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Abstract
We show that for a number of parameterized problems for which only 2O(k)nO(1) time algo-
rithms are known on general graphs, subexponential parameterized algorithms with running time
2O(k1− 1

1+δ log2 k)nO(1) are possible for graphs of polynomial growth with growth rate (degree) δ,
that is, if we assume that every ball of radius r contains only O(rδ) vertices. The algorithms
use the technique of low-treewidth pattern covering, introduced by Fomin et al. [18] for planar
graphs; here we show how this strategy can be made to work for graphs of polynomial growth.

Formally, we prove that, given a graph G of polynomial growth with growth rate δ and an
integer k, one can in randomized polynomial time find a subset A ⊆ V (G) such that on one hand
the treewidth of G[A] is O(k1− 1

1+δ log k), and on the other hand for every set X ⊆ V (G) of size
at most k, the probability that X ⊆ A is 2−O(k1− 1

1+δ log2 k). Together with standard dynamic
programming techniques on graphs of bounded treewidth, this statement gives subexponential
parameterized algorithms for a number of subgraph search problems, such as Long Path or
Steiner Tree, in graphs of polynomial growth.

We complement the algorithm with an almost tight lower bound for Long Path: unless the
Exponential Time Hypothesis fails, no parameterized algorithm with running time 2k

1− 1
δ
−ε
nO(1)

is possible for any ε > 0 and any integer δ ≥ 3.
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1 Introduction

In recent years, research on parameterized algorithms had a strong focus on understanding
the optimal form of dependence on the parameter k in the running time f(k)nO(1) of
parameterized algorithms. For many of the classic algorithmic problems on graphs, algorithms
with running time 2O(k)nO(1) exist, and we know that this form of running time is best

∗ The research of D. Marx leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant
Agreement no. 280152. The research of M. Pilipczuk is supported by Polish National Science Centre grant
UMO-2013/09/B/ST6/03136. Part of the research has been done when the authors were participating
in the “Fine-grained complexity and algorithm design” program at the Simons Institute for Theory of
Computing in Berkeley.

© Dániel Marx and Marcin Pilipczuk;
licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 59; pp. 59:1–59:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.59
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


59:2 Subexponential Parameterized Algorithms for Graphs of Polynomial Growth

possible, assuming the Exponential-Time Hypothesis (ETH) [8, 22, 26]. This means that
we have an essentially tight understanding of these problems when considering graphs in
their full generality, but it does not rule out the possibility of improved algorithms when
restricted to some class of graphs. Indeed, many of these problems become significantly easier
on certain important graph classes. The most well-studied form of this improvement is the
so-called “square root phenomenon” on planar graphs (and some if its generalizations): there
is a large number of parameterized problems that admit 2O(

√
k·polylogk)nO(1) time algorithms

on planar graphs [7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 23, 24, 29, 30, 31]. Many of
these positive results can be explained by the theory of bidimensionality [11] and explicity or
implicitly rely on the relation between treewidth and grid minors.

Very recently, a superset of the present authors showed a new technique to obtain subex-
ponential algorithms in planar graphs for problems related to the Subgraph Isomorphism
problem [18], such as the Long Path problem of finding a simple path of length k in the
input graph. The approach of [18] can be summarized as follows: a randomized polynomial-
time algorithm is showed that, given a planar graph G and an integer k, selects a random
induced subgraph of treewidth sublinear in k in such a manner that, for every connected
k-vertex subgraph H of G, the probability that H survives in the selected subgraph is
inversely-subexponential in k. Such a statement, dubbed low-treewidth pattern covering,
together with standard dynamic programming techniques on graphs of bounded treewidth,
gives subexponential algorithms for a much wider range of Subgraph Isomorphism-type
problems than bidimensionality; for example, while bidimensionality provides a subexponen-
tial algorithm for Long Path in undirected graphs, it seems that the new approach of [18]
is needed for directed graphs.

The proof of the low treewidth pattern covering theorem of [18] involves a number
of different partitioning techniques in planar graphs. In this work, we take one of these
techniques – called clustering procedure, based on the metric decomposition tool of Linial and
Saks [25] and the recursive decomposition used in the construction of Bartal’s hierarchically
well-separated trees (so-called HSTs) [3] – and observe that it is perfectly suited to tackle
the so-called graphs of polynomial growth.

To explain this concept formally, let us introduce some notation. All graphs in this
paper are unweighted, and the distance function distG(u, v) measures the minimum possible
number of edges on a path from u to v in G. For a graph G, integer r, and vertex v ∈ V (G)
by BG(v, r) we denote the set of vertices w ∈ V (G) that are within distance less than r from
v in G, BG(v, r) = {w ∈ V (G) : distG(v, w) < r}, while by ∂BG(v, r) we denote the set of
vertices within distance exactly r, that is, ∂BG(v, r) = {w ∈ V (G) : distG(v, w) = r}. We
omit the subscript if the graph is clear from the context.

I Definition 1.1 (polynomial growth, [4]). We say that a graph G (or a graph class G) has
polynomial growth of degree (growth rate) δ if there exists a universal constant C such that
for (every graph G ∈ G and) every radius r and every vertex v ∈ V (G) we have

|B(v, r)| ≤ C · rδ.

The algorithmic consequences (and some of its variants) of this definition have been studied
in the literature in various contexts (see, for example, [2, 21, 4, 1]). A standard example
of a graph of polynomial growth with degree δ is a δ-dimensional grid. Graph classes of
polynomial growth include graphs of bounded doubling dimension (with unit-weight edges),
a popular assumption restricting the growth of a metric space in approximation algorithms
or routing in networks (cf. the thesis [5] of Chan or [1] and references therein).

Our main result is the following low treewidth pattern covering statement.
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I Theorem 1.2. For every graph class G of polynomial growth with growth rate δ, there
exists a polynomial-time randomized algorithm that, given a graph G ∈ G and an integer k,
outputs a subset A ⊆ V (G) with the following properties:
1. the treedepth of G[A] is O(k1− 1

1+δ log k);
2. for every set X ⊆ V (G) of size at most k, the probability that X ⊆ A is 2−O(k1− 1

1+δ log2 k).

Note that Theorem 1.2 uses the notion of treedepth, a much more restrictive graph measure
than treewidth (cf. [28]), that in particular implies the same treewidth bound. Thus, together
with standard dynamic programming techniques on graphs of bounded treewidth, Theorem 1.2
gives the following.

I Corollary 1.3. There exist randomized parameterized algorithms with running time bound
2O(k1− 1

1+δ log2 k)nO(1) for Long Path and Steiner Tree parameterized by the size of the
solution, when restricted to a graph class of polynomial growth with growth rate δ.

In the corollary above we only listed the two most classic applications, refraining from
repeating the lengthy discussion on the applications of low treewidth pattern covering
statements that can be found in the introduction of Fomin et al. [18].

We complement the algorithmic statement of Theorem 1.2 with the following lower bound.

I Theorem 1.4. If there exists an integer δ ≥ 3, a real ε > 0, and an algorithm that decides
if a given subgraph of a δ-dimensional grid of side length n contains a Hamiltonian path in
time 2O(nδ−1−ε), then the ETH fails.

Since a subgraph of a δ-dimensional grid of side length n has polynomial growth with degree
at most δ and at most nδ vertices, Theorem 1.4 shows that, unless the ETH fails, one cannot
hope for a better term than k1− 1

δ in the low treewidth pattern covering statement as in
Theorem 1.2.

2 Upper bound: proof of Theorem 1.2

In this section we prove Theorem 1.2. Without loss of generality, we assume k ≥ 4.
Our main tool is a clustering procedure, or metric decomposition tool of [25], which can

be informally described as follows. As long as the analysed graph G is not empty, we carve
out a new cluster as follows. We pick any vertex v ∈ V (G) as a center of the new cluster,
and set its radius r := 1. Iteratively, with some chosen probablity p, we accept the current
radius, and with the remaining probability 1 − p we increase r by one and repeat. That
is, we choose r with geometric distribution with success probability p. Once a radius r is
accepted, we set BG(v, r) as a new cluster, and delete BG(v, r) ∪ ∂BG(v, r) from G. In this
manner, BG(v, r) is carved out as a separated cluster, at the cost of sacrificing ∂BG(v, r). A
typical usage would be as follows: If one chooses p of the order of k−1, then a simple analysis
shows that every cluster has radius O(k logn) w.h.p., while a fixed set X ⊆ V (G) of size k is
fully retained in the union of clusters with constant probability.

We apply the aforementioned clustering procedure in two steps. In the first one, we use
p ∼ k−1 and the goal is to chop the graph into components of radius O(k log k), which –
by the polynomial growth property – are of polynomial size. The polynomial size bound is
crucial for the second phase, when we consider every component independently, sparsifying it
further using the clustering procedure with much higher cutoff probability, namely p ∼ k−

1
1+δ .

These two steps are described in the subsequent two subsections.

ESA 2017
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We remark here that, because we rely only on the clustering procedure, and not the other
arguments of [18], we do not need the assumption on the connectivity of the pattern G[X].
This assumption was essential for the planar case of [18].

2.1 Chopping the graph into parts of polynomial size
The goal of the first step is to delete a number of vertices from the graph so that on one
hand every connected component of G has radius O(k log k), and on the other hand the
probability of deleting a vertex from an unknown vertex set X ⊆ V (G) of size at most k is
small. The proof of the following lemma is of the same nature as the clustering step in [18,
Section 4.1 of the full version], with one subtlety: the obtained radii are of order k log k
instead of k logn. This improvement, crucial for the second step, heavily depends on the
polynomial growth property.

I Lemma 2.1. Let G be a graph class of polynomial growth with growth rate δ. There exists
a constant cr > 0 and a polynomial-time randomized algorithm that, given a graph G ∈ G
and positive integer k ≥ 4, outputs a subset A ⊆ V (G) such that
1. every connected component of G[A] is of radius at most crk log k;
2. for every set X ⊆ V (G) of size at most k, the probability that X ⊆ A is at least 17/256.

Proof. For a sufficiently large constant cr > 0 depending on the graph class G, we perform
the following iterative process. We start with G0 := G and A0 := ∅. In i-th iteration
(i = 1, 2, 3, . . .), we consider the graph Gi−1. If the graph Gi−1 is empty, we stop. Otherwise,
we pick an arbitrary vertex vi ∈ V (Gi−1) and pick a radius ri according to the geometric
distribution with success probability 1/k, capped at value R := crk log k (i.e., if the choice
of the radius is greater than R, we set ri := R). For further analysis, we would like to look
at the choice of the radius ri as the following iterative process: we start with ri = 1 and
iteratively accept the current radius with probability 1/k or increase it by one and repeat
with probability 1 − 1/k, stopping unconditionally at radius R. Given vi and ri, we set
Ai := Ai−1 ∪ BGi−1(vi, ri) and Gi := Gi−1 − (BGi−1(vi, ri) ∪ ∂BGi−1(vi, ri)). That is, we
remove from Gi all vertices within distance at most ri from vi, while retaining in Ai only
those that are within distance less than ri.

Clearly, as we remove a vertex from Gi at every step, the process stops after at most
|V (G)| steps. Let ι be the last index of the iteration. Consider the graph G′ := G[Aι]. Recall
that in the i-th step we put BGi−1(vi, ri) into Ai, but remove not only BGi−1(vi, ri) from
Gi−1 but also ∂BGi−1(vi, ri) = NGi−1(BGi−1(vi, ri)). Consequently, the vertex sets of the
connected components of G′ are exactly sets BGi−1(vi, ri) for 1 ≤ i ≤ ι. Since the radii ri
are capped at value R = crk log k, every connected component of G′ has radius at most R.

We now claim the following.

I Claim 2.2. For every X ⊆ V (G) of size at most k, the probability that X ⊆ V (G′) is at
least 17/256.

Proof. Fix X ⊆ V (G) of size at most k. Note that X 6⊆ V (G′) only if at some iteration i,
some vertex x ∈ X is exactly within distance ri from vi in the graph Gi−1. We now bound
the probability that this happens, split into two subcases: either ri = R or ri < R.

Case 1: hitting a vertex within distance ri = R. Let Y =
⋃
x∈X BG(x,R + 1). Note

that if x ∈ X is exactly within distance ri ≤ R from vi in the graph Gi−1, then necessarily
vi ∈ Y . On the other hand, by the polynomial growth property,

|Y | ≤ k · C · (R+ 1)δ = Ck(crk log k + 1)δ = O(kδ+1 logδ k).
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We consider ourselves lucky if whenever vi ∈ Y , we have ri < R, that is, the process
choosing ri does not hit the cap of R for every center in Y . Note that, for a fixed iteration i,
we have

Pr(ri = R) =
(

1− 1
k

)R−1
=
(

1− 1
k

)crk log k−1
≤ k−0.1·cr .

Thus, for sufficiently large constant cr (depending only on C and δ), we have that

Pr(ri = R) < (k · |Y |)−1
.

We infer that, for such a choice of cr, the probability that we are not lucky is at most 1/k.

Case 2: hitting a vertex within distance ri < R. It is convenient to think here of the
choice of the radius ri as an interative process that starts from ri = 1, accepts the current
radius with probability 1/k, or increases it by one and repeats with probability 1− 1/k. For
a fixed iteration i and a choice of vi, consider a potential radius ri < R when there is a vertex
x ∈ X within distance exactly ri from vi in Gi−1. If we do not accept this radius (which
happens with probability 1 − 1/k), the vertex x is included in BGi−1(vi, ri) and is surely
included in G′. Consequently, in the whole process we care about not accepting a given
radius only k times, at most once for every vertex x ∈ X. We infer that the probability that
for some iteration i there is a vertex x ∈ X within distance exactly ri from vi and ri < R is
at most 1− (1− 1/k)k.

Considering both cases, by union bound, the probability that X ⊆ V (G′) is at least

1−
(

1−
(

1− 1
k

)k
+ 1
k

)
=
(

1− 1
k

)k
− 1
k
≥ 17

256 .

The last estimate uses the assumption k ≥ 4. J

Claim 2.2 concludes the proof of Lemma 2.1. J

2.2 Handling a component of polynomial size
I Lemma 2.3. Let G be a graph class of polynomial growth with growth rate δ. For every
constant cr > 0 there exists a constant c > 0 and a polynomial-time randomized algorithm
that, given a positive integer k, and a connected graph G ∈ G of radius crk log k, outputs a
subset A ⊆ V (G) such that
1. the treedepth of G[A] is O(k1− 1

1+δ log k);
2. for every set X ⊆ V (G) of size at most k, the probability that X ⊆ A is at least

2−c·|X|·k
− 1

1+δ ·log2 k.

We emphasize here the linear dependency on |X| in the exponent of the probability bound.
This dependency, similarly as in the analysis of [18], allows us to easily analyse independent
runs of the algorithm on multiple connected components.

To prove Lemma 2.3, we again use the clustering procedure, but with a significantly higher
cutoff probability, namely of the order of k−

1
1+δ , as opposed to k−1 from the previous section.

This yields clusters of sublinear size, namely of size roughly k
δ

1+δ . However, this comes with
a cost: we can no longer claim that the solution X survives in the clustered graph with large
probability, but – on average – k

δ
1+δ vertices of X of size k will be deleted by the clustering

clustering procedure. To recover from that, we crucially depend on the fact that the graph

ESA 2017
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has size polynomial in k: there is only a subexponential, namely
(poly(k)

k
δ

1+δ

)
= 2O(k1− 1

1+δ log k),
number of choices for the removed vertices of X, and we can afford to guess them.

Let us make a quick comparison with the techniques of [18]. The usage of the clustering
technique in Lemma 2.3 is significantly different than the one in [18, Section 4.1 of the full
version]: we choose a higher cutoff probability, which leads to smaller radii, at the cost of
allowing some vertices of the set X on the boundary (that need to be subsequently guessed).
The charging argument used here (Claim 2.5) is inspired by the argument of [18, Claim 28
in the full version]. However, the reason why we obtain sublinear treedepth (Claim 2.4) and
the consequent tradeoffs in the exponent are specific to our polynomial growth setting.

Let us now proceed with the formal arguments.

Proof of Lemma 2.3. The random process we employ is similar to the one of the previous
section, but more involved. Let c′r > 0 be a constant to be fixed later.

We start with G0 = G, A0 = ∅ and B0 = ∅. In the i-th iteration of the process, we
consider the graph Gi−1. If the graph Gi−1 is empty, we stop. Otherwise, we pick an
arbitrary vertex vi ∈ V (Gi−1) and pick a radius ri according to the geometric distribution
with success probability k−1/(1+δ) log k, capped at value R′ := c′rk

1/(1+δ) (i.e., as before, if
the choice of the radius is greater than R′, we set ri := R′). In other words, we start with
ri = 1 and iteratively accept the current radius with probability k−1/(1+δ) log k or increase it
by one and repeat with the remaining probability, stopping unconditionally at radius R′.

As before, we setAi := Ai−1∪BGi−1(vi, ri) andGi := Gi−1−(BGi−1(vi, ri)∪∂BGi−1(vi, ri)).
However, now, as the radii are smaller, we may want to retain some vertices of ∂BGi−1(vi, ri),
as they can be part of the vertex set X; for this, we use the sets Bi. With probability
1− 1/(k|V (G)|) we put Pi = ∅ and Bi = Bi−1. With the remaining probability, we proceed
as follows. Uniformly at random, we choose a number 1 ≤ `i ≤ k1−1/(1+δ) log k and a set Pi
of `i vertices of ∂BGi−1(vi, ri) (or all of them, if there are less than `i vertices in this set).
We put Bi := Bi−1 ∪ Pi.

Let i0 be the index of the last iteration. If |Bi0 | > k1−1/(1+δ) log k, then we output A = ∅.
Otherwise, we output A := Ai0 ∪Bi0 . Let us now verify that A has the desired properties.

I Claim 2.4. The treedepth of G[A] is O(kδ/(1+δ) log k).

Proof. The claim is trivial ifA = ∅, so assume otherwise; in particular, |Bi0 | ≤ k1−1/(1+δ) log k.
We use the following inductive definition of treedepth: the treedepth of an empty graph is 0,
while for any graph G on at least one vertex we have that

treedepth(G) =
{

1 + min{treedepth(G− v) : v ∈ V (G)} if G is connected
max{treedepth(C) : C connected component of G} otherwise.

Upon deleting from G[A] the at most k1−1/(1+δ) log k vertices of Bi0 , we are left with G[Ai0 ].
Similarly as in the previous section, every connected component of G[Ai0 ] is of radius at
most R′ = c′rk

1/(1+δ). Consequently, every connected component of G[Ai0 ] is of size at most
C · (c′r)δkδ/(1+δ). The claim follows. J

I Claim 2.5. For every set X ⊆ V (G) of size at most k, the probability that X ⊆ A is at
least 2−c|X|k−1/(1+δ) log2 k for some constant c > 0 depending only on cr, δ, and C.

Proof. Fix a vertex set X. The claim is trivial for X = ∅ so assume otherwise. In particular,
as |X| ≥ 1, then we can estimate the desired probability as

2−c|X|k
−1/(1+δ) log2 k ≤ 2−ck

−1/(1+δ) log2 k = 1− Ω
(

log2 k

k1/(1+δ)

)
. (1)
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Consider a fixed iteration i, and the moment when, knowing vi, we choose the radius ri.
Given Gi−1 and vi, we say that a radius r is bad if∣∣X ∩ ∂BGi−1(vi, r)

∣∣ > (k−1/(1+δ) log k
)
·
∣∣X ∩BGi−1(vi, r)

∣∣ . (2)

Let 1 ≤ r0 < r1 < r2 < . . . < rt be a sequence of bad radii. First, note thatX∩∂B(vi, r0) 6= ∅,
and thus |X∩B(vi, r1)| ≥ 1. Furthermore, as for every j ≥ 1 we have ∂B(vi, rj) ⊆ B(vi, rj+1),
we have

|X ∩B(vi, rj+1)| ≥
(

1 + k−1/(1+δ) log k
)
|X ∩B(vi, rj)|.

Consequently,

|X ∩B(vi, rj)| ≥
(

1 + k−1/(1+δ) log k
)j−1

.

Since |X| ≤ k, we infer that

t < 10k1/(1+δ). (3)

We are interested in the following event A: every chosen radius ri is not bad and is
smaller than R′ (i.e., we did not hit the cap of R′). Recall the iterative interpretation of
the choice of the radii ri: we start with ri = 1, accept the current radius with probability
k−1/(1+δ) log k, or increase ri by one and repeat with the remaining probability. Thus, we are
interested in the intersection of the following two events: we do not accept any bad radius,
but we accept some good radius before the cap R′.

Whenever we do not accept a bad radius r, a vertex of X ∩ ∂B(vi, r) is included in
B(vi, ri) ⊆ Ai. Consequently, in the whole algorithm we encounter at most |X| bad radii;
each is independently accepted with probability k−1/(1+δ) log k.

By (3), in a fixed iteration i there are at most 10k1/(1+δ) bad radii. Consequently, if we
count only acceptance of good radii, the probability that the radius ri reaches the bound R′
is at most(

1− k−1/(1+δ) log k
)(c′r−10)k1/(1+δ)

≤ k−0.1c′r .

Consequently, since |V (G)| ≤ C · (crk log k)δ, by choosing c′r large enough, we can ensure
that the probability that there exists a radius ri equal to R′ is at most k−1. Since the choices
of acceptance of different radii are independent, we infer that the probability of the event A
is at least(

1− k−1) · (1− k−1/(1+δ) log k
)|X|

≥ 2−c1|X|k−1/(1+δ) log k

for some positive constant c1. Here, we have used (1) to estimate the first factor.
Assume that the event A happens, and let us fix one choice of vi and ri. Note that these

choices determine the sets Ai and the graphs Gi; the only remaining random choices are
whether to include some vertices into the sets Bi.

For an iteration i, define Xi := X ∩ ∂BGi−1(vi, ri). We are now considering the following
event B: in every iteration i we have Pi = Xi. Note that if B happens, then X ⊆ A. Thus,
we need to estimate the probability of the event B.

If Xi = ∅, then we guess so with probability 1−1/(k|V (G)|). As there are at most |V (G)|
iterations, with probability at least 1− 1/k we will make correct decision in all iterations i
for which Xi = ∅.

ESA 2017



59:8 Subexponential Parameterized Algorithms for Graphs of Polynomial Growth

Consider now an iteration i for which Xi 6= ∅. Since the radius ri is good, we have∣∣X ∩ ∂BGi−1(vi, ri)
∣∣ ≤ k−1/(1+δ) log k

∣∣X ∩BGi−1(vi, ri)
∣∣ . (4)

In particular, |X ∩BGi−1(vi, ri)| ≥ k1/(1+δ)/ log k, and thus there are at most kδ/(1+δ) log k
such iterations. Furthermore,∣∣∣∣∣

i0⋃
i=1

Xi

∣∣∣∣∣ ≤ |X|k−1/(1+δ) log k.

In every such iteration i, we need to correctly guess that Xi is nonempty (1/(k|V (G)|) success
probability), correctly guess `i = |Xi| (at least 1/k success probability) and correctly guess
Pi = Xi (at least |V (G)|−|Xi| success probability). All these choices are independent. Since
|V (G)| is bounded polynomially in k, the probability of the event B is at least(

1− 1
k

)
·
∏

i:Xi 6=∅

1
k|V (G)| ·

1
k
· 1
|V (G)||Xi|

≥
(

1− 1
k

)
· (|V (G)|2 · k)−|X|·k

−1/(1+δ) log k

≥ 2−c2|X|·k−1/(1+δ) log2 k

for some constant c2 depending on cr, δ, and C. This finishes the proof of the claim. J

Lemma 2.3 follows directly from Claims 2.4 and 2.5. J

2.3 Summary
Let us now wrap up the proof of Theorem 1.2, using Lemmata 2.1 and 2.3. We first apply
the algorithm of Lemma 2.1 to the input graph G and integer k, obtaining a set A0 ⊆ V (G).
Then, we apply the algorithm of Lemma 2.3 independently to every connected component
C of G[A0], obtaining a set AC ⊆ C; recall that every such component is of radius at most
R = crk log k. As the output A, we return the union of the returned sets AC . Clearly, the
treedepth bound holds. If we denote XC := X ∩ C for a component C, we have that the
probability that X ⊆ A is at least

17
256 ·

∏
C

2−c|XC |k
−1/(1+δ) log2 k ≥ 17

256 · 2
−ck1−1/(1+δ) log2 k.

This finishes the proof of Theorem 1.2.

3 Lower bound: proof of Theorem 1.4

In this section we prove Theorem 1.4. The reduction is heavily inspired by the reduction
for δ-dimensional Euclidean TSP by Marx and Sidiropolous [27]. In particular, our starting
point is the same CSP pivot problem.

I Theorem 3.1 ([27]). For every fixed δ ≥ 2, there is a constant λδ such that for every
constant ε > 0 an existence of an algorithm solving in time 2O(nδ−1−ε) CSP instances with
binary constraints, domain size at most λδ, and Gaifman graph being a δ-dimensional grid
of side length n would refute ETH.

Let us recall that a binary CSP instance consists of a domain D, a set V of variables,
and a set E of constraints. Every constraint is a binary relation ψu,v ⊆ D ×D that binds
two variables u, v ∈ V . The goal is to find an assignment φ : V → D that satisfies every
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Figure 1 A 2-chain with two ways how a Hamiltonian path can traverse it, called henceforth
modes.

Figure 2 An endpoint of a 2-chain, allowing traversing the 2-chain in both modes.

constraint; a constraint ψu,v is satisfied if (φ(u), φ(v)) ∈ ψu,v. The Gaifman graph of a binary
CSP instance has vertex set V and an edge uv for every constraint ψu,v.

Similarly as in the case of [27], our goal is to take a given CSP instance as in Theorem 3.1
and turn it into a Hamiltonian path instance by local gadgets. That is, we are going to replace
every variable of the CSP instance with a constant-size gadget (i.e., with size depending
only on δ and λδ); the way the gadget is traversed by the Hamiltonian path indicates the
choice of the value of the variable. The neighboring gadgets are wired up to ensure that the
constraint binding them is satisfied.

More formally, let us fix an integer δ ≥ 3. The input of a reduction is a CSP instance as
in Theorem 3.1: of domain size at most λδ and whose Gaifman graph is a δ-dimensional grid
of size length n. The output is a subgraph of a δ-dimensional grid of side length cn for some
constant c depending only on δ and λδ that has a Hamiltonian path if and only if the input
CSP instance is satisfiable.

Let us fix a δ-dimensional graph of side length cn for some sufficiently large constant
c to be defined later (we will see that c = Θ(δλ2

δ) suffices). We partition this grid into nδ
subgrids of side length c, each corresponding to a variable of the input CSP instance in a
natural fashion.

3.1 2-chains
The base gadget of the construction is a 2-chain as presented on Figure 1. A direct check
shows that there are two ways how a 2-chain can be traversed by a Hamiltonian path, as
depicted on the figure.

Figure 2 shows a gadget present on both left and right endpoints of a 2-chain. As shown
on the figure, it allows choosing how the 2-chain is traversed.

We will refer to the two depicted Hamiltonian paths of a 2-chain as modes of the chain.
Given one of the horizontal edges of the 2-chain, a mode is consistent with this edge if the
corresponding Hamiltonian path traverses the edge in question, and inconsistent otherwise.

We will attach various gadgets to 2-chains via one of the horizontal edges. To maintain
the properties of the 2-chains, in particular the effectively two ways of traversing a 2-chain,
we need to space out the attached gadgets. More formally, we partition every 2-chain into
sufficiently long chunks (chunks of length 8 are more than sufficient), and allow gadgets to
attach only to one of the two middle horizontal edges on one side of the chain (see Figure 3),
with at most one gadget per chunk. A gadget is always attached to an edge e by adding two
new vertices u and v near the edge e, in the same 2-dimensional plane as the 2-chain itself,
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e
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Figure 3 From top to bottom, left to right: a chunk on a 2-chain, with two attachment edges
marked red and blue; a standard attachment of a gadget; three ways how a 2-chain with attached
gadget can be traversed.

such that the endpoints of e, u, and v form a square. Properties of such an attachment can
be summarized in the following straightforward claim.

I Claim 3.2. Consider a chunk c on a 2-chain A, and a gadget attached to an edge e
in c. Then every Hamiltonian path traverses c in one of the following three ways (see
Figure 3):
1. as on Figure 1, inconsistently with e;
2. as on Figure 1, consistently with e;
3. as on Figure 1, consistently with e, but with the edge e replaced with an edge towards

vertex u and towards vertex v.

In particular, Claim 3.2 allows us to formally speak about a mode of a 2-chain, even if
multiple gadgets are attached to it.

3.2 Placing 2-chains
For every variable of the input CSP instance, we create λδ 2-chains of length L = O(dλδ) (to
be determined later). They are positioned parallelly in the following fashion (see Figure 4):
we choose an arbitrary 3-dimensional subspace of the δ-dimensional subgrid of sidelength
c devoted to a particular variable, and place 2-chains such that the i-th 2-chain occupies
vertices {0, 1, . . . , L} × {0, 1, 2} × {i}. The edges indicated as attachment points for gadgets
are on the one side of all chains.

All chains, for all variables, are wired up into a Hamiltonian path: for every variable,
we connect the constructed 2-chains into a path in a straightforward fashion, we take an
arbitrary Hamiltonian path of the original Gaifman graph of the input CSP instance (which
is a δ-dimensional grid, and thus trivially admits a Hamiltonian path), and connect endpoints
of the 2-chains in the same order using simple paths. This is straightforward to perform if
we space out the variable gadgets enough.
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Figure 4 Left: Placing parallel 2-chains for a single variable x. Right: A tube gadget attached to
the 2-chains, with intended Hamiltonian path.

Since all constructed 2-chains are isomorphic, we indicate one mode of a 2-chain as a
low mode, and the other one as high mode. Our goal is to introduce gadgets that (i) ensure
that for every variable, exactly one of the corresponding 2-chains is in high mode, indicating
the choice of the value for this variable; (ii) for every two variables that are bound by a
constraint, for every pair of values that is forbidden by the constraint, ensure that the two
variables in question do not attain the values in question at the same time, that is, the
corresponding two 2-chains are not both in high mode at the same time.

3.3 OR-checks
The construction of 2-chains allow us to implement a simple “OR” constraint on two 2-chains.
Consider two 2-chains A and B, and two horizontal edges eA and eB on A and B, respectively.
By attaching an OR-check to these edges we mean the following construction:
1. we create vertices uA and vA near eA as well as uB and vB near eB , as in the description

of gadget attachment;
2. we connect uA to uB by a path and vA to vB by a path.
If the 2-chains are spaced enough, it is straightforward to implement the above construction
such that the resulting graph is a subgraph of a d-dimensional grid.

Claim 3.2 allows us to observe the following.

I Claim 3.3. If A is traversed in a way consistent with eA, then one can modify the
Hamiltonian path traversing A so that it visits the OR gadget: replace eA with a path
traversing first a path from uA to uB, the edge uBvB, and then the path from vB to vA. A
symmetrical claim holds if B is traversed in a way consistent with eB.

In the other direction, there is no Hamiltonian path that traverses both A and B in a way
inconsistent with eA and eB, respectively.

We now observe that, by attaching OR-checks in a straightforward manner, we can ensure
that:
1. for every variable x, at most one 2-chain corresponding to x is in high mode (we wire up

every pair of 2-chains with an OR-check forbidding two high modes at the same time);
2. for every two variables x and y that are bound by a constraint ψ, for every pair of values

(αx, αy) that is forbidden by the constraint ψ, the αx-th 2-chain of x and the αy-th
2-chain of y are not in the high mode at the same time.

ESA 2017



59:12 Subexponential Parameterized Algorithms for Graphs of Polynomial Growth

We are left with ensuring that for every variable x, at least one of the corresponding 2-chains
is in the high mode. This is the aim of the next gadget.

3.4 Tube gadget
Fix a variable x. Without loss of generality, we can assume that the first chunk of every
2-chain for x has not been used by the OR-checks introduced previously. Let ei be the
attachment edge of the i-th 2-chain that is consistent with the high mode of the 2-chain;
note that the edges ei lie next to each other (see Figure 4).

We create a 2 × 2 × λδ grid, called henceforth a tube gadget, placed near the edges ei,
such that every edge ei can be attached to an edge of the grid in a standard way discussed
earlier. See Figure 4 for an illustration.

Since a 2× 2× λδ grid admits a Hamiltonian cycle that traverses every edge in one of the
first two dimensions, if the i-th chain is traversed in high mode for some i, we can replace ei
on the Hamiltonian path with a traversal along the aforementioned Hamiltonian cycle. This
observation, together with Claim 3.2, proves the following claim.

I Claim 3.4. If there exists an index i such that the i-th 2-chain is traversed in high mode,
then the Hamiltonian path of this 2-chain can be altered to visit every vertex of the 2× 2× λδ
grid.

On the other hand, any Hamiltonian path of the entire graph needs to traverse at least
one 2-chain in high mode, in order to visit the vertices of the 2× 2× λδ grid.

3.5 Summary
The tube gadgets ensure that, for every variable, at least one corresponding 2-chain is in
high mode. The first type of the attached OR-checks ensure that at most one such 2-chain is
in high mode. Thus, effectively the gadgets introduced for a single variable x can be in one
of λδ by choosing the 2-chain that is in high mode, which corresponds to the choice of the
value for x in an assignment.

The second type of the attached OR-checks ensure that the values of the neighboring
variables satisfy the constraint that binds them, completing the proof of the correctness of
the reduction.

To conclude, let us observe that every 2-chain is attached to one tube gadget and O(δλδ)
OR-checks, and the whole gadget replacing a single variable takes part in O(δλ2

δ) OR-checks.
Thus taking L = O(δλ2

δ) suffices. By leaving space of size O(δλ2
δ) between consecutive

variable gadgets we can ensure more than enough space for all connections. This gives
c = O(δλ2

δ), that is, the constructed graph is a subgraph of a d-dimensional grid of side
length O(δλ2

δn), and admits a Hamiltonian path if and only if the input CSP instance is
satisfiable. This finishes the proof of Theorem 1.4.

4 Conclusions

We have shown a low treewidth pattern covering statement for graphs of polynomial growth
with subexponential term being 2k

1− 1
1+δ , where δ is the growth rate of the graph class. An

almost tight lower bound shows that, assuming ETH, one should not hope for a better term
than 2k

1− 1
δ .

Two natural questions arise. The first one is to close the gap between 1
1+δ and 1

δ ; we
conjecture that our lower bound is tight, and the term k1− 1

1+δ in the running time bound
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of Theorem 1.2 is only a shortfall of our algorithmic techniques. The second one is to
derandomize the algorithms of this work and of [18]. The clustering step is the only step of
the algorithm of [18] that we do not know how to derandomize, despite its resemblance to
the construction of Bartal’s HSTs [3] that was subsequently derandomized [6].
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