thus, each trivial index must be both left- and right-aligned.

Lemma 16 shows that a solvable instance can only contain at most 2k non-
trivial fragments. Thus, if a given fragmentation contains more than 2k non-
trivial fragments, then A can correctly reject, as such a fragmentation does not
correspond to any solution.

Lemma 16. Any fragmentation F for (T,T’,S) can have at most 2k non-trivial
fragments.

23

Proof. We will show that every non-trivial fragment of F contains an index 14
for which X; U M;F(i) U M, (i) contains a vertex of S. Since any s € S can be
contained in at most two sets of this form, this proves that there can be at most
2k non-trivial fragments in F.

Observe that if F' = ([a, V'], [a,b]) is a non-trivial fragment in F, then either
[Zs(4)| > 1 must hold for some j in [a’,V’] (meaning that j is wide), or some ¢
in [a,b] is not contained in any of the blocks {Ig(h) | a’ < h < b'}. In the latter
case we have X; UM (i) UM, (i) C S. By Lemma 2, X; UM (i) UM, (i) # 0,
so it indeed contains a vertex of S. Now, suppose that the former case holds,
and j is wide. Reversing the children of r between ag(j) and Bs(j) cannot result
in a PQ-tree representing G, hence there must be a vertex z € R™!(r) such that
Qr(z) properly intersects Is(j).

Let Qr(z) = [z1,22]. We assume 21 < ag(j) < z2 < Bs(j), as the case
as(j) < z1 < Bs(j) < 23 can be handled analogously. First, if z € S, then
M, (z2) contains a vertex of S, so we are done. Otherwise, z ¢ S implies that z
must be contained in ¢g(M 7 (j)), from which X,Bs() U M+(6S(1)) C S follows.
Again, ng(j) U M, (Bs(j)) # () by Lemma 2, so in this case we obtain @ #
Xgo(y UM (Bs(j)) C §. This proves the lemma. O

Before describing the remaining steps of the algorithm, we need some addi-
tional notation.

Let T and 7"V denote the labeled PQ-trees obtained by reversing the chil-
dren of r and 7/, respectively. We write j*V for the index m’ —j+1 corresponding
to j in T, and we also let X™ = {j™v | j € X} for any set X C [m/]. For
a fragment F' = ([d/, V], [a,b]) we let F™V = ([, a™V], [b", a"]), so a frag-
mentation F for (T,7",S) clearly yields a fragmentation F**v = {F"V|F € F}
for (77, TV, S). Note that if j is left-aligned (right-aligned) in F, then the
index j*¢V is right-aligned (left-aligned, resp.) in F*¢".

Given some i € [m], let us order the vertices v in M, (i) increasingly accord-
ing to Qe (v). Similarly, we order vertices v in M, (i) increasingly according
to ereft (v). In both cases, we break ties arbitrarily. Also, we order vertices of
M7 (j) and M (j) in T’ the same way for some j € [m/]. Now, we construct
the sets P, (j) and P (j), both containing pairs of vertices, in the follow-
ing way. We put a pair (v,w) into Pl (j), if v € M (5), w € M (jieg), and
v has the same rank (according to the above ordering) in M} (j) as the rank
of w in M (jiegt). Similarly, we put a pair (v,w) into P (j), if v € M (j),
w € M, (jieft), and v has the same rank in M7 () as w in M, (jiet). In addi-
tion, we define the sets Pnght(j) and Pnght(i) analogously, by substituting jright
for jlefy in the definitions. The key properties of these sets are summarized in
the following lemma.

) = w in the following cases:
F(Jrett)| for some left-aligned j.
(J1eft)| for some left-aligned j.

Lemma 17. W.l.o.g. we can assume ¢g (
(1) If (v,w) € By (j) and M) ()| = | M;
(2) If (v,)epleft() and |M_(5)] = |M,~
(3) If (v, w) € rlght() and | MY} (5)] = | M (jrignt)| for some right-aligned j.
(4) If (v, w) € Py, (4) and M (5)| = [M,”

|
| M.~ (jright)| for some right-aligned j.

24

Proof. We only show (1), as all the other statements are analogous. To see (1),
observe that as j is left-aligned, |MF(5)| = |M;* (jiers)| implies that ¢ must
map M (j) to M, (jiert) bijectively.

By Lemma 12, if QUM (u) < QUM ('), then Q8" (9(v)) < QUM (6 (v'))
holds as well. Note also that the vertices of L.(j,j’) for some j' € [m/] are
equivalent in the sense that they have the same neighborhood. Thus, we can
assume w.l.o.g. that if v precedes v’ in the above defined ordering of M:C(j),
then ¢g(v) precedes ¢g(v') in the similar ordering of M} (jiefr). Thus, ¢s must
indeed map v to w, by the definition of P, (j). a

Given two non-trivial fragments F' and H of a fragmentation with F' pre-
ceding H, we define three disjoint subsets of vertices in R™1(r’) starting in F
and ending in H. These sets will be denoted by L(F, H), R(F, H), and X(F, H),
and we construct them as follows. Suppose that v € L,/(y,j) for some y and
j contained in F and H, respectively. We put v in exactly one of these three
sets, if (v,w) € P (j) for some vertex w, and yiesr < Qe (w) < Yright- Now, if
Q™ (w) = yiefr then we put v into L(F, H), if Q" (w) = yigns then we put v
into R(F, H), and if ye, < Q'™ (w) < Yright then we put v into X' (F, H). Loosely
speaking, if each vertex in H is left-aligned, and some vertex of R(F, H) starts
at y, then y should be right-aligned. Similarly, if each vertex in H is left-aligned,
and some vertex of X(F, H) starts at y, then y should be either wide or skew.
Since we would like to ensure each index to be left-aligned, we will try to get rid
of vertices of R(F, H) and X (F, H).

We say that two indices y1,y2 € [m’] are conflicting for (F, H), if y1 < yso,
M5 (y1)NR(F, H) # 0 and M (y2)NL(F, H) # (). In such a case, we say that any
J > max{j1,j2} contained in H is conflict-inducing for (F, H) (and for the con-
flicting pair (y1,¥2)), where j; denotes the minimal index for which L, (y1,71) N
R(F,H) # (), and j» denotes the minimal index for which L, (yz, jo)NL(F, H) #
(. Informally, if a conflict-inducing index in H is left-aligned, then this shows
that a right-aligned index should precede a left-aligned index in F', which cannot
happen. In addition, if L(F, H) # 0, then let L™**(F, H) denote the largest in-
dex y in F for which M (y)NL(F, H) # 0. Let the L-critical index for (F, H) be
the smallest index j contained in H for which L,.(L™*(F, H), j)NL(F, H) # (.
Similarly, if R(F, H) # (), then let R™"(F, H) denote the smallest index y in F'
for which M7 (y) NR(F, H) # 0. Also, let the R-critical index for (F, H) be the
smallest index j in H for which L,,(R™™(F, H),j) NR(F, H) # 0.

Now, an index j in H is LR-critical for (F, H), if either j is the R-critical
index for (F,H) and L(F,H) = 0, or j = max{jr,jr} where jL is the L-
critical and jg is the R-critical index for (F, H). Note that both cases require
R(F,H) # (). Moreover, H contains an LR~critical index for (F, H), if and only
if R(F, H) # (. Intuitively, if an LR-critical index in H is left-aligned, then this
implies that some index y in F' is right-aligned.

Note that the definitions of the sets L(F, H), R(F, H), and X(F, H) together
with the definitions connected to them as described above depend on the given
fragmentation, so whenever the fragmentation changes, these must be adjusted
appropriately as well. (In particular, vertices in L(F, H), R(F, H), and X (F, H)

25

must start and end in two different non-trivial fragments.) However, it is impor-
tant to observe that none of these definitions depend on the solution S.

Let (F,U) be an annotated fragmentation for (7,7”,S5). Our aim is to en-
sure that the properties given below hold for each index j € [m’]. Intuitively,
these properties mirror the expectation that every index should be left-aligned.
Note that although we cannot decide whether (F,U) is a correct fragmentation
without knowing the solution S, we are able to check whether these properties
hold for some index j in (F,U).

Property 1: G'[X]] is isomorphic to G[Xj,,,]-

Property 2: [MJ(j)| < M} (jiete)| < [M,5(5)|+k and [M ()] < [M;” (et)| <
M ()] + &

Property 3: If j is non-trivial, then [MY ()| = |M[(jietr)| and | M (4)] =
| M~ (et)|

Property 4: If j is non-trivial, then |L,.(y, j)| = | L (Yiets, Jiet)| for any y < j
contained in the same fragment as j. .

Property 5: If j is non-trivial, then for every (v, w) € P, (j) such that Qi’,ght(v)
= g is non-trivial, yer < Q&M (w) < Yright holds. Also, for every (v,w) €
P (j) such that Qlﬁft(v) = g is non-trivial, ey < QI (w) < Yright holds.

Property 6: If j is non-trivial, then no vertex in X' (F, H) (for some F' and H)
ends in j.

Property 7: j is not conflict-inducing for any (F, H).

Property 8: j is not LR-critical for any (F, H).

Property 9: If j is non-trivial, then for every (v, w) € Pl (j) such that Qii,ght(v)
= y is non-trivial, QT&" (w) = yieg holds. Also, for every (v,w) € P, (j)
such that Q' (v) = y is non-trivial, Q'*®*(w) = yjes; holds.

Property 10: If j is non-trivial, then for each important trivial index u € U,
| L (j,w)| = | Ly (fres, west)| holds if w > j, and [Ly(u, j)| = |Ly(tieft, Jett)]
holds if u < j.

Observe that each of these properties depend on the fragmentation F, and Prop-
erty 10 depends on the set U as well. Also, if some property holds for an index j in
(F,U), then this does not imply that the property holds for j*V in (F*ev,U™V),
as most of these properties are not symmetric. For example, jiefy and jright both
have a different meaning in the fragmentation F and in F**V. We say that an
index j € [m/] violates Property ¢ (1 < £ < 10) in an annotated fragmentation
(F,U), if Property £ does not hold for j in (F,U). If the first nine properties
hold for each index of [m'] both in (F,U) and its reversed version (F*V,U™V),
then we say that (F,U) is 9-proper. We say that (F,U) is proper, if it is 9-proper,
and Property 10 holds hold for each index of [m/] in (F,U). Note that we do
not require Property 10 to hold in (F**V,U"") in order for (F,U) to be proper.

Let us describe our strategy. We start with an annotated fragmentation where
U = 0 and the fragmentation contains only the unique fragment ([1,m/], [1,m]),
implying that there are no trivial indices. Given an annotated fragmentation
(F,U), we do the following: if one of Properties 1,2, . .., 10 does not hold for some
index j in (F,U) for (T, 1", S), or one of the first nine properties does not hold for

26

some j in the reversed annotated fragmentation (F*¢V,U"") for (17, TV, S),
then we either output a necessary set or an independent subproblem, or we
modify the given annotated fragmentation. To do this, we first choose an index
j that violates a given property, using a method decribed below. Having chosen
j, we then branch on Ig(j), and handle each possible case according to the type
of j. If the given annotated fragmentation is proper, algorithm A will find a
solution using Lemmas 21 and 22.

Now we explain how the algorithm chooses the index j for which it guesses
Is(j). Observe that we can assume w.l.o.g. that there exists an £ (1 < ¢ < 10)
such that Properties 1,...,¢ — 1 hold for each index both in the annotated
fragmentation (F,U) and in its reversed version (F*V, U™"), but Property ¢ is
violated by an index in [m’/] in (F,U). Otherwise, we reverse the instance by
reversing the children of both r and ' and setting (F*¢V,U™") to be the actual
fragmentation, and proceed with the reversed instance. Let us now remark that
we only reverse the instance in such a step.

Having identified an ¢ as described above, the algorithm chooses j by taking
the smallest index j that violates Property ¢. This choice of j will be crucial
in the running time analysis of the algorithm. Recall that the reversal of an
instance means also that we redefine the indices associated with the subtrees
of the given PQ-trees. Actually, finding the smallest index violating Property
¢ could also be interpreted as finding the largest index in the original instance
that violates the “reversed version” of Property £. However, it is better to always
think about reversing the instance as redefining the labels L(r) and L(r'), the
indices associated with the different subtrees of r and r’, and taking the reverse
of the actual annotated fragmentation as well.

After finding the smallest j violating Property ¢, the algorithm branches into
(k + 1)? directions for choosing Is(j), using Prop. 14. Then, A handles each of
the cases in a different manner, according to whether our guess for Is(j) yields
that j is left-aligned, right-aligned, skew, or wide. We consider these cases in a
general way that is essentially independent from ¢, and mainly relies on the type
of j. We suppose that j is contained in a fragment F' = ([a/, V'], [a,b]), and we
say that j is extremal, if j = a’.

Left-aligned index. We deal with the case when j is left-aligned in Sec-
tion 5.3, whose results are summarized by the following lemma.

Lemma 18. Suppose that Property ¢ (1 < ¢ < 10) does not hold for some
Jj € [m/] in the annotated fragmentation (F,U), but all the previous properties
hold for each index both in (F,U) and in (F*V,U™). If j is left-aligned, then
algorithm A can do one of the followings in linear time:

— produce a necessary set of size at most 2k + 1,
— produce an independent subproblem,

— produce an index that is either wide or skew,
— reject correctly.

By Lemma 18, the only case when algorithm A does not reject or produce
an output is the case when it produces an index j’ that is wide or skew. If this

27

happens, then A branches on those choices of Is(j’) where j’ is indeed wide or
skew, and handles them according to the cases described below. Note that as
a consequence, the maximum number of branches in a step may increase from
(k+1)% to 2(k + 1)% — 1. (This means that we do not treat the branchings on
Is(j) and Is(j’) separately, and rather consider it as a single branching with at
most 2(k + 1)? — 1 directions.)

Observe that if j is trivial, then it is both left- and right-aligned. We treat
trivial indices as left-aligned.

Wide index. Suppose that j is wide, i.e. [Is(j)| > 1. In this case, we can
construct a necessary set of size 2. Recall that, using the arguments of the
proof of Lemma 16, we can either find a vertex z € R™1(r) such that if z ¢ S
then 0 # X, ;) UM, (Bs(j)) € S, or we can find a vertex w € R™(r) such that
if w¢ S then 0 # X,) UM, (as(j)) € S. Clearly, A can output a necessary
set of size 2 in both cases.

Extremal right-aligned or skew cases. Assume that j = a’ and j is skew
or right-aligned. In these cases, X; U M (i) U M~ (i) must be contained in S
for each i in [a,ag(a’) — 1], so in particular, X, U M, (a) U M, (a) C S. As
Xo UM (a) UM (a) # 0 by Lemma 2, we can construct a necessary set of
size 1 by taking an arbitrary vertex from this set, and A can stop by outputting
it.

Non-extremal skew case. Suppose that j > o' and j is skew, meaning
that Is(j) = [¢, 4] for some ¢ with jiesy < ¢ < jrign- In this case, we can divide the
fragment F', or more precisely, we can delete F' from the fragmentation F and
add the new fragments ([a’, j —1], [a,i—1]) and ([j, '], [¢, b]). Note that the newly
introduced fragments are non-trivial by the bounds on 7. We also modify U by
declaring every trivial index of the fragmentation to be important (no matter
whether it was important or not before).

Non-extremal right-aligned case. Suppose that j > a’ and j is right-
aligned. In this case, we replace F' by new fragments F; = ([, j—1], [a, Jright —1])
and Fy = ([4,0], [jrignt, b]). This yields a fragmentation where F; is non-trivial
and F; is trivial. In addition, we set every trivial index (including those contained
in F3) to be important by putting them into U, except for the case when the
fragmentation was already 9-proper, i.e. £ = 10. We refer to this operation as
performing a right split at j. Note that if the right split was performed because
of a violation of Property 10, then we do not modify U, so the trivial indices of
F5 will not be important.

The above process either stops by producing an appropriate output, or it
ends by providing an annotated fragmentation that is proper. Thanks to the
observations of Lemma 23, stating that the properties ensured during some step
in this process will not be violated later on (except for a few cases), we will be
able to bound the running time of this process in Section 5.2, by proving that the
height of the explored search tree is bounded by a function of k. In the remaining
steps of the algorithm, the set U will never be modified, and the only possible
modification of the actual fragmentation will be to perform a right split.

28

The following two lemmas capture some useful properties of an arbitrary
annotated fragmentation (F,U) obtained by the algorithm after this point.
Lemma 19 states facts about an annotated fragmentation obtained from a 9-
proper annotated fragmentation by applying right splits to it. Lemma 20 gives
sufficient conditions for the properties of an annotated fragmentation to remain
true after applying a right split to it.

Lemma 19. Let (F,U) be a 9-proper annotated fragmentation whose trivial
indices are all important. Suppose that F' is obtained by applying an arbitrary
number of right splits to the fragmentation F. Then the followings hold for each
J € [m/] that is either non-trivial or not important in (F',U):

(1) 1M ()] = IM; o) and M7 ()] = | M Giigne) |-

(2) The following holds for every mon-trivial or not important y # j and v €
L. (j,y). If (v,w) € P;i'ght(j) for some w € M (jright), then QU8 (w) = Yrighs-
Similarly, if (v,w) € Py, (j) for some w € My (jrignt), then Q™M (W) = Yrignt -
Proof. First, we show that the statements of the lemma hold for (F,U). To see
this, recall that each trivial index in (F,U) is important, therefore statements
(1) and (2) for (F,U) are equivalent to Properties 3 and 9 for (F*®V,U™),
respectively. Since (F,U) is 9-proper, these properties indeed hold for each index
ln (Jfrevv UTEV).

To see that these statements remain true after applying a sequence of right
splits to (F,U), we need two simple observations. First, notice that the value
of jrignt for an index j € [m/] does not change in a right split. Second, the set
of non-trivial or not important trivial indices does not change either, since the
performed right splits do not modify the set U of important trivial indices. This
follows from the fact that, by definition, the indices that become trivial due to
a right split applied to a 9-proper fragmentation are not set to be important by
the algorithm, hence the set of important and trivial indices is not modified by
such an operation. Thus, statements (1) and (2) for some index j have exactly
the same meaning in (F/,U) as in (F,U). This proves the lemma. O

Given a fragmentation F for (T,7",S), a fragment F € F, and some £
(1<2<9),let n(F, F,¥) be 1 if Property ¢ holds for each index in F' € F, and
0 otherwise.

Lemma 20. Let F' be a fragmentation obtained from F by dividing a fragment
F € F into fragments Fy and Fy with a right split (with Fy preceding F»). Let
1<¢<09.

(1) Suppose j is not contained in Fy and € # 8. If Property ¢ holds for j in F
(or in F*V), then Property £ holds for j in F' (or in F™V) as well.

(2) Suppose w(F,H,l) =1 for a fragment H. If H # F then w(F', H,{) = 1,
and if H = F then w(F', F1,0) = 1.

(8) Suppose w(F*,H* ¢) = 1 for a fragment H € F. If H # F then
w(FrV H* £) =1, and if H = F then w(F"™V, F{eV,¢) = 1.

(4) If w(FreV, F*V £) = 1, then n(F*V, F3V. () = n(F', F3,0) = 1.

(5) If (F,U) is a proper annotated fragmentation, then so is (F',U).

29

Proof. To see (1), we need some basic observations. First, if j is not contained
in Fy, then ji.g is the same according to F’ as it is in F, and this is also true for
Jright- Second, the set of non-trivial indices in F' is a subset of the non-trivial
indices in F. These conditions directly imply (1) for each case where ¢ ¢ {6,7,8},
using only the definitions of these properties.

Now, observe that if a vertex in R~!(r’) is contained in L(H], H}), for some
H{ and H} in the fragmentation F’, then it is contained in £(H;, Hz) for some
H; and Hs in F as well. Clearly, the analogous fact holds also for the sets
R(Hy,H)) and X(H{, Hj) for some H{ and Hj. Thus, if j violates Property 6
or 7 in F’, then it also violates it in F, proving (1).

Clearly, (2) and (3) follow directly from (1) in the cases where ¢ # 8. For
the case ¢ = 8, observe that =(F, H,8) = 1 implies R(Hy, H) = 0 for every Hy
preceding H. Hence, the requirements of statement (2) follow immediately. The
analogous claim in the reversed instance shows that (3) also holds for ¢ = 8.

To prove (4), let j be contained in F5. Note that Properties 3,4,...,9 vac-
uously hold for j in F’, because F» is trivial. Using that jies = jrigne and the
definitions of Properties 1 and 2, we get that if one of these two properties holds
for 7V in F™V, then it holds for j in F’ as well. Finally, observe that if Property
£ holds for some trivial index j in F’, then it trivially holds for 5"V in F'*¢V,
proving (4).

To prove (5), assume that (F,U) is proper. By (2), (3), and (4), we immedi-
ately obtain that (F’,U) is 9-proper, so we only have to verify that Property 10
holds. Recall that when a right split is applied to a 9-proper fragmentation, then
the set U is not modified. Hence, the set of important indices is the same in both
fragmentations. Also, jif is the same in (F/,U) as in (F, U) for each non-trivial
or important trivial index j of F’. Therefore, Property 10 also remains true for
each index. ad

Given a proper annotated fragmentation (F,U), algorithm A makes use of
Lemma 21 below.

To state Lemma 21, we need one more definition: we call an index j right-
constrained, if j is contained in a non-trivial fragment F', and there exists a vertex
v € M} (j) such that ¢s(v) € M,F (jrignt). Note that this definition depends on
the solution S. Algorithm A maintains a set W to store indices which turn out
to be right-constrained. We will show that if j is right-constrained, then j 4 1
must be right-aligned and thus a right split can be performed, except for the
case when j is the last index of the fragment. We will denote by Zz the set of
indices j for which j is the last index of some non-trivial fragment in F. If no
confusion arises, we will drop the subscript F.

Lemma 21 gives sufficient conditions for A to do some of the followings.

— Find out that some non-trivial index j is right-aligned. In this case, A per-
forms a right split at j in the actual fragmentation.

— Find out that some index j is right-constrained, and put it into W.
— Reject, or stop by outputting a necessary set of size 1.

The algorithm applies Lemma 21 repeatedly, until it either stops or it finds that
none of the conditions given in the lemma apply.

30

b trivial non-trivial
a ¢U €U ¢Z eW

U i

trivial # (v) ®
eU (iv)
non-trivial | (ii) (iii)

Table 1. The cases of Lemma 21, where U denotes important indices, Z denotes the
last indices of non-trivial fragments, and W denotes right-constrained indices.

Lemma 21. Let (F,U) be a proper annotated fragmentation for (T,T',S) ob-
tained by algorithm A, and let a,b € [m'] with a < b.

(i) If a is trivial but not important, b is non-trivial, b ¢ Z and L, (a,b) # 0,
then b+ 1 is right-aligned.

(1) If a is non-trivial, b is trivial but not important, and L..(a,b) # 0, then a is
right-constrained. Also, if a ¢ Z then a+ 1 is right-aligned.

(i11) If a is non-trivial, b is right-constrained, and L. (a,b) # 0, then a is right-
constrained. Also, if a ¢ Z then a + 1 is right-aligned.

() If a € U, b is right-constrained, and |L,(a,b)| # |Ly(aiess, bright)|, then al-
gorithm A can either reject or output a necessary set of size 1.

(v) If a and b are trivial and |Ly (a,b)| # |Ly(iets, biett)|, then algorithm A can
either reject or output a necessary set of size 1.

Proof. Let A and B be the fragments in F containing a and b, respectively.
Recall that the conditions of Lemma 19 are true for every proper annotated
fragmentation for (T',7",S) obtained by algorithm A, in particular for F.

First, suppose that the conditions of (i) hold. As a is a not important trivial
index in (F,U), claim (1) of Lemma 19 implies |M:,'(a)| = | M (ayignt)|. Let
v € Ly(a,b) and (v,w) € Pr'fght(a). As a is trivial, it is right-aligned as well,
so we obtain ¢g(v) = w by Lemma 17. Using claim (2) of Lemma 19 for a,
we obtain Qb (w) = bright- By ¢s(v) = w, this implies B5(b) > byigne. Thus,
as(b+1) = brgnt +1 = (b+ 1), showing that b+ 1 is indeed right-aligned.

The proof of (ii) is analogous with the proof of (i). By exchanging the roles
of a and b, we obtain Q,(¢s(v)) = [aright, bright] for some v € L, (a,b) in a
straightforward way. Observe that this proves a to be right-constrained. If a ¢ Z,
then A contains a + 1 as well. Hence, from Gg(a) > aright We get as(a+ 1) >
Qright + 1 = (a + 1)right. Thus, a + 1 is right-aligned.

To see (iii) and (iv), suppose that b is right-constrained and u™ is a vertex in
M7 (b) with ¢g(ut) € M, (brignt). Suppose u~ € M (b) for some u~. Clearly,
u~u™ is an edge in G', so ¢s(u~) and ¢g(ut) must be adjacent in G as well. By
ds(ut) € M (brignt) we get Q18 (ps(u™)) > brignt- By Prop. 15, this implies
QMM (pg(u™)) = bright- Using claim (1) of Lemma 19 for b, we get M, (bright) =
¢s(M, (b)). Letting v € Ly (a,b) and (v, w) € Py, (b) we obtain ¢s(v) = w as
in Lemma 17.

31

To prove (iii), assume also that a is non-trivial. By claim (2) of Lemma 19
for b, this implies @, (w) = [aright, bright]. This means that a is right-constrained.
From a ¢ Z we again obtain that a + 1 is right-aligned, using the arguments of
the proof of (ii).

To see (iv), assume a € U. Using Prop. 15, Is(a) = [aiest, Gleft], and the
above mentioned arguments, we get that ¢s(L,(a,b)) = Ly(aiest, bright) \ S-
Therefore, if |L,/(a,b)| > |Ly(aeft, bright)| then A can reject, and if |L,(a, b)| <
| Ly (aieft, brignt)| then it can output a necessary set of size 1 by outputting {s}
for an arbitrary s € L, (aieft, bright)-

Finally, assume that the conditions of (v) hold for a and b. As both of them
are left-aligned, Prop. 15 implies ¢s(L,(a,b)) = L, (aes, biet) \ S. Hence, A can
proceed essentially the same way as in the previous case. a

After applying Lemma 21 repeatedly, algorithm A either stops by rejecting
the input or outputting a necessary set of size 1, or it finds that none of the
conditions (i)-(v) of Lemma 21 holds. Observe that each w € W must be the
last index of the fragment containing w, since whenever A puts some index j ¢ Z
into W, then it also sets 7 + 1 right-aligned, resulting in a right split.

Let (F,U) be the final annotated fragmentation obtained. Note that the
algorithm does not modify the set U of important trivial indices when applying
Lemma 21, and it can only modify the actual fragmentation by performing a
right split. Thus, statements (1) and (2) of Lemma 19 remain true for (F,U).
By claim (5) of Lemma 20, we obtain that (F, U) remains proper as well. Making
use of these lemmas, Lemma 22 yields that A can find a solution in linear time.
This finishes the description of algorithm .A.

Lemma 22. Let (F,U) be a proper annotated fragmentation for (T,T',S) ob-
tained by algorithm A. If none of the conditions (i)-(v) of Lemma 21 holds, then
A can produce a solution in linear time.

Proof. We construct an isomorphism ¢ from G’ to an induced subgraph of G.
Our basic approach is to treat almost all indices as if they were left-aligned,
except for the vertices of W. Recall that Z denotes the set of indices that are
the last index of some non-trivial fragment, and W C Z is the set of right-
constrained vertices that A has found using Lemma 21. Let N contain those
non-trivial indices in [m’] that are not in W. Also, let Y denote the set of trivial
indices in [m’] that are not important. Clearly, [m'] = NUW UUUY.

As Property 1 holds for each index both in F and in 7"V, we know that there
is an isomorphism qb;eft from G'[X}] to G[Xj,,,] and an isomorphism (b;.lght from
G'[X]] to G[Xj,,.,] for each j € [m']. By [16], ¢/°™ and qS?ght can be found in
time linear in | X}|. We set ¢(x) = ¢ () for each z € X} where j € NUUUY,
and we set ¢(x) = (b;ight (z) for each z € X where j € W. Our aim is to extend
¢ on vertices of R™1(r’) such that it remains an isomorphism. To this end, we
set a variable A(j) for each j € [m/], by letting A(j) = jiets if j € NUU UY,
and A(J) = jright lfj ew. Cleaﬂ}I7 A(J) = Jleft = jright 1f] eUuUY.

32

The purpose of the notation A is the following. Given some a < b, in
almost every case we will let ¢ map vertices of L, (a,b) bijectively to ver-
tices of L,.(A(a), A(b)). This can be done if a and b match, meaning that
|L(a,b)] = |L-(A(a), A(b))|. However, there remain cases where a and b do
not match. Each such case will fulfill one of the following conditions:

(A) a € W and |L,(a,b)| = |L(aies, A(D))].
In this case, we let ¢ map L, (a, b) bijectively to L, (aes, A(D)). Clearly, the
block [aiesr, A(b)] contains A(a) = arigns. Thus, vertices of ¢(L,(a,b)) will
be adjacent to vertices of M,.(A(a))U X a(q). Since eithera—1€ N or a—1
is not in the same fragment as a, we obtain A(a — 1) < ajer;- Hence, vertices
of ¢(Ly(a,b)) will not be adjacent to vertices of M~ (A(a — 1)) U X a(q—1)-

(B) b€ Z and |L,(a,b)| = |Lr(A(a), bright)|-

In this case, we will let ¢ map L., (a, b) bijectively to L,(A(a), bright). Again,
[A(a), brignt] contains A(b) = biefs, so vertices of ¢(L,(a, b)) will be adjacent
to vertices of M, (A(b)) U Xa@). Also, by b € Z we obtain A(b+ 1) >
(b4 1),4¢ > bright, so the vertices of ¢(L,(a,b)) will not be adjacent to
vertices of M;T(A(b+1)) U X A@pt1)-

It is easy to see that the above construction ensures that vertices of ¢(L, (a1,b1))
and ¢(L,(az,bs)) are neighboring if and only if L, (a1,b1) and L, (ag,bs) are
neighboring. (In particular, it is not possible that some vertex of ¢(M 7 (j)) ends
in jlefr but some vertex of ¢(M:C (7)) starts in jrigns.)

It remains to show that if a,b € [m’] and a < b, then they either match, or
L,(a,b) = 0, or one of the conditions (A) or (B) hold. First, let us show those
cases where a and b match.

(a) If a,b € N, then |L,(a,b)| = |L(aeft, biett)| = |Lr(A(a), A(b))| because
Properties 3 and 9 hold for b in (F,U).

(b) If either a« € N and b € U or vice versa, then |L,/(a,b)| = |L(aieft, biett)| =
|L,(A(a), A(b))|, since Property 10 holds for a and b in (F,U).

(c) Ifa,b € WUY then Lemma 19 for b guarantees | L, (a, b)| = | Ly (@right, bright)|-
Using that aright = A(a) and brighy = A(b) hold if a,b € W UY, this shows
Ly (a,b)| = [Lr(A(a), A(b))]-

(d) If a € U and b € W then |L,/(a,b)| = |Ly(aeft, bright)|, since the conditions
of (iv) in Lemma 21 do not apply. By aiert = A(a) and byighe = A(b), this
means that |L,/(a,b)| = |L,.(A(a), A(D))|.

(e) If a,b € UUY then |L,/(a,b)| = |Lyr(aiets, biete)| = |Lr(A(a), A(D))], as the
conditions of (v) in Lemma 21 do not apply.

Next, we show L,/ (a,b) = () for some a and b with a < b. First, if a € YV
and b € N\ Z, then this holds because (i) of Lemma 21 is not applicable. Also,
L,/(a,b) = 0 must be true if a € N and b € Y, as otherwise (ii) of Lemma 21
would apply. Third, L, (a,b) = 0 if a € N and b € W, since (iii) of Lemma 21
does not apply.

We complete the proof by showing (A) or (B) for all remaining cases.

33

NNz 2w v U
N a — - b
w f ¢ g
y| - h

U b d ¢

Table 2. The cases of the proof for Lemma 22.

(f) If a € W and b € N, then (A) holds, because by Properties 3 and 9 for b in
(F,U), we obtain |L,(a,b)| = | Ly (aiett, biet)|-

(g) Ifa € Wandb € U, then we have | L,/ (a,b)| = | L, (a@eft, biett) |, since Property
10 holds for a in (F,U). Hence, this case also fulfills (A).

(h) If a € Y and b € Z, then |L,/(a,b)| = |Ly(aright, bright)| by (1) and (2) of
Lemma 19 for b. By Gieft = @rignt, (B) holds.

Table 2 shows that we considered every case. Thus, ¢ is an isomorphism from
G’ to an induced subgraph of G, so A can output V(G)\ ¢(V(G")) as a solution.
It is also clear that this takes linear time. ad

5.2 Running time analysis for algorithm A

To analyze the running time of algorithm A, we need to bound the number of
times the algorithm guesses Ig(j) for some index j € [m/]. After each guess, the
algorithm handles each of the resulting branches according to whether j is left-
aligned, right-aligned, skew, or wide. The branches where j is skew or wide can
be handled easily, as A produces an immediate output in these cases. Lemma 18
takes care of the branch where j is left-aligned, yielding a way for A to stop with
an output without any further branches.

Hence, the difficulty is to bound the number of possible guesses to be per-
formed by A in the branch where j is right-aligned. To this end, we will show that
if the algorithm performs a long enough series of such right-aligned branches,
then as a result, it will obtain a proper annotated fragmentation, allowing the
algorithm to produce an output using Lemmas 21 and 22.

To begin, we introduce the following useful definition. Let N(F) denote the
set of non-trivial fragments in F. We define the measure p(F) of a given frag-
mentation F for (T,7",5) as follows:

WF)= > wFFEO+ Y w(FFL).
FEN(F) FEN(F™)
1<¢<9 1<4<9

Note that pu(F) = p(F) is trivial, so reversing a fragmentation does not change
its measure. Recall that F™V is a fragmentation for (T"¢V, 7", S).

34

Lemma 23. Let F1,...,F:, Fry1 be a series a fragmentations such that for each
i € [t] algorithm A obtains F;y1 from F; by applying a right split at an indez j;
violating Property ¢; in F;. Let H; denote the fragment of F; containing j;.

(1) w(Fix1) = p(Fi) for each i € [t]. If €; # 8, then p(Fiv1) > pw(F;) also holds.
(2) If W(F1) = w(Fiy1), then £; = 8 for every i € [t], and H; contains every
indez in H;y1 for each i € [t].

(3) If u(F1) = p(Fiq1), then t < k.

Proof. To prove (1), observe that claims (2) and (3) of Lemma 20 imply directly
that pw(Fit1) > w(F:). Let H] be the non-trivial fragment obtained from H;
after the right split at j;. Now, by the choice of j;, Property ¢; is violated by j;
in F;, but is not violated by any index j’ preceding j; in F;. In all cases where
£; # 8, claim (1) of Lemma 20 implies that the indices preceding j; cannot violate
Property ¢; in Fyy1, yielding #n(F;, H;, ¢;) = 0 but «(F;, H.,¢;) = 1. Considering
claims (2) and (3) of Lemma 20 again, (1) follows.

Observe that if u(F1) = u(F), then ¢; = 8 for every i € [t] follows directly
from the above discussion. Suppose that H; is a counterexample for (2), meaning
that H; does not contain the indices of H;;1. Since F;11 is obtained from F; by
a right split, this can only happen if H;;; is a non-trivial fragment of F; different
from H;. Recall that a fragment B contains some index violating Property 8, if
and only if R(A, B) # 0 holds for some fragment A in the fragmentation. Hence,
71'(.7:;417 Hi+17 8) =0 implies W(fi, Hi+17 8) =0.

Since the algorithm always chooses the first index violating some property
to branch on, j; must be the smallest index that is LR-critical for some pair of
fragments in F;. Therefore, H; must precede H;;1. But now, the choice of j;11
indicates m(F;t+1, H,8) = 1, where H! is the non-trivial fragment of F;;1 ob-
tained by splitting H; at j; in F;. Together with 7(F;, H;,8) = 0 and statements
(2) and (3) of Lemma 20, this shows u(F;y1) > u(F;), a contradiction.

To prove (3), note that by the claim proven above, H; € F; contains every
ji- Let P denote the set of non-trivial fragments in F; preceding H. By the con-
struction of the fragmentations F;, each fragment in P is a non-trivial fragment
of F; as well, preceding H;. We denote by Pr ; those fragments F' in P for which
R(F, H;) # (holds in F;. Since j; is LR-critical for some pair of fragments in
Fi, we get Pr; # 0 for any i € [t]. Note also Pr ;+1 C Pr.;.

For some F € Pr, then we define d'(F) as follows. If £L(F,H;) = 0 in
F;, then let yF be the first index contained in F' minus one, otherwise let yF
have the value of L™®(F, H;) in F;. Also, let y be the value of R™"(F, H;) in
Fi. We set d'(F) = yiR — ylL Let A € Pr,i+1 N Pr,; be a non-trivial fragment
such that j; is LR-critical for (A, H;). We show d*t1(A) > d'(A). First note
that neither L™ (A, H; 1) > L™®(A, H;) nor R™"(A, H; 1) < R™n(A, H;) is
possible, since L(A, H;+1) C L(A, H;) and R(A, Hi+1) € R(A, H;) always hold.
This implies yiL_,_1 <yl and yﬁ_l >yl

Clearly, j; is either L-critical or R-critical for (A, H;). First, let us assume
that j; is L-critical for (A, H;). Observe that the definition of L-criticality implies
that for any vertex v starting at L™*(A, H;) and contained in £(A, H;) in F;,
we know Qii,ght(v) > j;. Since F;41 is obtained by performing the right split at

35

Ji, every index of H;41 precedes j;, implying that such a v cannot be contained in
L(A,Hiy1) in Fiqq. Thus, L™*(A, H; 1) # L™**(A, H;), from which yiLJr1 <yt
follows. Therefore, we have d"F1(A) > d'(A).

Second, let us assume that j; is R-critical for (A, H;). By the definition of R-
criticality, for any vertex v starting at R™"(A, H;) and contained in R(A, H;) in
Fi, we know Q?,ght (v) > j;. Again, we know that every index of H, 11 precedes j;.
From this, we have that v cannot be contained in R(A, H;y1) in Fi41, implying
yf | > yft. Therefore, we have d'™'(A) > d’(A) in this case as well.

Now, we claim that 1 < d*(A) < o(A) for any A € Pr;. First, it is clear
that for any ¢ < 8, Property ¢ holds for each index both in F; and in the
reversed fragmentation F;°V, as otherwise the algorithm would branch on an
index violating Property ¢. Thus, L™*(A, H;) > R™"(A, H;) cannot happen,
as this would mean that there is a conflict-inducing index in H; for (A, H;),
violating Property 7. This directly implies 1 < d?(A).

On the other hand, assume d*(A) = yZ — y* > o(A). This implies that
h =y — o(A) is contained in A, but no vertx of L(A, H;) UR(A, H;) starts
in h. However, by Properties 3 and 5 for y?, we know that some vertex in
M ((yE) 1) = M, (heignt) ends in H;. Using these properties for h™V in the
reversed instance, we obtain that some arc v in M7} (h) must also end in H;.
By Property 5 for h, v must be contained in one of the sets L(A, H;), R(A, H;),
X (A, H;). But y- < h < yE, so we obtain v € X (A, H;). Therefore, some position
in H; violates Property 6, a contradiction. This proves 1 < d’(A) < o(A).

Now, observe that for any i € [t], j; is LR-critical for some (A, H;) with
A€ Pr; If A€ Pr i1 as well, then d'T!(A) > d*(A4). By our bounds on d*(A),
this yields that there can be at most o(A) indices i where j; is LR-critical for
(A, H;). (Here we also used that d*(A) cannot decrease.) This clearly implies
t <> pepo(F)=06(Hy).

To finish the proof, we show §(H1) < k. Let b’ be the last index preceding the
indices in Hy, and let b = b’ + §(H;). Recall that ¢s(BJ(1,V)) = B;F(1,b) \ S
by Prop. 15. Using that Properties 1 and 3 hold for every index in [m'] and that
B (i) # 0 by Lemma 2 for any i € [m], we obtain

U B;r (jleft)

1<5<b!

[BS(L,0)|+k > |Bf(1,b)| =

+ ‘ U B (i)
1<i<b,
i {Jlor: 1< <"}
> BELY) + S o(F) = [BE(LY)] + 6(H).
FeP
This shows k > §(H1), proving the lemma. a

Now, we can state the key properties of algorithm A, which prove Theorem 4.

Lemma 24. Given an input (G',G) where |V(G')| = n and |V(G)| = n + k,
algorithm A either produces a reduced input in O(n) time, or branches into at
most f(k) directions for some function f such that in each branch it either cor-
rectly refuses the instance, or outputs an independent subproblem or a mecessary
set of size at most 2k + 1. Moreover, each branch takes O(n) time.

36

Proof. Let us overview the steps of algorithm A. First, it tries to apply the
reduction rules described in Sect. 4.2. In this phase, it either outputs a reduced
input in linear time, or it may branch into at most (4k+1)2%(k(7k/2+8)+1) =
20(K) branches. In each branch it either correctly rejects, outputs a necessary
set of size at most 2, or outputs an independent subproblem having parameter
at most k — 1 but at least 1. These steps can be done in linear time, as argued
in Sect. 4.2.

If none of the reductions in Sect. 4.2 can be applied, then A first checks
whether a reduced input can be output by using Lemma 13. If not, then it
branches into 3 directions, according to whether S is local, and if not, whether
the children of 7’ should be reversed to achieve the properties of Lemma 12.
In the first branch, it outputs a necessary set of size at most 2. In the other
two branches, it checks whether the annotated fragmentation AFy produced in
the beginning is proper. While the annotated fragmentation is not proper, A
chooses the smallest ¢ and the smallest index j violating Property ¢ (maybe in
the reversed instance), and branches into at most 2(k + 1) — 1 directions. In
these branches, A either modifies the actual annotated fragmentation or stops
by outputting an independent subproblem, a necessary set of size at most 2k+1,
or rejecting.

Let us consider a sequence of ¢ such branchings performed by A, and let
AFy, AFy, ..., AF; be the sequence of annotated fragmentations produced in this
process. (We interpret these as annotated fragmentations for (7,7, S) and not
for (TV, T, S), even though in some of these steps the algorithm might have
considered the violation of a given property in the reversed instance.) Let us call
a continuous subsequence S of AFy, AFy,..., AF; a segment, if each annotated
fragmentation in S has the same number of non-trivial fragments, and S is maxi-
mal with respect to this property. By Lemma 16, the algorithm can reject if there
are more than 2k non-trivial fragments in a fragmentation, so AFy, AF, ..., AF;
can contain at most 2k segments. Let S = AFy,, AFy, +1,..., AF}, be such a seg-
ment. Clearly, each AF}, (t1 < h < t2) is obtained from AF},_; by performing a
right split either in the original or in the reversed instance (the latter meaning
that AFE®Y is obtained from AF;®, by a right split).

Let AF}, be the first 9-proper annotated fragmentation in the segment. Us-
ing Lemma 23, each subsequence of AFy,, ..., AF, where the measure does not
increase can have length at most k. (The measure of an annotated fragmen-
tation is the measure of its fragmentation.) By (2) of Lemma 23, AF;, has a
non-trivial fragment containing each of those indices for which the algorithm
performed a branching (because of Property 8) in some AF},, t; < h < p. Taking
into account that the number of non-trivial fragments cannot exceed 2k, but
branchings can also happen in the reversed instance, we obtain that there can
be at most 4k maximal subsequences in AF}, ..., AF, of length at least 2 where
the measure is constant. Using Lemma 16, we get that p(AF,) < 36k, implying
p <ty + 4k% + 36k.

Clearly, A obtains AF, 1, AFpio,..., AF;, while trying to ensure Property
10, by performing right splits in the original instance. Observe that if A obtains

37

AF, (p+1 < h < t9) by applying a right split at j, then by the choice of j,
Property 10 holds for each index 5/ < j in any AF}, where h' > h. This, together
with Lemma 16 implies that A can perform at most 2k such branchings, implying
that to < p + 2k < t; + 4k? + 38k. Altogether, this implies ¢ < 2k(4k? + 38k),
proving that the maximum length of a sequence of branchings performed by A in
order to obtain a proper annotated fragmentation can be at most 8k3 + 76k2 =
O(k3).

Essentially, this means that the search tree that A investigates has height at
most O(k3). Since one branching results in at most 2(k + 1)? — 1 directions, we
obtain that the total number of resulting branches in a run of algorithm A can
be bounded by a function f of k. In each of these branches, if A does not stop,
then it has a proper annotated fragmentation (F,U). After this, algorithm .4
does not perform any more branchings. Instead, it applies Lemma 21 repeatedly.
If the algorithm reaches a state where Lemma 21 does not apply, then it outputs
a solution in linear time using Lemma 22.

It is easy to verify that each branch can be performed in linear time. The
only non-trivial task is to show that the repeated application of Lemma 21 can
be implemented in linear time, but this easily follows from the fact that none of
the conditions of Lemma 21 can be applied twice for a block [a, b]. a

5.3 The proof of Lemma 18

In this section we prove Lemma 18. Suppose that Property ¢ (1 < ¢ < 10)
does not hold for some j € [m'] in the annotated fragmentation (F,U), but all
the previous properties hold for each index both in (F,U) and in (F*V,U*V).
Suppose also that j is left-aligned, i.e. Is(j) = [Jiett, Jiett]. Below we describe the
detailed steps of algorithm A depending on the property that is violated by j.
Property 1: G'[X]] is isomorphic to G[Xj,,].
If j violates Property 1, then G'[X7] is not isomorphic to G[X},,,], which implies
SNXjo, # 0. From Is(j) = [Jiefs, Jiete] we obtain that SN.X;,_,, must be a solution
for (G'[X}], G[Xj,,]). Conversely, if (G',G) is solvable, then any solution for
(G'[X}], G[Xj,]) can be extended to a solution for (G', G). By m > m', G- X},
cannot be isomorphic to G' — X7, so S C X, . is not possible. Therefore, if the
parameter of (G'[X}], G[Xj,,]) is more than k — 1 (or less than 1), then the
algorithm can refuse the instance. Thus, A can either reject, or it can output
the independent subproblem (G'[X}], G[Xj.,])-

Property 2: [MY(j)| < [M (jierr)| < [M5(j)] + k and [M(j)] <
| M~ (ree)] < IM(5)] + k.

By Is(j5) = [jieft, jlett] and Prop. 15(iii), we can observe that M (jie;) \ S =
s(M7(5)) and M~ (jiegs) \ S = ¢ds(M (5)). If j violates Property 2, then this
contradicts |S| < k, and thus algorithm A can reject.

Lemma 25 below identifies certain instances that the algorithm can reject,
provided that Properties 1 and 2 hold.

38

Lemma 25. If Properties 1 and 2 hold for each index both in (F,U) and in
(Frev,U™v), and there is an index h € [m'] contained in a non-trivial fragment
F such that M5 (h)| > k or |M, (h)| > k, then there is no solution for (G',G).

Proof. As Property 2 holds for each index in F = ([, V], [a,d]), |MY(j)] <
| M} (jiet)| holds for each j € [m/]. Similarly, as Property 2 holds for each index
in the reversed instance, we obtain that [M7(5)| < |M;* (jrignt)| must hold for
each j € [m/]. Supposing [M7 (k)| > k, we get

STIMFI@ = Y IMGew) + D> IMF (e + A+ D> M (Grigne)|
a<i<b a’<j<h 0<d<o(F) h<j<b’

IMEM)+ D IMEG > k+ Y IMEG).

a’ <j<b’ a’<j<b!

Y

Observe that we used o(F) > 0 in the first inequality.

Claim (iv) of Prop. 15 yields ¢g(B(a’,t')) = B;(a,b) \ S, from which
|Bf (a,b)| < |BY(a',b))| + k follows. Using that Property 1 holds for each in-
dex, we also have |X}| = [Xj,,| for each j € [m], implying >_, ;< |Xi| >
2w <j<p |X;|- Hence, we obtain

dAME@GI< D IMIG) +k,

a<i<b a’ <<V

contradicting the above inequality. The case |M_ (k)| > k can be handled in the
same way. O

Property 3: If j is non-trivial, then | MY ()| = |M," (jiegs)| and | M (5)| =
[M (et)|

By Is(j) = [fiefts Jiets] and Prop. 15, we get M (jiegs) \ S = ¢s(MF(5)) and
M (jiete) \ S = ¢s(M; (7). Clearly, if |M¥ (jiere)| < [MS(5)] or [M; (iete)| <
| M (4)], then algorithm A can reject. If this is not the case, then S must contain
at least one vertex from M} (jiest) or M, (jleft), because j violates Property 3.
If [M}(4)] > k or M (j)| > k, then A can reject as well, by Lemma 25. Thus,
if A does not reject, then it can output a necessary set of size at most k + 1
in both cases, by taking [M7(j)| + 1 or |[M(j)| + 1 arbitrary vertices from
M (free) or M~ (Jiefs), respectively.

Property 4: If j is non-trivial, then |L,/(y,)| = |Ly(yieft, Jleft)| for any
y < j contained in the same fragment as j.

Suppose that |L, (y,7)| # |Lr(Yiets, Jiett)| for some y < j contained in the same
fragment that contains j. Since j is left-aligned, we get that y must also be
left-aligned as well by y < j, i.e. Is(y) = [Yiett, Yiefs]. By Prop. 15, this implies
Ly (y1ett, Jrete) \ S = ¢s(Li(y,). Thus, if [Lys(y,5)] > [Lr(Yuett, flefs)| then A
can reject. Otherwise, L, (Yieft, Jleft) contains at least one vertex from S. Since
each vertex in L, (yiett, jleft) has the same neighborhood, A can output {s} as a
necessary set for some arbitrarily chosen s in L, (Yiett, Jieft)-

39

Properj:y 5: If j is non-trivial, then for every (v,w) € Pl:& (j) such
that QUE"(v) = y is non-trivial, Yierr < QUEM (w) < yyigns holds. Also,
for every (v,w) € Py (j) such that Q" (v) = y is non-trivial, yier <
Q™ (w) < rigne holds.

Suppose that j violates Property 5, because (v, w) € P, (j) such that Qf,ght (v) =
y is non-trivial, but yer < QHEM (w) < Yright does not hold. We show that A
can reject in this case. As Property 3 holds for j, M1 (j)| = |M," (jiert)|. As
J is left-aligned, ¢g(v) = w by Lemma 17. But from this, Prop. 15 implies
as(y) < Q™ (w) < Bs(y). By Prop. 15 we know yiers < as(y) < Bs(y) < Yrighs
as well. Therefore, A can indeed refuse the instance. Supposing that Property
5 does not hold because of the case where some (v, w) € P (j) is considered
leads to the same result, so it is straightforward to verify that A can reject in
both cases.
The observation below, used in the forthcoming three cases, is easy to see:

Proposition 26. Suppose that the first five properties hold for a given (anno-
tated) fragmentation. Let y and j be indices of [m'] contained in non-trivial
fragments F and H, respectively, and suppose that j is left-aligned. Then v €
L, (y,7) implies the followings.

(1)ve L(F,HYUR(F,H)UX(F,H).

(2) If v e L(F,H), then as(y) = Yiefs-

(3) If v € R(F, H), then Bs(y) = Yright -

(4) If v € X(F, H), then y is either wide or skew.

Property 6: If j is non-trivial, then no vertex in X(F, H) (for some F
and H) ends in j.

Suppose that Property 6 does not hold for j, so there is a vertex in L, (y,j) N
X(F,H) for some y < j. As j is left-aligned, Prop. 26 implies that y is either
wide or skew.

Property 7: j is not conflict-inducing for any (F, H).

Suppose that j violates Property 7 because it is conflict-inducing for some (F, H)
and for some conflicting pair of indices (y1,y2). Let j1 be the minimal index for
which L, (y1,71) N R(F,H) # (, and let jo be the minimal index for which
L,/ (y2,72) N L(F,H) # 0. Since j > max{j1,J2}, and j is left-aligned, we know
that both j; and jy are left-aligned as well. By Prop. 26, this implies 8s(y1) =
Yiright and as(y2) = Y21eg- If Y1 < Y2, then this yields a contradiction by Prop.
15, so A can reject. In the case where y1 = y2 = y, we get Is(y) = [Yiett, Yright],
and since y is non-trivial, algorithm A can output y as a wide index.
For the case of Property 8, we need the following simple lemma:

Lemma 27. Suppose that a fragmentation for (T,T',S) contains a fragment
F = ([¢/,V],[a,b]) with 0 < b —da' < o(F), and Properties 1-4 hold for each
index contained in F both in the given fragmentation and its reversed version.
Then A can produce a necessary set of size at most 2k + 1.

40

Proof. Since Properties 1 and 3 hold for each index contained in F, we ob-
tain |B,(a/,V')] = | B (a'1eft, V1eft)|- Using Prop. 15 we have B;f(a,b) \ S =
¢s(Bf(a’, V). Lemma 2 yields B,(j) # 0 for any j, so we get |B;(a,b)| >
|BY(a’,)|. Hence, fixing an arbitrary set N C B;"(a,b) of size |B/,(a/,V')| + 1,
we get that N is a nonempty necessary set. We claim |B,(a/,¥’)| < 2k, which
implies |N| < 2k + 1. Thus, A can indeed output N, proving the lemma.

It remains to show |B,(a/,V')| < 2k. Recall | B} (a’,b)| = |B;f (a'1ett, Vet |-
As Properties 1 and 3 hold for each index contained in F™V in the reversed
fragmentation, we get |B:r,(a’, V)| = |B;f (¢ vight U right)| as well. Using a’yight —
Viett = @’ — b + o(F) > 0, we obtain that B;f (a/ieft, b'1eft) N B, (@’ vight V' vight) C
B (b 161). Moreover, if b —a’ < o(F) also holds, then actually B, (a/1ett, b'10tt) N
B;r (a/right; b/right) =0.

By the above paragraph, b’ —a’ < o(F) implies | B (a,b)| > 2|B,(a/,V')], so
we get | B (a/,t')| < k. On the other hand, ' —a’ = o(F) yields | B (a/, V)| +k >
|Bf (a,b)| > 2|BY(a, V)| — | B}t (Viett)], implying | B (a’,0')| < k + | B (V1ett) |-
Taking into account that | B} (a’)| = |Bjf (t1ert)| = | B (0')| holds by Properties
1 and 3 for b and for a’**¥, we have |BY (a’,0')| > 2| B} (Vletr)|. Summarizing all
these, | B (a’, V)| < 2k follows. O

Property 8: j is not LR-critical for any (F, H).

Suppose that j violates Property 8, so j is LR~critical for some (F, H). In this
case, R™"(F, H) = y is an index contained in F. Since j is left-aligned, the
R-critical index for (F, H) is also left-aligned, hence Prop. 26 yields 3s(y%?) =
Y igne- Let F' = ([a’, 0], [a, b))

First, if y® < o’ + o(F), then we apply Lemma 27 as follows. Clearly, by
Bs(yf) = eright we can perform a right split at y*. The obtained fragmentation
will contain the fragment F' = ([a’, y"], [a 1t ¥ rigni)); S0 ™ —a' < o(F) =
o(F’") shows that A can produce a necessary set of size at most 2k + 1 by using
Lemma 27.

Now, suppose y* > a’ +o(F). In this case, there is an index ¢ in F' for which
tright = leeft. By Properties 3 and 5 for yR7 we know that there is a vertex in
MF(y®) that ends in the fragment H. Using Properties 3 and 5 again for #*¢V
in the reversed instance, we know that there must be a vertex v in M7 (t) that
ends in the fragment H. By Prop. 26, v € L(F, H)UR(F, H)UX(F, H). Observe
that v ¢ X(F, H), as Property 6 holds for every index in [m/]. Also, v ¢ R(F, H)
by the definition of yf* = R™(F, H). Thus, we know that v € £(F, H), implying

yt = L™aX(F, H) >t as well. As Property 7 holds for each index, we also have
L

y* <y

To finish the case, observe that since j is left-aligned and LR-critical for
(F,H), Prop. 26 yields as(y”) = y"iq. Using Bs(y™) = y"gne again, we
can produce a fragmentation for (7,7”,S) that contains the fragment F' =
(W™, ¥"™), " eti> ¥ signe))- (This can be thought of as performing a right split
at y®, and a right split at (y©)™" in the reversed instance.) Hence, yf* — y& <
y® —t = o(F) = o(F’) shows that A can produce a necessary set of size at
most 2k + 1 by using Lemma 27.

41

Propeljty 9: If j is non-trivial, then for every (v,w) € P, (j) such
that Q?,ght (v) = y is non-trivial, Qf}ght (w) = Yler holds. Also, for every
(v,w) € P (4) such that Q$(v) = y is non-trivial, QM (w) = yies
holds.

Observe that if Property 9 does not hold for an index j, then by Prop. 26,
either M (j) or M, (j) contains a vertex in R(F, H)UX(F, H) for some (F, H).
But this means that one of Properties 6 and 8 must be violated, which is a
contradiction. Thus, A can correctly reject.

Property 10: If j is non-trivial, then for each important trivial index
u € U, |Ly(j,u)] = |Lr(fieft, wett)| holds if w > j, and |L,v(u,j)| =
| Ly (wieft, Jieft)| holds if u < j.

Suppose that j violates Property 10, because |L,/(j,u)| # |Ly(Jieft, wett)| for
some u > j. (The case when u < j can be handled in the same way.) Since
u is contained in a trivial fragment, Is(u) = [Ujeft, Uiest]. Thus, by Is(j) =
[Jieft, Jlefe] and Prop. 15, we get Ly (Jiefe, Utett) \ S = ¢s (L (4,w)). If | Ly (4, u)| >
| Ly (Jiett, Wiett)|, then A can reject the instance. Otherwise, we can argue as
before that {s} is a necessary set for any s € L, (jioft, Wett)-

References

1. H. L. Bodlaender. Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees. J. Algorithms, 11(4):631-643, 1990.

2. K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval
graphs, and planarity using PQ-tree algorithms. J. Comput. Syst. Sci., 13:335-379,
1976.

3. L. Cai, S. M. Chan, and S. O. Chan. Random separation: A new method for solving
fixed-cardinality optimization problems. In IWPEC 2006: Proceedings of the 2nd
International Workshop on Parameterized and Ezxact Computation, volume 4169
of Lecture Notes in Computer Science, pages 239-250. Springer, 2006.

4. C. J. Colbourn. On testing isomorphism of permutation graphs. Networks, 11:13—
21, 1981.

5. C. J. Colbourn and K. S. Booth. Linear time automorphism algorithms for trees,
interval graphs, and planar graphs. SIAM J. Comput., 10(1):203-225, 1981.

6. J. Diaz and D. M. Thilikos. Fast FPT-algorithms for cleaning grids. In STACS
2006: Proceedings of the 23rd Annual Symposium on Theoretical Aspects of Com-
puter Science, volume 3884 of Lecture Notes in Computer Science, pages 361-371.
Springer, 2006.

7. Y. Dinitz, A. Itai, and M. Rodeh. On an algorithm of Zemlyachenko for subtree
isomorphism. Inf. Process. Lett., 70(3):141-146, 1999.

8. R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer-Verlag, New York, 1999.

9. D. Eppstein. Subgraph isomorphism in planar graphs and related problems. J.
Graph Algorithms Appl., 3(3):1-27, 1999.

42

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

I. S. Filotti and J. N. Mayer. A polynomial-time algorithm for determining the
isomorphism of graphs of fixed genus (working paper). In STOC 1980: Proceedings
of the 12th Annual ACM Symposium on Theory of Computing, pages 236-243.
ACM, 1980.

J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer-Verlag, New York, 2006.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, 1979. A Series of
Books in the Mathematical Sciences.

P. C. Gilmore and A. J. Hoffman. A characterization of comparability graphs and
of interval graphs. Canad. J. Math., 16:539-548, 1964.

M. Hajiaghayi and N. Nishimura. Subgraph isomorphism, log-bounded fragmenta-
tion, and graphs of (locally) bounded treewidth. J. Comput. Syst. Sci., 73(5):755—
768, 2007.

A. Lingas. Subgraph isomorphism for biconnected outerplanar graphs in cubic
time. Theor. Comput. Sci., 63(3):295-302, 1989.

G. S. Lueker and K. S. Booth. A linear time algorithm for deciding interval graph
isomorphism. J. ACM, 26(2):183-195, 1979.

E. M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial
time. J. Comput. Syst. Sci., 25(1):42-65, 1982.

D. Marx and 1. Schlotter. Parameterized graph cleaning problems. In WG 2008:
84nd International Workshop on Graph-Theoretic Concepts in Computer Science,
volume 5344 of Lecture Notes in Computer Science, pages 287-299, Berlin, 2008.
Springer.

D. W. Matula. Subtree isomorphism in o(n5/2). Ann. Discrete Math., 2:91-106,
1978.

G. L. Miller. Isomorphism testing for graphs of bounded genus. In STOC 1980:
Proceedings of the 12th Annual ACM Symposium on Theory of Computing, pages
225-235. ACM, 1980.

V. N. Zemlyachenko. Canonical numbering of trees. In Proc. Seminar on Comb.
Anal. at Moscow State University, 1970. (In Russian).

V. N. Zemlyachenko. Determining tree isomorphism. In Voprosy Kibernetiki, Proc.
of the Seminar on Combinatorial Mathematics, Moscow, 1971, pages 54-60. Akad.
Nauk SSSR, Scientific Council on the Complex Problem ”Cybernetics”, 1973. (In
Russian).

43

