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Theory of Algorithms

Worst-case analysis: guaranteed running time for every input
of size n.
Two main classes:

Polynomial time (O(n), O(n log n), O(n2), . . .)
Exponential time (2n, 2

√
n, . . .)
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Rule of theory
Classical theory focuses on polynomial-time:

But this is only a restricted view of the picture:

We want a tight understanding of all the ideas relevant to a
particular problem.
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A classic tight result

Tight result on the approximability of MAX CUT:

Polynomial-time 0.878-approximation using semidefinite
programming (SDP) on general graphs.
[Goemans and Williamson 1994]

Complexity-theoretic evidence that no polynomial-time
approximation on general graphs with ratio 0.878 + ε.
[Khot et al. 2004]
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Dimensions
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Dimensions
Running time

Polynomial ↔ exponential

Optimality program in parameterized complexity

f (k)nO(1) ↔ nO(k)

Generality
Study of special cases

Complete classification results

Alg1 Alg2

Alg3

Hard1

Hard2
Alg4

Hard3

Hard4Alg5 Alg6

Solution quality
Approximation, PTASs
Parameterized approximation
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Parameterized problems

Main idea
Instead of expressing the running time as a function T (n) of n, we
express it as a function T (n, k) of the input size n and some
parameter k of the input.

In other words: we do not want to be efficient on all inputs of size
n, only for those where k is small.

What can be the parameter k?
The size k of the solution we are looking for.
The maximum degree of the input graph.
The dimension of the point set in the input.
The length of the strings in the input.
The length of clauses in the input Boolean formula.
. . .
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Parameterized complexity

Problem: Vertex Cover Independent Set
Input: Graph G , integer k Graph G , integer k
Question: Is it possible to cover

the edges with k vertices?
Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete

Brute force: O(nk) possibilities O(nk) possibilities

O(2kn2) algorithm No no(k) algorithm
exists known
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Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1
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Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

u1 v1

e2 = u2v2

u2 v2
≤ k

Height of the search tree ≤ k ⇒ at most 2k leaves ⇒ 2k · nO(1)

time algorithm.
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Fixed-parameter tractability

Main definition
A parameterized problem is fixed-parameter tractable (FPT) if
there is an f (k)nc time algorithm for some constant c .

Examples of NP-hard problems that are FPT:
Finding a vertex cover of size k .
Finding a path of length k .
Finding k disjoint triangles.
Drawing the graph in the plane with k edge crossings.
Finding disjoint paths that connect k pairs of points.
. . .
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FPT techniques

Treewidth

Color coding

Iterative compression

Kernelization

Algebraic techniques

Bounded-depth search trees
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W[1]-hardness

Negative evidence similar to NP-completeness. If a problem is
W[1]-hard, then the problem is not FPT unless FPT=W[1].

Some W[1]-hard problems:
Finding a clique/independent set of size k .
Finding a dominating set of size k .
Finding k pairwise disjoint sets.
. . .
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Parameterized complexity

Rod G. Downey
Michael R. Fellows

Parameterized
Complexity

Springer 1999

The study of parameterized complexity was initiated by
Downey and Fellows in the early 90s.
First monograph in 1999.
By now, strong presence in most algorithmic conferences.
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Parameterized Algorithms

Marek Cygan, Fedor V. Fomin,
Lukasz Kowalik, Daniel Lokshtanov,
Dániel Marx, Marcin Pilipczuk,
Michał Pilipczuk, Saket Saurabh

Springer 2015
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Shift of focus

FPT or W[1]-hard?
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Shift of focus

FPT or W[1]-hard?

What is the best possible
multiplier f (k) in the
running time f (k) · nO(1)?

What is the best possible
exponent g(k) in the
running time f (k) · ng(k)?

FPT
W[1]-hard
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n

2k? 1.0001k? 2
√
k? nO(k)? nlog k? nlog log k?
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Better algorithms for Vertex Cover

We have seen a 2k · nO(1) time algorithm.
Easy to improve to, e.g., 1.618k · nO(1).
Current best f (k): 1.2738k · nO(1) [Chen, Kanj, Xia 2010].
Lower bounds?

Is, say, 1.001k · nO(1) time possible?
Is 2k/ log k · nO(1) time possible?

Of course, for all we know, it is possible that P = NP and Vertex
Cover is polynomial-time solvable.

⇒ We can hope only for conditional lower bounds.
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Exponential Time Hypothesis (ETH)
Hypothesis introduced by Impagliazzo, Paturi, and Zane:

Exponential Time Hypothesis (ETH) [consequence of]

There is no 2o(n)-time algorithm for n-variable 3SAT.

Note: current best algorithm is 1.30704n [Hertli 2011].

Note: an n-variable 3SAT formula can have m = Ω(n3) clauses.

Are there algorithms that are subexponential in the size n + m of
the 3SAT formula?

Sparsification Lemma [Impagliazzo, Paturi, Zane 2001]

There is a 2o(n)-time algorithm for n-variable 3SAT.
m

There is a 2o(n+m)-time algorithm for n-variable m-clause 3SAT.
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Lower bounds based on ETH

Exponential Time Hypothesis (ETH)

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

The textbook reduction from 3SAT to Vertex Cover:

3SAT formula φ
n variables
m clauses

⇒
Graph G

O(n + m) vertices
O(n + m) edges

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4

Corollary

Assuming ETH, there is no 2o(n) algorithm for Vertex Cover on
an n-vertex graph G .
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Graph G

O(n + m) vertices
O(n + m) edges

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4

Corollary

Assuming ETH, there is no 2o(k) · nO(1) algorithm for Vertex
Cover on an n-vertex graph G .

18



Other problems
There are polytime reductions from 3SAT to many problems such
that the reduction creates a graph with O(n + m) vertices/edges.

Consequence: Assuming ETH, the following problems cannot be
solved in time 2o(n) and hence in time 2o(k) · nO(1) (but
2O(k) · nO(1) time algorithms are known):

Vertex Cover

Longest Cycle

Feedback Vertex Set

Multiway Cut

Odd Cycle Transversal

Steiner Tree

. . .

Seems to be the natural behavior of FPT problems?
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The race for better FPT algorithms

Single exponential Subexponential

Double
exponential

"Slightly super-
exponential"

Tower of
exponentials
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Edge Clique Cover

Edge Clique Cover: Given a graph G and an integer k , cover
the edges of G with at most k cliques.

(the cliques need not be edge disjoint)

Equivalently: can G be represented as an intersection graph over a
k element universe?
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(the cliques need not be edge disjoint)

Equivalently: can G be represented as an intersection graph over a
k element universe?

6 cliques
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Edge Clique Cover

Edge Clique Cover: Given a graph G and an integer k , cover
the edges of G with at most k cliques.

(the cliques need not be edge disjoint)

Equivalently: can G be represented as an intersection graph over a
k element universe?
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Edge Clique Cover

Edge Clique Cover: Given a graph G and an integer k , cover
the edges of G with at most k cliques.

(the cliques need not be edge disjoint)

Simple algorithm (sketch)
If two adjacent vertices have the same neighborhood (“twins”),
then remove one of them.
If there are no twins and isolated vertices, then |V (G )| > 2k

implies that there is no solution.
Use brute force.

Running time: 22O(k) ·nO(1) — double exponential dependence on k!
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Edge Clique Cover

Edge Clique Cover: Given a graph G and an integer k , cover
the edges of G with at most k cliques.

(the cliques need not be edge disjoint)

Double-exponential dependence on k cannot be avoided!

Theorem [Cygan, Pilipczuk, Pilipczuk 2013]

Assuming ETH, there is no 22o(k) · nO(1) time algorithm for Edge
Clique Cover.

Proof: Reduce an n-variable 3SAT instance into an instance of
Edge Clique Cover with k = O(log n).
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Slightly superexponential algorithms

Running time of the form 2O(k log k) · nO(1) appear naturally in
parameterized algorithms usually because of one of two reasons:

1 Branching into k directions at most k times explores a search
tree of size kk = 2O(k log k).

2 Trying k! = 2O(k log k) permutations of k elements (or
partitions, matchings, . . .)

Can we avoid these steps and obtain 2O(k) · nO(1) time algorithms?
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Slightly superexponential algorithms
The improvement to 2O(k) often required significant new ideas:

k-Path:

2O(k log k) · nO(1) using representative sets [Monien 1985]
⇓

2O(k) · nO(1) using color coding [Alon, Yuster, Zwick 1995]

Feedback Vertex Set:

2O(k log k) · nO(1) using k-way branching [Downey and Fellows 1995]
⇓

2O(k) · nO(1) using iterative compression [Guo et al. 2005]

Planar Subgraph Isomorphism:

2O(k log k) · nO(1) using tree decompositions [Eppstein et al. 1995]
⇓

2O(k) · nO(1) using sphere cut decompositions [Dorn 2010]
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Closest String
Closest String
Given strings s1, . . . , sk of length L over alphabet Σ, and an
integer d , find a string s (of length L) such that Hamming distance
d(s, si ) ≤ d for every 1 ≤ i ≤ k .

s1 C B D C C A C B B
s2 A B D B C A B D B
s3 C D D B A C C B D
s4 D D A B A C C B D
s5 A C D B D D C B C

Theorem [Gramm, Niedermeier, Rossmanith 2003]

Closest String can be solved in time 2O(d log d) · nO(1).

Theorem [Lokshtanov, M., Saurabh 2011]

Assuming ETH, Closest String has no 2o(d log d)nO(1) algorithm.
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The race for better FPT algorithms

Single exponential Subexponential

Double
exponential

"Slightly super-
exponential"

Tower of
exponentials
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Subexponential parameterized algorithms
There are two main domains where subexponential parameterized
algorithms appear:

1 Some graph modification problems:
Chordal Completion [Fomin and Villanger 2013]
Interval Completion [Bliznets et al. 2016]
Unit Interval Completion [Bliznets et al. 2015]
Feedback Arc Set in Tournaments [Alon et al. 2009]

2 “Square root phenomenon” for planar graphs and geometric
objects: most NP-hard problems are easier and usually exactly
by a square root factor.

Planar graphs Geometric objects
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Square root phenomenon for planar graphs

NP-hard problems become easier on planar graphs
and usually exactly by a square root factor.

The running time is still exponential, but significantly smaller:

2O(n) ⇒ 2O(
√
n)

nO(k) ⇒ nO(
√
k)

2O(k) · nO(1) ⇒ 2O(
√
k) · nO(1)

3-Coloring, Independent Set, Vertex Cover,
Dominating Set, Hamiltonian Cycle, k-Path, . . .
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Other planar subexponential algorithms
Many other result were obtained using problem-specific techniques:

Subgraph Isomorphism
for connected bounded-degree patterns [Fomin et al. 2016]

Subset TSP [Klein and M. 2014]

Directed Subset TSP [M., Pilipczuk, Pilipczuk 2018]

Bipartite Deletion [Lokshtanov, Saurabh, Wahlström 2012]

A recent negative result:

Steiner Tree with k terminals
can be solved in time 2O(k) · nO(1) in general graphs,
[Dreyfus and Wagner 1971]

cannot be solved in time 2o(k) · nO(1) in planar undirected
graphs (assuming the ETH).
[M., Pilipczuk, Pilipczuk 2018]
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Shift of focus

FPT or W[1]-hard?

What is the best possible
multiplier f (k) in the
running time f (k) · nO(1)?

What is the best possible
exponent g(k) in the
running time f (k) · ng(k)?

FPT
W[1]-hard
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Better algorithms for W[1]-hard problems

O(nk) algorithm for k-Clique by brute force.
O(n0.79k) algorithms using fast matrix
multiplication.
W[1]-hardness of k-Clique gives evidence
that there is no f (k) · nO(1) time algorithm.
But what about improvements of the
exponent O(k)?

n
√
k

nk/log log k
nlog k

n
√
k

22k · nlog log log k

Theorem [Chen et al. 2004]

Assuming ETH, k-Clique has no f (k) · no(k) time algorithm for
any computable function f .
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Better algorithms for W[1]-hard problems

O(nk) algorithm for Dominating Set by
brute force.
W[1]-hardness of Dominating Set gives
evidence that there is no f (k) · nO(1) time
algorithm.
But what about improvements of the
exponent O(k)?

n
√
k

nk/log log k
n0.01k

22k · n0.99k

nlog log log k

Theorem [Pătraşcu and Williams 2010]

Assuming SETH, Dominating Set has no f (k) · nk−ε time
algorithm for any ε > 0 and computable function f .
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Dimensions

32



From general to special

A major theme in the theoretical literature: consider restricted
versions of hard problems.

Restriction to graph classes of practical or theoretical interest.
Restricting the number of special objects.
Restricted type of constraints.
. . .

More restricted
problem

⇒ More possibility
for algorithmic

ideas
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From general to special

A major theme in the theoretical literature: consider restricted
versions of hard problems.

Restriction to graph classes of practical or theoretical interest.
Restricting the number of special objects.
Restricted type of constraints.
. . .

Find every relevant algorithmic idea by exploring
every possible tractable restriction.
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Mapping the complexity landscape

Alg1

Alg2

Alg3

Hard1

Hard2

From partial results. . .
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Mapping the complexity landscape

Alg1 Alg2

Alg3

Hard1

Hard2
Alg4

Hard3

Hard4Alg5 Alg6

. . .to a complete dichotomy.

Goal:
A complete classification explaining the complexity of every
restricted problem by a few algorithms and hardness results.
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Finding patterns
Basic problem: find/count/pack/cover
occurrences of a specific fixed pattern in a graph.
[graph transformations, chemical structures, pattern
recognition, protein-protein interactions. . .]

Some patterns
are easy to
handle. . . ? ?

Some patterns
are hard to
handle. . .

Goal:
Classify the complexity for all types of patterns and discover all the
relevant algorithmic techniques.
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Factor problems
Perfect Matching
Input: n-vertex graph G .
Task: find n/2 vertex-disjoint edges.

Polynomial-time solvable [Edmonds 1961].

Triangle Factor
Input: n-vertex graph G .
Task: find n/3 vertex-disjoint triangles.

NP-complete [Karp 1975]
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Factor problems

H-factor
Input: n-vertex graph G .
Task: find n/|V (H)| vertex-disjoint copies of H in G .

Polynomial-time solvable for H = K2 and NP-hard for H = K3.

Which graphs H make H-factor easy and which graphs make it
hard?

Theorem [Kirkpatrick and Hell 1978]

H-factor is NP-hard for every connected graph H with at least 3
vertices.
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Factor problems

Instead of publishing

Kirkpatrick and Hell: NP-completeness of packing cycles. 1978.
Kirkpatrick and Hell: NP-completeness of packing trees. 1979.
Kirkpatrick and Hell: NP-completeness of packing stars. 1980.
Kirkpatrick and Hell: NP-completeness of packing wheels. 1981.
Kirkpatrick and Hell: NP-completeness of packing Petersen graphs. 1982.
Kirkpatrick and Hell: NP-completeness of packing Starfish graphs. 1983.
Kirkpatrick and Hell: NP-completeness of packing Jaws. 1984.

...

they only published

Kirkpatrick and Hell: On the Completeness of a Generalized
Matching Problem. 1978
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Counting patterns

#H-Subgraph
Input: n-vertex graph G .
Task: count the number of copies of H in G as subgraph.

Which pattern graphs H make this problem polynomial-time
solvable?

Trivial answer: Polynomial-time solvable for every fixed H with k
vertices in nO(k) time.

Better questions:
What classes of patterns are easy?
What is the exact exponent of n for a given H?
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Counting patterns

Main question
Which type of subgraph patterns are easy to count?

biclique clique complete multipartite graph matching

star subdivided star windmillpath double star
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Counting subgraphs

Vertex cover number of H determines the complexity of counting
copies of H:

nvc(H)+O(1) upper bound.
[Multiple references]

Ω(nγ·vc(H)/ log vc(H)) lower bound.
[Curticapean, Dell, M. 2017]

If we restrict the problem to a class H of patterns:
If H has bounded vertex cover number (e.g, stars, double
stars, . . .), then the problem is polynomial-time solvable.
If H has unbounded vertex cover number (e.g, cliques, paths,
matchings, disjoint triangles, . . .), then the problem is not
polynomial-time solvable (assuming ETH).
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Summary

There are more precise questions than just polynomial time
vs. NP-hardness. . .
. . .and in many cases, we have precise answers.
Running time, generality, solution quality.
Algorithm design and computational complexity have healthy
influence on each other.
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