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Abstract

Graph coloring and its generalizations are useful tools in modeling a wide variety
of scheduling and assignment problems. In this paper we review several variants of
graph coloring, such as precoloring extension, list coloring, multicoloring, minimum
sum coloring, and discuss their applications in scheduling.

I. Introduction

A k-coloring of graph G is an assignment of integers {1, 2, . . . , k} (the colors) to the vertices of G

in such a way that neighbors receive different integers. The chromatic number of G is the smallest k

such that G has a k-coloring.
There are several interesting practical problems that can be modeled by graph coloring. Our basic

example is the following. Assume that we have to schedule a set of interfering jobs, it has to be
determined when each job is executed. Let G be the conflict graph of the jobs: the vertices of the
graph corresponds to the jobs, two vertices are connected by an edge if the corresponding two jobs
cannot be executed at the same time (for example, they use a shared resource or interfere in some other
way). The colors correspond to the available time slots, every job requires one time slot. There is a
one-to-one correspondence between the feasible schedulings of the jobs and the colorings of the graph:
vertex v receives color i if and only if the corresponding job is executed in time slot i. Clearly, the
graph has a k-coloring if and only if the jobs can be done in k time slots such that interfering jobs
are not executed simultaneously. Therefore the chromatic number of the graph equals the minimum
makespan of the scheduling problem, the minimum time required to finish the jobs.

Unfortunately, determining the chromatic number of a graph is an NP-hard problem, hence we can-
not expect to solve it efficiently for large graphs. Therefore when we model a scheduling or assign-
ment problem with graph coloring, then there are two things to consider. First, it might happen that
the graphs arising in our application have special structure that makes coloring easier. Moreover, if
there is no hope for an efficient (polynomial time) algorithm to the coloring problem that always finds
an optimum solution, then we have to content ourselves with an approximation algorithm that is not
optimal, but has some performance guarantee on the quality of the produced solution. For a minimiza-
tion problem, we say that an algorithm is a c-approximation algorithm if it always produces a solution
whose cost is at most c times the optimum.

We conclude this section by citing some specific applications of graph coloring where the conflict
graph has special structure, and efficient optimal or approximation algorithm can be given for the
problem.

Aircraft scheduling. Assume that we have k aircrafts, and we have to assign them to n flights, where
the ith flight is during the time interval (ai, bi). Clearly, if two flights overlap, then we cannot assign the



same aircraft to both flights. The vertices of the conflict graph correspond to the flights, two vertices
are connected if the corresponding time intervals overlap. Therefore the conflict graph is an interval
graph, which can be colored optimally in polynomial time.

Biprocessor tasks. Assume that we have a set of processors (machines) and a set of tasks, each task
has to be executed on two preassigned processors simultaneously. A processor cannot work on two jobs
at the same time. For example, such biprocessor tasks arise when we want to schedule file transfers
between processors [1] or in the case of mutual diagnostic testing of processors [2].

Consider the graph whose vertices correspond to the processors, and if there is a task that has to be
executed on processors i and j, then we add an edge between the two corresponding vertices. Now the
scheduling problem can be modeled as an edge coloring of this graph: we have to assign colors to the
edges in such a way that every color appears at most once at a vertex.

Edge coloring is NP-hard [3], but there are good approximation algorithms. The maximum degree ∆
of the graph is an obvious lower bound on the number of colors needed to color the edges of the graph.
On the other hand, if there are no multiple edges in the graph (there are no two tasks that require the
same two processors), then Vizing’s Theorem gives an efficient method for obtaining a (∆ + 1)-edge
coloring. If multiple edges are allowed, then the algorithm of [4] gives an 1.1-approximate solution.

Frequency assignment. Assume that we have a number of radio stations, identified by x- and y-
coordinates in the plane. We have to assign a frequency to each station, but due to interferences,
stations that are “close” to each other have to receive different frequencies. Such problems arise in
frequency assignment of base stations in cellular phone networks.

At first sight, one might think that the conflict graph is planar in this problem, and the Four Color
Theorem can be used, but it is not true: if there are lots of stations in small region, then they are all
close to each other, therefore they form a large clique in the conflict graph. Instead, the conflict graph
is a unit disk graph, where each vertex corresponds to a disk in the plane with unit diameter, and two
vertices are connected if and only if the corresponding disks intersect. A 3-approximation algorithm
for coloring unit disk graphs is given in [5], yielding a 3-approximation for the frequency assignment
problem.

II. Multicoloring

A natural generalization of the basic setup introduced in Section I. is to consider jobs that require
more than one time slots. In the multicoloring problem each vertex v has a demand x(v), and we
have to assign a set of x(v) colors to each vertex v such that neighbors receive disjoint sets of colors.
Multicoloring can be used to model the scheduling of jobs with different time requirements: the set of
colors assigned to vertex v corresponds to the x(v) time slots when we work on the job.

There are two main variants of multicoloring. In non-preemptive multicoloring the set of colors
assigned to a vertex has to be a continuous interval of colors. This reflects the requirement that the jobs
cannot be interrupted, they have to receive a continuous time window. On the other hand, in preemptive
multicoloring we assume that the jobs can be interrupted, hence the set of colors assigned to a vertex
can be arbitrary, it does not have to be continuous.

In [6] the frequency assignment problem discussed in Section I. is generalized, we have to assign a
predefined number of frequencies to each base station. The authors adopt the hexagon model, which
means that the conflict graph is a subgraph of the triangular lattice. A 4

3
-approximation algorithm is

presented in [6] for minimizing the number of different frequencies assigned.



III. Precoloring extension

In certain scheduling problems we do not have full control over the schedule, the assignments of
certain jobs are already decided. In this case some of the vertices of the conflict graph has a preassigned
color, and we have to solve the precoloring extension problem: extended the coloring of these vertices
to the whole graph, using the minimum number of colors.

Biró, Hujter and Tuza [7, 8, 9] started a systematic study of precoloring extension. In [7], the aircraft
scheduling problem discussed in Section I. is extended. There is a maintenance period for each aircraft,
during which it cannot fly. We can model these maintenance periods by adding a “dummy” flight for
the maintenance period of each aircraft, and requiring that the maintenance period of the ith aircraft
is assigned to the ith aircraft. Therefore we have to solve the precoloring extension problem on the
conflict graph, which is an interval graph. It is shown in [7] that the precoloring extension problem is
NP-complete for interval graphs, but it can be solved in polynomial time if every color is used only
once in the precoloring, that is, if every aircraft has only one maintenance interval (the later result is
generalized to chordal graphs in [10]).

IV. List coloring

In the list coloring problem each vertex v has a list of available colors, and we have to find a coloring
where the color of each vertex is taken from its list of available colors. List coloring can be used to
model situations where a job can be processed only in certain time slots, or if it can be processed only
by certain machines.

Using standard dynamic programming techniques, list coloring can be solved in polynomial time on
trees and partial k-trees [11]. By combining dynamic programming with a clever use matching, list
coloring can be solved on the edges of trees as well [12].

The multicoloring concept introduced in Section II. can be applied for list colorings as well: each
vertex has an integer demand x(v), and vertex v has to receive a set of x(v) colors from its list of colors.
The algorithm for list coloring trees and partial k-trees does not generalize for the multicoloring case,
as the problem is NP-complete already for binary trees [13]. On the other hand, list edge multicolor-
ing can be solved in polynomial time on trees: using standard techniques, the good characterization
theorem of Marcotte and Seymour [14] can be turned into a polynomial time algorithm. This result is
generalized in [15] to a slightly more general class of graphs, that includes odd cycles. Moreover, a
randomized algorithm is given for an even more general class of graphs, including even cycles.

V. Minimum sum coloring

Besides minimizing the makespan, another well-studied goal in scheduling theory is to minimize the
sum of completion times of the jobs, which is the same as minimizing the average completion time.
The corresponding coloring problem is minimum sum coloring, introduced in [16]: we are looking for
a coloring of the conflict graph such that the sum of the colors assigned to the vertices is minimal.

Apart from trees, partial k-trees, and edges of trees, minimum sum coloring is NP-hard on most
classes of graphs. On the other hand, it turns out that the sum of the coloring is easier to approximate
than the makespan (see e.g. [17, 18] for approximation results). The reason for this is that the sum of
the coloring and the makespan of the coloring behaves very differently when a small part of the graph
is recolored. If we recolor a small part of the graph, then this change has only a small effect on the sum
of the coloring, but it can change the makespan significantly.

The multicoloring version of the problem can be used to model arbitrary length jobs. Since we
want to minimize the sum of the completion times, the objective function of the coloring problem
has to be defined as follows. The finish time of a vertex is the largest color assigned to it, and the
sum of a coloring is the sum of the finish times of the vertices. It is clear that the sum of the finish



times in a multicoloring is equal to the sum of completion times in the corresponding schedule. This
variant of multicoloring was introduced in [19], where approximation algorithms are given for various
classes of graphs. The preemptive and non-preemptive versions of the problem can have very different
complexity: while the non-preemptive version can be solved in polynomial time for trees [20], the
preemptive version is NP-hard for binary trees [13], but has a polynomial time approximation scheme
[20]. In [21] polynomial time approximation schemes are given for partial k-trees and planar graphs as
well. Unlike minimum sum coloring, the multicoloring version of the problem is NP-hard on the edges
of trees. However, in this case the problem admits a polynomial time approximation scheme [22].
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