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Abstract. Given a planar graph with k terminal vertices, the Planar
Multiway Cut problem asks for a minimum set of edges whose removal
pairwise separates the terminals from each other. A classical algorithm
of Dahlhaus et al. [2] solves the problem in time nO(k), which was very

recently improved to 2O(k) ·nO(
√
k) time by Klein and Marx [6]. Here we

show the optimality of the latter algorithm: assuming the Exponential

Time Hypothesis (ETH), there is no f(k) · no(
√
k) time algorithm for

Planar Multiway Cut. It also follows that the problem is W[1]-hard,
answering an open question of Downey and Fellows [3].

1 Introduction

Multiway Cut (also called Multiterminal Cut) is a generalization of the
classical minimum s− t cut problem: given an undirected graph G with subset
T of k vertices specified as terminals, the task is to find a set of edges having
minimum total weight whose deletion pairwise separates the k terminal vertices
from each other. While the problem is polynomial-time solvable for k = 2, it
becomes NP-hard for k = 3 on general graphs. The special case of the prob-
lem on planar graphs, Planar Multiway Cut, is also NP-hard if k can be
arbitrarily large, but can be solved in time O((4k)kn2k−1 log n) [2] or in time
O(k4kn2k−4 log n) [4]. That is, perhaps somewhat unexpectedly, the problem is
polynomial-time solvable on planar graphs for every fixed k. In the companion
paper [6], the dependence of the running time on the number of terminals was

significantly improved: an algorithm with running time 2O(k) · nO(
√
k) was given

for Planar Multiway Cut.
How much further the dependence on k can be improved? Dahlhaus et al. [2]

asked if Planar Multiway Cut can be solved in time ck ·nO(1), which would be
a significant improvement over all known algorithms. More generally, Downey
and Fellows asked in the open problem list of their classical 1999 monograph
[3] if the problem parameterized by the number of terminals is fixed-parameter
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tractable, that is, can be solved in time f(k) ·nO(1) for some computable function
f depending only on k. The main result of the paper is a negative answer to
this question: the problem is W[1]-hard parameterized by the number of termi-
nals, making it unlikely to be fixed-parameter tractable. Moreover, our reduction

shows that there is no f(k) · no(
√
k) time algorithm for any computable function

f , unless the Exponential Time Hypothesis (ETH) fails. ETH is the assumption
that n-variable m-clause 3SAT cannot be solved in time 2o(n) ·mO(1), see [5,7].

Therefore, the 2O(k) ·nO(
√
k) time algorithm of [6] is optimal in the sense that the

exponent of n cannot be better than O(
√
k). We present the hardness proof for

the version of the problem where weights are allowed on the edges. However, the
weights are polynomially large in the reductions, thus the results can be easily
transferred to the case where each edge has unit weight by replacing an edge of
weight c by c parallel edges (or parallel paths if one wishes to state the hardness
result for simple graphs).

2 The Reduction

It will be convenient to present the reduction to Planar Multiway Cut from
the following W[1]-hard problem:

Grid Tiling
Input: Integers k, n, and k2 nonempty sets Si,j ⊆ [n] × [n] (1 ≤

i, j ≤ k).
Find: For each 1 ≤ i, j ≤ k, a value si,j ∈ Si,j such that

– If si,j = (x, y) and si,j+1 = (x′, y′), then x = x′.
– If si,j = (x, y) and si+1,j = (x′, y′), then y = y′.

The W[1]-hardness of Grid Tiling essentially follows from [8]. Note that
the reduction transforms the problem of finding a k-clique into a k × k Grid
Tiling instance (we will need this fact for the tight lower bound in Corollary 5).

Lemma 1. Grid Tiling is W[1]-hard parameterized by k.

To prove the W[1]-hardness of Planar Multiway Cut, we construct gad-
gets of the following form. An n×n gadget is an embedded planar graphGn with a
set of 4n+8 distinguished vertices (see Figure 1). These distinguished vertices all
appear on the boundary of the graph (i.e, on the infinite face) in the clockwise or-
der UL, u1, . . . , un+1, UR, r1, . . . , rn+1, DR, dn+1, . . . , d1, DL, `n+1, . . . , `1. Note
that these distinguished vertices are a subset of the vertices on the boundary of
the gadget, thus e.g., ui and ui+1 are not necessarily adjacent. The four vertices
UL, UR, DR, DL are the only terminal vertices in the gadget. We say that a
multiway cut M of the gadget represents the pair (x, y) ∈ [n]2 if Gn \M has four
components that partition the distinguished vertices into the following classes:

{UL, u1, . . . , uy, `1, . . . , `x} {UR, uy+1, . . . , un+1, r1, . . . , rx}
{DL, d1, . . . , dy, `x+1, . . . , `n+1} {DR, dy+1, . . . , dn+1, rx+1, . . . , rn+1}

The main part of the hardness proof is to show that certain gadgets exist:

2



UL u1 u2 u3 u4 u5 UR

r1

r2

r3

r4

r5

DL d1 d2 d3 d4 d5 DR

`1

`2

`3

`4

`5

n× n gadget

Fig. 1. The distinguished vertices of a n×n gadget for n = 4. The dashed lines indicate
a multiway cut of UL, UR, DR, DL that represents the pair (2, 3).

Lemma 2. Given a subset S ⊆ [n]2, we can construct in polynomial time a
gadget GS and an integer D such that the following properties hold:

1. For every (x, y) ∈ S, the gadget GS has a multiway cut of weight D repre-
senting (x, y).

2. If a multiway cut of GS has weight D, then it represents some (x, y) ∈ S.
3. Every multiway cut of GS has weight at least D.

The proof of Lemma 2 appears in Section 3. Assuming that such gadgets can
be constructed, we can prove that Planar Multiway Cut is W[1]-hard.

Theorem 3. Planar Multiway Cut is W[1]-hard parameterized by the num-
ber of terminal vertices.

Proof. We reduce Grid Tiling to Planar Multiway Cut. Let Si,j ⊆ [n]2

(1 ≤ i, j ≤ k) be the subsets in a Grid Tiling instance. For every 1 ≤ i, j ≤ k,
we use Lemma 2 to construct the n × n gadget Gi,j and compute the integer
Di,j corresponding to the set Si,j . Let D =

∑
1≤i,j≤kDi,j . We construct a planar

graph G by attaching the gadgets the following way:

– for every 1 ≤ i ≤ k, 1 ≤ j < k, we identify vertices UR, r1, . . . , rn+1, DR
of Gi,j with vertices of UL, `1, . . . , `n+1, DL of Gi,j+1, respectively, and

– for every 1 ≤ i < k, 1 ≤ j ≤ k, we identify vertices DL, d1, . . . , dn+1, DR
of Gi,j with vertices of UL, u1, . . . , un+1, UR of Gi+1,j , respectively.

Note that we glue together the gadgets only at the distinguished vertices, not
along the whole boundary. It is easy to see that G is planar. With these identi-
fications, the 4k2 terminal vertices of the k2 gadgets are identified into a set T
of exactly (k + 1)2 terminal vertices. For the sake of analysis, if there are two
gadgets that have edges between two vertices v and u, then we keep both edges
as parallel edges in the graph G. This way, we can say the the edge set of G is
the disjoint union of the edge sets of all the gadgets.
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G1,1 G1,k

Gk,kGk,1

Fig. 2. Constructing the instance by identifying the distinguished vertices of k2 gad-
gets. The circled vertices are terminals, the dashed lines indicate a multiway cut that
corresponds to a clique.

We claim that there is a multiway cut of weight D separating the terminals
in T if and only if the Grid Tiling instance has a solution. Suppose first
that si,j ∈ Si,j (1 ≤ i, j ≤ k) is a solution of the Grid Tiling instance. By
property 1 of Lemma 2, every gadget Gi,j has a multiway cut Mi,j of weight
Di,j that represents si,j . We claim that the union of theseMi,j ’s is a multiway cut
separating T . This follows from the fact that the multiway cuts are consistent
in the following sense: if distinguished vertices v1 and v2 of gadget Gi,j are
identified with vertices v′1 and v′2, respectively, of gadget Gi,j+1, then v1 and v2
are in the same component of Gi,j \Mi,j if and only if v′1 and v′2 are in the same
component of Gi,j+1 \Mi,j+1. For example, consider vertices rs1 and rs2 of Gi,j ,
which are identified with vertices `s1 and `s2 of Gi,j+1. Suppose that si,j = (x, y)
and si,j+1 = (x′, y′) with x = x′. Then from the fact that Mi,j represents (x, y),
we have that rs1 and rs2 are in different components of Gi,j \Mi,j if and only if
s1 ≤ x < s2. Similarly, `s1 and `s2 are in different components of Gi,j+1 \Mi,j+1

if and only if s1 ≤ x′ < s2. The consistency of the multiway cuts implies that if
we look at a terminal vertex, say DR of Gi,j , then its component in G \M is
exactly the union of the component of DR in Gi,j \Mi,j , the component of DL
in Gi,j+1 \Mi,j+1, the component of UR in Gi+1,j \Mi,j , and the component of
UL in Gi+1,j+1 \Mi+1,j+1. Therefore, the terminals in T are indeed separated
from each other in G \M .

For the other direction of the proof, suppose that M is a multiway cut of
T . In particular, this means that M is a multiway cut of the four terminals
of each gadget. Since the gadgets are edge disjoint, M can be partitioned into
disjoint sets Mi,j (1 ≤ i, j ≤ k) such that Mi,j is a multiway cut of gadget Gi,j .
As every multiway cut of gadget Gi,j has weight at least Di,j (Property 3 of
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Lemma 2) and M has weight at most D, it follows that Mi,j has weight exactly
Di,j . Therefore, by Property 2 of Lemma 2, Mi,j represents some set si,j ∈ Si,j .
We claim the the pairs si,j form a solution for Grid Tiling. We verify that if
si,j = (x, y) and si,j+1 = (x′, y′), then x = x′. Suppose first that x < x′. Then
rx+1 of Gi,j is in the same component as DR of Gi,j , while `x+1 of Gi+1,j (which
is actually identified with rx+1 of Gi,j) is in the same component as UL of Gi,j+1

(as x + 1 ≤ x′). Therefore, two terminal vertices are in the same component of
G \M , a contradiction. The case x > x′, as well as the proof that si,j and si+1,j

agree in the second component, is analogous. ut

To obtain a lower bound on the exponent of n in the running time of algorithms
for Planar Multiway Cut, we can use the following lower bound on Clique:

Theorem 4 ([1]). An f(k)no(k) algorithm for Clique implies that ETH fails.

Observe that, given an instance of Clique, the two reductions in Lemma 1
and Theorem 3 create an instance of Planar Multiway Cut with (k + 1)2

terminals. Thus by Theorem 4, we have the following lower bound:

Corollary 5. If there is an f(k)no(
√
k) algorithm for Planar Multiway Cut,

then ETH fails.

3 Gadget construction

The goal of this section is to construct a gadget that satisfies the requirements
of Lemma 2. Section 3.1 describes the construction of the gadget, Section 3.2
proves Property 1 of Lemma 2 by showing how a pair (x, y) ∈ S defines a cheap
multiway cut, while Section 3.3 proves Properties 2 and 3 by showing how a
cheap multiway cut defines a pair in S.

3.1 Construction

Let N := n2 + 2n + 1. We start the construction of the gadget GS with an
(N + 1)× (N + 1) grid: let us introduce vertices g[i, j] (0 ≤ i, j ≤ N) such that
vertices g[i, j] and g[i′, j′] are adjacent if and only if |i−i′|+ |j−j′| = 1. The grid
is pictured as g[0, 0] being the upper left corner, g[0, N ] the upper right corner,
etc. We call the edges on the horizontal path from g[i, 0] to g[i,N ] the row Ri,
while the edges on the vertical path from g[0, j] to g[N, j] is the column Cj . We
also say that the horizontal edge {g[i, j], g[i, j+1]} of row Ri has column number
j and the vertical edge {g[i, j], g[i+ 1, j]} of column Cj has row number i.

For ease of notation, we define the functions α(s) = N − n − 2 + s and
β(x, y) = x + yn (observe that β(n + 1, y) = β(1, y + 1) and n + 1 ≤ β(x, y) ≤
n2 +n = N −n− 1 = α(1) for every 1 ≤ x, y ≤ n). The distinguished vertices of
the gadget are defined as follows (see Figure 3): for every 1 ≤ s ≤ n+ 1, we set

UL = g[0, 0] UR = g[0, N ] us = g[0, β(1, s)] ds = g[N, β(1, s)]
DL = g[N, 0] DR = g[N,N ] `s = g[α(s), 0] rs = g[s,N ].
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Fig. 3. A n× n gadget with n = 4 (and hence N = n2 + 2n+ 1 = 25). The black dots
represent the distinguished vertices, strong edges have weight ∞, dotted strong edges
have weight at least W 3, normal edges have weight between W 2 and W 2 +NW . Some
of the shaded cells are marked special (the cell edges are omitted from the figure). The
dashed lines show the 4 components created by the multiway cut corresponding to the
pair (2, 3).

We refer to the edges of the grid as grid edges. We define now the weight of the
grid edges. Let W := 100N2. Let us set the weights first as follows:

– For 0 ≤ i ≤ N , 0 ≤ j ≤ N − 1, vertical edge {g[i, j], g[i+ 1, j]} has weight

∞ if i = j − 1,

∞ if i = 0 and j 6∈ [α(1), α(n)],

W 3 +W 2 if i = 0 and j ∈ [α(1), α(n)],

∞ if i = N and j 6∈ [1, n],

W 3 +W 2 if i = N and j ∈ [1, n],

W 2 otherwise.
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– For 0 ≤ i ≤ N − 1, 0 ≤ j < N − 1, horizontal edge {g[i, j], g[i, j + 1]} has
weight

∞ if i = 0 and j 6∈ [β(1, 1), β(n, n)],

W 3 +W 2 + jW if i = 0 and j ∈ [β(1, 1), β(n, n)],

W 2 + jW if 0 < i < j,

W 3 +W 2 − i2W − (N − i)2W if i = j,

W 2 + (N − j)W if j < i < N ,

W 3 +W 2 + (N − j)W if j = N and j ∈ [β(1, 1), β(n, n)],

∞ if j = N and j 6∈ [β(1, 1), β(n, n)].

Note that the only part of the boundary with finite edges are the horizontal path
between u1 and un+1, the horizontal path between d1 and dn+1, the vertical path
between `1 and `n+1, and the vertical path between r1 and rn+1.

Let us consider a column number β(1, 1) ≤ z ≤ β(n, n). The horizontal edges
with column number z have weight either W 2 or W 3 +W 2 plus or minus some
lower-order terms. If we sum the weights of these horizontal edges, then the extra
terms jW in rows less than z and the extra terms (N − j)W for rows greater
than z are canceled by the negative terms in the weight of the edge in row Rz.
Thus the total weight of these edges is the same for every column number z.

Claim 6 For every β(1, 1) ≤ z ≤ β(n, n), the total weight of all the horizontal
edges with column number z is exactly 3W 3 + (N + 1) ·W 2.

For every 1 ≤ s ≤ n, we add the upper ear edge {us, us+1} and the lower ear
edge {ds, ds+1}, both having weight W 3.

The cell C[i, j] is the face of the grid with the corners g[i, j], g[i+ 1, j], g[i+
1, j+1], g[i, j+1] on its boundary. We mark each cell either as normal or special
and add edges to the cell accordingly (we will call these new edges the cell edges).
If the cell C[i, j] is normal, then we add new (parallel) edges {g[i, j], g[i+ 1, j]},
{g[i + 1, j], g[i + 1, j + 1]}, {g[i + 1, j + 1], g[i, j + 1]}, {g[i, j + 1], g[i, j]}, all
with weight 2 (see Figure 4). If the cell C[i, j] is special, then we add the edges
{g[i, j], g[i+ 1, j]} and {g[i, j + 1], g[i+ 1, j + 1]} having weight 1, as well as the
edges {g[i, j], g[i, j + 1]}, {g[i+ 1, j], g[i, j + 1]} having weight 2.

The crucial properties of the cell edges are the following. If the two upper
corners g[i, j], g[i, j + 1] are separated from the two lower corners g[i + 1, j],
g[i + 1, j + 1], then the cell edges connecting these vertices have to be in the
multiway cut. Observe that the total weight of these cell edges is exactly 4 both
in a normal cell and in a special cell. Similarly, if the two corners g[i, j], g[i+1, j]
on the left are separated from the two corners g[i, j + 1], g[i + 1, j + 1] on the
right, then the weight of the edges that need to be in the multiway cut is exactly
4 for both type of cells. However, there is a difference if we want to partition
the four corners of the cell C[i, j] into three components {g[i, j]}, {g[i + 1, j]},
{g[i, j + 1], g[i+ 1, j + 1]}. For normal cells, the edges {g[i, j], g[i+ 1, j]}, {g[i+
1, j], g[i+ 1, j + 1]}, {g[i, j + 1], g[i, j]}, having total weight 6, need to be in the
multiway cut. On the other hand, for special cells, the edges {g[i, j], g[i+ 1, j]},
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Fig. 4. The cell edges within a normal and a special cell. The strong edges are the 4
grid edges forming the boundary of the cell. The dashed lines show a 3-way partition
of the corners that costs 6 in a normal cell and only 5 in a special cell.

{g[i, j], g[i, j + 1]}, {g[i + 1, j], g[i, j + 1]} that need to be in the multiway cut
have total weight 5. Similarly, a multiway cut with partition {g[i, j], g[i+ 1, j]},
{g[i, j + 1]}, {g[i + 1, j + 1]} need to contain cell edges of total weight 6 in a
normal cell, but weight 5 is sufficient in a special cell.

We complete the construction of the gadget by encoding the set S: for ev-
ery (x, y) ∈ S, we mark the two cells C[x, β(x, y)] and C[α(x), β(x, y)] special.
Finally, we set D := 7W 3 + (2N + 2)W 2 + 4(2N − 3) + 10 < 8W 3.

3.2 Pair (x, y) ⇒ multiway cut.

Given a pair (x, y) ∈ S, we construct a multiway cut M representing (x, y) the
following way. We partition the vertices of gadget the following way: vertex g[i, j]
is in the same class as

– UL if i ≤ α(x) and j ≤ β(x, y),
– UR if i ≤ x and j > β(x, y),
– DL if i > α(x) and j ≤ β(x, y),
– DR if i > x and j > β(x, y).

Observe that this partition indeed represents the pair (x, y). The multiway cut
M contains all the edges that connect edges between two different classes:

1. ear edges {uy, uy+1}, {dydy+1},
2. {g[s, β(x, y)], g[s, β(x, y) + 1]} for every 0 ≤ s ≤ N ,
3. {g[α(x), s], g[α(x) + 1, s]} for every 0 ≤ s ≤ β(x, y),
4. {g[x, s], g[x+ 1, s]} for every β(x, y) < s ≤ N ,
5. and some number of cell edges.

The total weight of the two edges in the first group is 2W 3. The second group
contains all the horizontal edges with column number β(x, y), hence their total
weight is exactly 3W 3 + (N + 1) ·W 2 by Claim 6. Groups 3 and 4 contain N + 1
vertical edges in total, two of them having weight W 3 +W 2 and the rest having
weight W 2. Note that none of these edges has weight ∞: it is not possible that
α(x) = s−1 for some s ≤ β(x, y) (as α(x) ≥ N −n−1 and β(x, y) ≤ N −n−1)
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or that x = s − 1 for some s > β(x, y) (as x ≤ n and β(x, y) ≥ n + 1). Thus
the total weight of the edges in Groups 3 and 4 is 2W 3 + (N + 1)W 2. We can
conclude that the total weight of the grid edges and ear edges in the multiway
cut is 7W 3 + (2N + 2)W 2.

What remains to be shown is that the weight of the cell edges in M is at
most 4(2N − 3) + 10 in the multiway cut. Let us analyze how the corners of the
cell C[i, j] are partitioned by the multiway cut.

1. Horizontal cut: {g[i, j], g[i, j + 1]}, {g[i+ 1, j], g[i+ 1, j + 1]} if i = α(x) and
j < β(x, y) holds, or if i = x and j > β(x, y) holds.

2. Vertical cut: {g[i, j], g[i+ 1, j]}, {g[i, j + 1], g[i+ 1, j + 1]} if j = β(x, y) and
i 6∈ {x, α(x)}.

3. 3-way a cut: {g[i, j]}, {g[i+ 1, j]}, {g[i, j + 1], g[i+ 1, j + 1]} if i = α(x) and
j = β(x, y).

4. 3-way ` cut: {g[i, j], g[i + 1, j]}, {g[i, j + 1]}, {g[i + 1, j + 1]} if i = x and
j = β(x, y).

5. All corners are in the same class otherwise.

For each cell in the first two groups, the weight of the cell edges in the multiway
cut is exactly 4 (regardless if the cell is normal or special). As (x, y) ∈ S, the
cells C[α(x), β(x, y)], C[x, β(x, y)] were marked as special. Therefore, each of the
two cells in groups 3 and 4 contribute weight 5 to the multiway cut. It follows
that the total weight of the cell edges in M is exactly 4(2N−3)+10, as required.
This proves Property 1 of Lemma 2.

3.3 Multiway cut ⇒ pair (x, y).

To prove Properties 2 and 3 of Lemma 2, consider a multiway cut M of weight
at most D. We prove that M has to be of the form shown in Figure 3: it consists
of a “vertical cut” with two “horizontal cuts” on its two sides. Moreover, the the
two cells where these cuts meet should be special. Taking into account the way
in which the special cells are located, we can conclude that the two horizontal
cuts have the same “vertical position” and that the pair (x, y) is indeed in S.

Let us denote by KUL the component of G \M containing the vertex UL
(and we define KUR etc. similarly). We call the path UL = g[0, 0], g[0, 1], g[1, 1],
g[1, 2], . . . , g[N − 1, N − 1], g[N − 1, N ], DR = g[N,N ] the diagonal path.

Claim 7 Multiway cut M contains exactly one upper ear edge, exactly one lower
ear edge, exactly one edge of the diagonal path, and exactly edge from each of
C0, CN , R0, and RN .

Proof. The vertex u1 is in KUL (as horizontal edges of weight ∞ connect it to
UL) and un+1 is in KUR. This means that at least one of the upper ear edges is in
M . Similarly, at least one of the lower ear edges have to be in M . It is also clear
that M has to contain at least one edge from the diagonal path and each of C0,
CN , R0, and RN , as each one of these 5 edge sets connects two distinct terminals.
Every edge shared by these 5 sets has weight ∞ (note that edge {g[0, 0], g[0, 1]}
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appears both on the diagonal path and R0, while {g[N −1, N ], g[N,N ]} appears
both on the diagonal path and CN ). Therefore, M contains at least 5 edges from
these 5 sets. As every ear edge and every edge in these 5 sets have weight either
∞ or at least W 3 and the weight of M is at most D < 8W 3, the multiway cut
contains exactly one edge from each of these sets. ut

By Claim 7, the multiway cut M contains

– {uy1
, uy1+1} for some 1 ≤ y1 ≤ n,

– {dy2
, dy2+1} for some 1 ≤ y2 ≤ n,

– {`x1 , `x1+1} for some 1 ≤ x1 ≤ n,
– {rx2

, rx2+1} for some 1 ≤ x2 ≤ n,
– {g[0, z1], g[0, z1 + 1]} for some β(1, 1) ≤ z1 ≤ β(n, n),
– {g[N, z2], g[N, z2 + 1]} for some β(1, 1) ≤ z2 ≤ β(n, n), and
– {g[z, z], g[z, z + 1]} for some 0 < z < N .

As C0 contains exactly one edge of the multiway cut, every vertex on C0 is in
KUL ∪KDL. We can argue similarly for the other three sides.

Claim 8 V (C0) ⊆ KUL ∪KDL, V (CN ) ⊆ KUR ∪KDR, V (R0) ⊆ KUL ∪KUR,
and V (RN ) ⊆ KDL ∪KDR.

Observe that every horizontal grid edge on the diagonal path has weight at least
W 3 + W 2/2. Therefore, the 7 edges given by Claim 7 (4 on the boundary of
the grid, 1 on the diagonal path, and 2 ear edges) have total weight at least
7W 3 + 4W 2 + W 2/2. This implies that the remaining edges have total weight
less than (2N − 2)W 2, otherwise the weight would be at least 7W 3 + (2N +
2)W 2 + W 2/2 > D. In particular, M can contain at most 2N − 3 further grid
edges, that is, the total number of grid edges in M is at most 2N + 2.

Claim 9 M contains exactly one edge from each of Ri and Ci (0 ≤ i, j ≤ N).

Proof. As V (C0) ⊆ KUL ∪KDL and V (CN ) ⊆ KUR ∪KDR (by Claim 8), the
multiway cut M has to contain at least one edge of Ri for every 1 ≤ i ≤ N − 1.
In a similar way, M contains at least one edge Cj for every 1 ≤ j ≤ N − 1. As
M contains at most 2N + 2 grid edges, it immediately follows that M contains
exactly one edge of each row and column. ut

Observe that every vertical grid edge inside the grid has weight exactly W 2 if its
weight is finite. Therefore, we know the exact weight of the vertical grid edges
in M and hence can bound the total weight of the horizontal grid edges.

Claim 10 The total weight of vertical grid edges in M is exactly 2W 3 + (N +
1)W 2 and therefore the total weight of horizontal grid edges in M is at most
3W 3 + (N + 1)W 2 + 4(2N − 3) + 10 < 3W 3 + (N + 1)W 2 +W .

Claim 11 M contains {g[i, z], g[i, z + 1]} for every 0 ≤ i ≤ N and the total
weight of the horizontal grid edges in M is exactly 3W 3 + (N + 1)W 2.
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Proof. Since {g[z, z], g[z, z+1]} is the unique edge of the multiway cut that is on
the diagonal path from UL to DR, we have g[z, z] ∈ KUL and g[z, z+1] ∈ KDR.
Therefore, the multiway cut has to contain an edge of the vertical path from
g[z, z] ∈ KUL to g[N, z] ∈ RN ⊆ KDL ∪KDR (by Claim 8). Since we know that
the multiway cut M contains exactly one edge of Cz (Claim 9), it follows that M
does not contain any edge of the vertical path from g[z, z] to g[0, z], that is, every
vertex on this path is in KUL. The multiway cut has to separate the vertices on
this vertical path from the vertices of CN ⊆ KUR∪KDR (Claim 8), thus for every
0 ≤ i < z the unique edge in M ∩ Ri has column number at least z. Therefore,
the total weight of these z edges is at least W 3 +zW 2 +z2W , with equality only
if every edge has column number exactly z (and β(1, 1) ≤ z ≤ β(n, n) to ensure
that {g[0, z], g[0, z+ 1]} has finite weight). A similar argument shows that every
edge inM∩Ri for i > z has to have column number at most z, and hence the total
weight of these N−z edges is at least W 3+(N−z)W 2+(N−z)2W with equality
only if all these edges have the same column number β(1, 1) ≤ z ≤ β(n, n).
Taking into account also the edge {g[z, z], g[z, z + 1]}, we get that the total
weight of the horizontal grid edges is at least 3W 3 + (N + 1) ·W 2, with equality
only if all of them have column number z. Furthermore, as the weight of every
grid edge is a multiple of W , if not every horizontal edge has column number z,
then the weight is at least 3W 2 +(N +1)W 2 +W , contradicting Claim 10. Thus
every horizontal edge has the same column number β(1, 1) ≤ z ≤ β(n, n). ut

For i = 0 and i = N , Claim 11 implies z = z1 = z2 and hence β(1, 1) ≤ z ≤
β(n, n) (to avoid the selection of edges with weight ∞ on the boundary).

Claim 12 The unique edge of M ∩ Cj is {g[x1, j], g[x1 + 1, j]} if j ≤ z and
{g[x2, j], g[x2 + 1, j]} if j > z.

Proof. Observe that for every i ≤ x1 and j ≤ z, vertex g[i, j] is in KUL: the
multiway cut does not contain any of the edges on the vertical path from UL to
g[i, 0] and on the horizontal path from g[i, 0] to g[i, j]. Similarly, vertex g[i, j] is
in KDL if i > x1 and j ≤ z. These two statements together imply that the edge
{g[x1, j], g[x1 + 1, j]} has to be in the multiway cut for every 0 ≤ j ≤ z. The
argument for j > z is analogous. ut

By Claim 12, the 2N + 2 grid edges in the multiway cut are arranged as in
Figure 3. It follows that the multiway cut contains cell edges from exactly 2N−1
cells. As the weight of M is at most D, the total weight of these cell edges is at
most 4(2N − 3) + 10.

Claim 13 The cells edges in M have total weight exactly 4(2N − 3) + 10 and
the cells C[x1, z] and C[x2, z] are special.

Proof. For every 0 ≤ j < z, the two upper corners of the cell C[x1, j] are
separated from the two lower corners. Therefore, the weight of the cell edges
from C[x1, j] in the multiway cut is 4 (no matter whether the cell is special or
not). The same is true for every cell C[x2, j] with j > z. For the cells C[i, z]
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with i 6∈ {x1, x2}, the two corners on the left are separated from the two corners
on the right, which again means that the weight contributed by the cell edges
of C[i, z] is 4. Thus the weight contributed by the cell edges of these 2N − 3
cells is at least 4(2N − 3). As the total weight of the cell edges is at most
4(2N − 3) + 10, the contribution of the two cells C[x1, z] and C[x2, z] is at
most 10. The corners of C[x1, z] are partitioned as {g[x1, z]}, {g[x1 + 1, z]},
{g[x1, z + 1], g[x1 + 1, z + 1]} by the multiway cut, while the corners of C[x2, z]
are partitioned as {g[x2, z], g[x2 +1, z]}, {g[x2, z+1]}, {g[x1 +1, z+1]}. In both
cases, the weight of the edges contained in the multiway cut is 5 if the cell is
special and 6 if it is normal. Therefore, both of these cells have to be special. ut

Suppose that z = β(x, y) for some 1 ≤ x, y ≤ n (recall that β(1, 1) ≤ z ≤
β(n, n)). There are at most two cells with column number z that are special. By
construction, C[x1, z] and C[x2, z] are special only if (x, y) ∈ S and we have x1 =
α(x), x2 = x. That is, the multiway cut M contains the edge {g[α(x), 0], g[α(x)+
1, 0]} = {`x, `x +1} and the edge {g[x,N ], g[x+1, N ]} = {rx, rx +1}. Finally, as
the multiway cut contains {g[0, z], g[0, z+ 1]} and {g[N, z], g[N, z+ 1]}, the two
ear edges contained in the multiway cut should be {uy, uy + 1} and {dy, dy + 1}.
This proves that the multiway cut represents the pair (x, y) ∈ S, what we had
to show. Claim 13 also shows that there is no multiway cut with weight < D.
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