
Double-Exponential and Triple-Exponential
Bounds for Choosability Problems Parameterized
by Treewidth∗

Dániel Marx1 and Valia Mitsou2

1 Institute for Computer Science and Control, Hungarian Academy of Sciences,
Budapest, Hungary
dmarx@cs.bme.hu

2 Institute for Computer Science and Control, Hungarian Academy of Sciences,
Budapest, Hungary
vmitsou@sztaki.hu

Abstract
Choosability, introduced by Erdős, Rubin, and Taylor [Congr. Number. 1979], is a well-studied
concept in graph theory: we say that a graph is c-choosable if for any assignment of a list of c
colors to each vertex, there is a proper coloring where each vertex uses a color from its list. We
study the complexity of deciding choosability on graphs of bounded treewidth. It follows from
earlier work that 3-choosability can be decided in time 22O(w) · nO(1) on graphs of treewidth w.
We complement this result by a matching lower bound giving evidence that double-exponential
dependence on treewidth may be necessary for the problem: we show that an algorithm with
running time 22o(w) · nO(1) would violate the Exponential-Time Hypothesis (ETH). We consider
also the optimization problem where the task is to delete the minimum number of vertices to
make the graph 4-choosable, and demonstrate that dependence on treewidth becomes triple-
exponential for this problem: it can be solved in time 222O(w)

· nO(1) on graphs of treewidth w,
but an algorithm with running time 222o(w)

· nO(1) would violate ETH.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases Parameterized Complexity, List coloring, Treewidth, Lower bounds under
ETH

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.28

1 Introduction

Most NP-hard algorithmic problems become significantly easier when restricted to bounded-
treewidth graphs. There are notable exceptions that remain NP-hard on graphs of constant
treewidth (e.g., Steiner Forest [1, 20], List Edge Coloring [37], Edge-disjoint Paths
[41]), but most of the natural combinatorial problems can be solved in polynomial time
(or even in linear time) if treewidth is bounded. Courcelle’s Theorem [11] is a meta-result
showing that if a problem can be expressed in the language of monadic second order logic
(MSOL), then it can be solved in linear-time on bounded-treewidth graphs: there is an
algorithm with running time f(w) ·n, where w is the treewidth of the graph. While this result

∗ This work was supported by ERC Starting Grant PARAMTIGHT (No. 280152) and OTKA grant
NK105645.

EA
T

C
S

© Dániel Marx and Valia Mitsou;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 28; pp. 28:1–28:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2 Double-Exponential and Triple-Exponential Bounds for Choosability Problems

immediately gives algorithms for a large number of combinatorial problems, focus has shifted
in recent years towards trying to obtain a tighter understanding of how the running time has
to depend on treewidth, that is, understanding what the best possible f(w) in the running
time can be. On the one hand, recent algorithm advances, such as Cut & Count [14] and fast
subset convolution [3, 47], resulted in improved dependence on treewidth for various problems.
On the other hand, conditional results based on the Exponential-Time Hypothesis (ETH)
[25, 26, 34] give lower bounds on the best possible dependence that can be achieved, and in
many cases these lower bounds tightly match the known algorithms [13, 14, 33, 35, 43]. (ETH
can be informally stated as n-variable 3SAT cannot be solved in time 2o(n).) Most of these
tight bounds are of the form 2O(w) (e.g., 3-Coloring, Hamiltonian Cycle, Triangle
Packing, etc.), but there are surprising exceptions where the best possible dependence
on treewidth is 2O(w logw) [14, 35] or even 2O(wc) for some constant c > 1 [13]. A result
of Frick and Grohe [19] shows that, assuming P 6= NP, the dependence on treewidth can
be really bad for some problems: Courcelle’s Theorem does not remain true if we impose
any elementary bound on the function f(w). That is, for every h ≥ 1, there are MSOL
sentences and corresponding model-checking problems for which the dependence on treewidth
is an exponential tower of height h. Pan and Vardi [42] gave strong evidence that this bad
performance is expected for problems high up in the polynomial hierarchy: they showed

that, under ETH, there is a strict hierarchy of lower bounds of the form 22···
2o(w)

inside
PSPACE. In this paper, we present two fairly standard graph-theoretic problems that require
double-exponential and triple-exponential dependence on treewidth, respectively.

1.1 k-Choosability
A proper k-coloring of a graph G is a mapping f : V (G) → [k] such that f(u) 6= f(v) for
any two adjacent u, v ∈ V (G). List coloring is the generalization where instead of having
the same set [k] of colors available at each vertex, each vertex v has its own list L(v) of
available colors and the question is whether there is a proper coloring f that assigns a color
f(v) ∈ L(v) to each vertex v. The algorithmic aspects of list coloring have received significant
interest [2, 10, 23, 24, 29, 32, 37, 38, 46].

Erdős, Rubin, and Taylor [16] defined a combinatorial property related to list colorings:
we say that a graph G is k-choosable if it has a coloring for any list assignment L that has
size k at each vertex. Clearly, k-choosability implies k-colorability. One may feel that the
converse implication could also be true: after all, it may seem safe to guess that the “worst
case” of list coloring is when every vertex has the same list [k]. But this intuition is wrong:
for example, for any k ≥ 1, there are 2-colorable graphs that are not k-choosable.

From the computational complexity point of view, deciding k-choosability is a much
harder algorithmic problem than deciding k-colorability. Deciding k-choosability does not
seem to belong to the class NP (a witness for k-choosability would need to prove colorability
for every list assignment L) or to the class coNP (an uncolorable list assignment would be a
good witness for non-k-choosability, but it cannot be verified in polynomial time). In fact,
the k-choosability problem is known to lie higher in the polynomial hierarchy.

I Theorem 1 (from [21]). k-Choosability for k ≥ 3 is Πp
2-complete.

We observe a similar gap in complexity between the two problems when looking at
algorithms parameterized by treewidth. 3-colorability can be decided in time 3w · nO(1)

using standard techniques [12]. Fellows et al. [17] showed that deciding 3-choosability is
fixed-parameter tractable parameterized by treewidth. One can make this result quantitative

D. Marx and V. Mitsou 28:3

by observing that the running time is actually 22O(w) · nO(1) for graphs of treewidth w. Our
first result shows that this double exponential dependence on treewidth is best possible,
assuming ETH.

I Theorem 2. For every fixed k ≥ 3:
1. There is an algorithm for k-Choosability with running time 22O(w) · nO(1) on graphs of

treewidth w.
2. Assuming ETH, there is no algorithm for k-Choosability with running time 22o(w) ·nO(1)

on graphs of treewidth w.

1.2 k-Choosability Deletion
Given any class C of graphs, one can define various graph modification problems where the
task is to transform a given graph G into a member of C with the minimum number of vertex
deletions/edge deletions/edge additions. The parameterized algorithms literature is especially
rich in this type of problems, where the goal is, for example, to make the graph acyclic
[9, 15], bipartite [27, 36, 44, 45], planar [28, 40], chordal [5, 7, 18, 30, 39], or interval [4, 6, 8].
Investigating these problems on graphs of bounded treewidth is an interesting question on
its own right, but additional motivation comes from the fact that some of the algorithms on
general graphs first reduce the treewidth and then invoke an algorithm exploiting bounded
treewidth [28, 39, 40].

If we look at the vertex deletion versions of coloring and choosability problems, then
we can observe an even larger gap than in the decision version. For technical reasons, we
give a proof only for k ≥ 4 colors. It is not difficult to show (we leave it as an exercise
to the reader) that there is an algorithm with running time 2O(w) · nO(1) for 4-Coloring
Deletion that, given a graph G of treewidth w, computes the minimum number of vertices
that needs to be deleted to make the graph 4-colorable. On the other hand, if we consider
the 4-Choosability Deletion problem, which asks for the minimum number of vertices
that need to be deleted to make a given graph G 4-choosable, then we need triple-exponential
dependence on treewidth.

I Theorem 3. For every fixed k ≥ 4:
1. There is an algorithm for k-Choosability Deletion with running time 222O(w)

· nO(1)

on graphs of treewidth w.
2. Assuming ETH, there is no algorithm for k-Choosability Deletion with running time

222o(w)

· nO(1) on graphs of treewidth w.

As a side result, we show that k-Choosability Deletion lies one level higher than
k-Choosability in the polynomial hierarchy (compare this with the fact that k-Coloring
and k-Coloring Deletion are both in NP).

I Theorem 4. For every k ≥ 3, k-Choosability Deletion is Σp3-complete.

The reader may feel that the Πp
2- and Σp

3-completeness of these problems already give
sufficient explanation why double- or triple-exponential dependence on treewidth is needed.
This is true in some sense: the quantifier alternations in the problem definitions are the
common underlying reasons for being in the higher levels of the polynomial hierarchy and
for requiring unusually large dependence on treewidth. But let us point out that these two
types of complexity results require very different proof structures. In Πp

2- or Σp3-completeness
proofs, we start with a canonical Πp

2- or Σp
3-complete quantified satisfiability problem and

we use the alternations inherent in the definitions of k-Choosability or k-Choosability

ICALP 2016

28:4 Double-Exponential and Triple-Exponential Bounds for Choosability Problems

Deletion to express the alternations in quantified satisfiability. On the other hand, in the
proofs of Theorems 2(2) and 3(2), we start with problems in NP and use the alternations
inherent in k-Choosability or k-Choosability Deletion for compression: we want
to express the original instance by a graph having treewidth only O(logn) or O(log logn).
Thus the main theme of our proofs is trading alternation for compression: we want to use
alternation to allow the succinct encoding and verification of information. Note also that
both k-Choosability and k-Choosability Deletion can be solved in time 2nO(1) , hence
the exponential explosion appears only in the context of bounded-treewidth graphs.

2 Preliminaries

I Definition 5 (List coloring). Given graph G together with sets L(v) ⊂ IN, one for every
vertex v (we shall call L(v) the list of v), then G is L-colorable if there exists a coloring
c : V (G) → IN, which is proper and for which ∀v ∈ V (G), c(u) ∈ L(v). In that case, c is
called a proper L-coloring.

I Definition 6 (Choice number). Given G and some k ∈ IN, G is called k-choosable if for
any list assignment L : V (G)→ 2IN with |L(v)| = k for all v ∈ V (G), G is L-colorable. The
choice number (or list-chromatic number) of G, denoted by χ`(G), is the minimum number
k such that G is k-choosable.

The notion of f -choosability defined below generalizes k-choosability, but for arbitrary
list sizes for each vertex.

I Definition 7 (f -choosable graphs). A graph G is called f-choosable for some function
f : V (G) → IN (called list-capacity function) if G is L-colorable for any list assignment
L : V (G)→ 2IN where |L(v)| = f(v) for all v ∈ V (G).

As a direct consequence of the definition, we get that the null graph K0 with no vertices
is f -choosable for any list-capacity function f . The reason is the vacuous truth that, for any
list assignment L, the empty function e : ∅ → IN is a proper L-coloring of K0.

I Definition 8 (Color Compatibility). Given a graph G, a list assignment L, an ordered k-tuple
(u1, u2, . . . , uk) ∈ V (G)k and an ordered k-tuple of colors (c1, c2, . . . , ck) with ci ∈ L(ui) for
i ∈ [k], we say that (c1, c2, . . . , ck) is compatible on (u1, u2, . . . , uk) if there exists a proper
L-coloring g of G with g(ui) = ci. We may omit G and L if they are clear from the context.

We define the following algorithmic problems:
(i, j)-Choosability: Given a graph G, integers i, j ∈ IN where i ≤ j, and a list-capacity
function f for which f(v) ∈ {i, . . . , j} for any vertex v ∈ V , decide whether G is
f -choosable.
k-Choosability:= (k, k)-Choosability.
(i, j)-Choosability Deletion: Given a graph G, integers i, j, r ∈ IN with i ≤ j, and a
list-capacity function f for which f(v) ∈ {i, . . . , j} for any vertex v ∈ V , decide whether
there exists U ⊂ V with |U | ≤ r such that G− U is f -choosable.
k-Choosability Deletion:= (k, k)-Choosability Deletion.

Below are some known results about Choosability.

I Theorem 9 (from [16]). (2, 3)-Choosability is Πp
2-complete.

I Theorem 10 (from [21]). k-Choosability for k ≥ 3 is Πp
2-complete.

I Theorem 11 (from [17]). k-Choosability parameterized by the treewidth of the input
graph is in FPT.

D. Marx and V. Mitsou 28:5

3 Double-exponential lower bound for k-Choosability

The topic of this section is proving Theorem 2(2), the double-exponential lower bound on
3-Choosability parameterized by treewidth. For the proof, we will find it convenient to
start the reduction from Edge 3-Coloring, where given a graph G, the task is to decide if
G has a proper edge 3-coloring (that is, whether there is an assignment c : E(G)→ {1, 2, 3}
such that c(e1) 6= c(e2) for any two edges e1 and e2 sharing an endpoint). Holyer’s proof
[22] for the NP-hardness of Edge 3-Coloring on 3-regular graphs can be observed to
give a tight lower bound under ETH. Note that a 3-regular graph on n vertices has exactly
3n/2 = O(n) edges. We state the lower bound in a slightly awkward way, but this type of
bound is what we exactly need.

I Theorem 12 (follows from [22]). Assuming ETH, Edge 3-Coloring cannot be decided
in time 22o(log n) , where n is the number of vertices of the graph. Moreover, this remains true
even if we consider only 3-regular graphs whose number of vertices is an integer power of 2.

That is, if we reduce Edge 3-Coloring to some other problem by creating an equivalent
instance with treewidth O(logn), then an algorithm of the target problem with running
time 22o(w) · nO(1) for graphs of treewidth w would yield an algorithm with running time
22o(log n) · nO(1) for Edge 3-Coloring, contradicting Theorem 12.

The reason why reducing from this problem is convenient for our proof is that Edge
3-Coloring involves constraints of the form “the three edges e1, e2, e3 incident to a vertex
u use all three colors from {1, 2, 3},” and this type of constraints will be easy to express
in our reduction. However, there is an unfortunate presentation issue: when talking about
colors, vertices, and edges, it may not be immediately clear if we refer to the source Edge 3-
Coloring instance or to the target 3-Choosability instance, and this may cause confusion.
Therefore, we prefer to treat Edge 3-Coloring as a constraint satisfaction problem and
use terminology appropriate to that. Formally, an instance of Edge 3-Coloring can
be interpreted as a problem where we have a set X of n variables (corresponding to the
edges of G), each variable has the domain {1, 2, 3}, and we have a set Y of m constraints
(corresponding to the vertices of G). Each constraint contains exactly three distinct variables,
and the constraint is satisfied if these variables are assigned three different values. Then the
proper edge 3-colorings of G are in one-to-one correspondence with the satisfying assignments
of this constraint satisfaction problem. Note that each variable appears in exactly two
constraints.

Given an instance H of the constraint satisfaction problem described above, we create an
instance of (2, 3)-Choosability, i.e, a graph G and a list-capacity function f : V → {2, 3}.
Then we show that there is a satisfying assignment of I if and only if G is not (2, 3)-choosable.
We will further make sure that tw(G) = O(logm), which will imply the desired time lower
bound. For the forward direction, all we need to do is, given a satisfying assignment
h : X → {1, 2, 3} of H, use h in order to define a list assignment L for which G is not
L-colorable. The converse direction is somewhat more involved, as we need to start from
the assumption that G is not f -choosable and, given some uncolorable list assignment L′,
show that H is satisfiable. However, since we do not know exactly how the list assignment
L′ which fails to proper L′-color G looks like, we need to consider more general properties
which apply to any such potential list assignment.

3.1 Gadgets
Before presenting the main reduction, we introduce three different types of gadgets and
prove their properties. Corresponding to the two directions of the proof of correctness of the

ICALP 2016

28:6 Double-Exponential and Triple-Exponential Bounds for Choosability Problems

pl p′l

p′′l q′′l

q′l ql

3 2

3 3

2 3

Figure 1 The Bit-chooser
gadget Bl of the lth bit.

s s′ t′ t

r

3 3

2

Figure 2 The Weak-edge gad-
get Wst, connecting vertices s, t.

u2

u1

z2

z1

a b v2

3

3
3

Figure 3 The Weak-star
gadget Si for variable xi.

reduction, we show two types of properties for each gadget: an “∃ list L” property, which we
use in order to define a list assignment L for the forward direction, and a “∀ lists L” property,
which shall be useful in proving the converse direction.

1. Bit-chooser gadget Bl (Figure 1). Informally, a list assignment of the bit chooser
gadget can enforce that a certain color appears on at least one of the two outputs pl and ql,
but this is all it can do: in every list assignment, there is a “good” color on pl and ql that is
compatible with every color on the other output.

I ∃L-Property 1. There exists a list assignment L and a color c with c ∈ L(pl)∩L(ql) such
that for any proper L-coloring of Bl, at least one of pl, ql should receive color c.

I ∀L-Property 1. For every list assignment L, there exists a color c ∈ L(pl) (resp., L(ql))
such that for every color c′ ∈ L(ql) (resp., c′ ∈ L(pl)) the pair (c, c′) is compatible on (pl, ql)
(resp., on (ql, pl)).

2. Weak-edge gadget Wst (Figure 2). Informally, the Weak-edge gadget can prevent a
certain combination (c, c′) of colors appearing on the two outputs, but it cannot prevent
more than one such combinations.

I ∃L-Property 2. There exists a list assignment L and colors c ∈ L(s), c′ ∈ L(t) such that
the pair (c, c′) is incompatible on (s, t).

I ∀L-Property 2. For every list assignment L, there exists at most one (c, c′) ∈ L(s)×L(t)
such that (c, c′) incompatible on (s, t). In fact, if (c, c′) is incompatible on (s, t), then the
following hold: c, c′ 6∈ L(r); L(s′) = {c} ∪ L(r); and L(t′) = {c′} ∪ L(r).

Because of their properties, the Weak-edges, if given an appropriate list assignment L,
can define an incompatible pair of colors being mutually assigned to their endpoints. Another
way to view a Weak-edge is to consider it a directed edge between a precolored vertex s and
an uncolored vertex t potentially forbidding a particular color from being assigned to t: if, for
Wst, (c, c′) is incompatible on (s, t) and s has already been assigned color c, then we know
that t cannot receive color c′. Observe that, because of the ∀L-Property, each Weak-edge
defines at most one such incompatible pair between the endpoints.

3. Weak-star gadget Si (Figure 3). Informally, the Weak-star gadget has the property
that there is at most one color c on v that can forbid one specific color c1 on u1 and one
specific color c2 on u2. When using this gadget on a vertex v whose list size is 2, it will act
like an OR-gadget: if this specific color appears on u1 or u2, then it forbids color c on v, and
hence forces it to take the other color in the list of v.

D. Marx and V. Mitsou 28:7

Figure 4 An overview of the construction.

I ∃L-Property 3. There exist a list assignment L and a color c ∈ L(u1)∩L(u2)∩L(v) such
that (c, c) is incompatible on both (u1, v) and (u2, v).

I ∀L-Property 3. For every list assignment L, there exist colors c1 ∈ L(u1), c2 ∈ L(u2), c ∈
L(v) such that if (d1, d2, d) is incompatible on (u1, u2, v) then d = c and (d1 = c1)∨ (d2 = c2).

3.2 Construction
We will now proceed with the description of the construction of G. Consider an arbitrary
ordering of the m constraints of Y , assigning a unique index {0, . . . ,m− 1} to each of them.
Now construct logm Bit-chooser gadgets B1, . . . , Blogm as shown in Figure 1. For gadget
Bl, vertex pl shall correspond to bit 1 and vertex ql to 0.

Furthermore, for each appearance of a variable xi in constraint yj we construct a Chain
Pij , which is essentially a path on logm vertices u1

ij , . . . , u
logm
ij , where we have substituted

every edge (ulij , ul+1
ij) by a Weak-edge gadget Wul

ij
ul+1

ij
as the one shown in Figure 2, by

identifying ulij with s and ul+1
ij with t. We also set f(u1

ij) = 2 and f(ulij) = 3 for l > 1.
Then we need to connect the Chains to the Bit-choosers. To do so, for each Chain Pij , we

write j in binary representation and for l = 1, . . . , logm, if the lth bit is 1, we connect ulij to
pl, else we connect it to ql. The connection is by a Weak-edge Wplul

ij
or Wqlul

ij
respectively.

In addition, we construct n variable-vertices v1, . . . , vn, one for each variable x1, . . . , xn
and we set f(vi) = 2. Eventually, we need to connect the two Chains which correspond to
the two appearances of xi to vertex vi. In order to do so, we use a Weak-star gadget Si (see
Figure 3). For Chains Pij and Pij′ with j < j′, corresponding to variable xi in constraints yj
and yj′ , respectively, we identify ulogm

ij with u1, ulogm
ij′ with u2, and v with variable-vertex

vi.
Last, we construct a checker vertex w with f(w) = 3 and connect it to all v1, . . . , vn

(using an ordinary edge). This completes the construction. Our claim is that H is satisfiable
if and only if G is not f -choosable.

ICALP 2016

28:8 Double-Exponential and Triple-Exponential Bounds for Choosability Problems

It is easy to verify that the constructed graph G has pathwidth (and hence treewidth)
bounded by O(logm).

I Lemma 13. pw(G) = O(logm).

3.3 Satisfying assignment ⇒ uncolorable list assignment
In this section, we prove the forward direction of the correctness of the reduction.

I Lemma 14. If H is satisfiable, then G is not f -choosable.

Proof. Assume that H is satisfiable. Then there should be an assignment h : X → {1, 2, 3}
satisfying all the constraints in Y . We will produce a list assignment L for which the graph
will not be L-colorable.

First, we construct the lists of the vi’s according to the satisfying assignment of H,
L(vi) = {h(xi), c}. For the checker vertex w, we have L(w) = {1, 2, 3}. For the main vertices
of the Chains Pij , we set L(u1

ij) = {c, c′} and L(ulij) = {c, c′, c′′}, for l ∈ {2, . . . , logm}.
Last, for the gadget vertices, we shall construct their lists according to those from the proofs
of the ∃L-Properties, as described below.

For vertices in the Bit-choosers, lists match exactly those in the proof of ∃L-Property 1.
For vertices in the Weak-stars, lists match exactly those in the proof of ∃L-Property 3.
The Weak-edges should specify appropriate incompatible pairs of colors on their endpoints,
and the list assignment should follow that of proof of ∃L-Property 2: Weak-edges
connecting Bit-choosers to Chains should forbid (c, c′) on (pl, ulij) (resp., (ql, ulij)); Weak-
edges interconnecting Chain-vertices should forbid (c, c′′) on (u(l−1)

ij , ulij).

Let us now explain why G is not L-colorable, no matter which colors we pick from the
lists. We are going to show that any possible coloring of the Bit-choosers accordant with L
corresponds to selecting a constraint y, by selecting a 0-1 value for logm bits, which together
select a constraint index in {0, . . . ,m− 1}.

From ∃L-Property 1 and for the particular list assignment which emerges from its proof,
we are required to select (at least) one of the two endpoints pl, ql by giving it a special color
c. Selecting pl is interpreted as setting the lth bit to 1, whereas selecting ql is interpreted as
setting it to 0. A selection of logm bit-vertices (one from each Bit-chooser) corresponds to
picking a binary number, which shall represent the index of the constraint we select.

Suppose that a constraint yj = (xj1 , xj2 , xj3) is selected this way. This means that for
the 3 Chains Pj1j , Pj2j , Pj3j we have color c′ being removed from all L(uljij

). In particular,
this means that u1

jij
has the unique color c available for it, which in turn forces color c to

u2
jij

by forbidding c′′, and so on. This way, color c will propagate throughout the Chains,
forcing color c on ulogm

ij .
From ∃L-Property 3 and for the list described in its proof, forcing color c on ulogm

ij

forbids color c on vi, forcing us to choose color h(xi), which in turn should forbid h(xi)
from w. Since we have three variable-vertices vj1 , vj2 , vj3 with forced choices and xj1 , xj2 , xj3

belong to the same constraint yj which h satisfies, h(xj1), h(xj2), h(xj3) should all be distinct
values from {1, 2, 3}. Thus, all three colors should be forbidden in w, which is fatal since
L(w) = {1, 2, 3}. J

3.4 Uncolorable list assignment ⇒ satisfying assignment
Let us now proceed with the converse direction. First we determine some properties that
every uncolorable list assignment L′ of G needs to have. Then we extract an assignment

D. Marx and V. Mitsou 28:9

from L′ for H and use the properties of the lists to show that it is a satisfying assignment.
The following definition will be convenient in the proofs. Let B′ be the vertices of all

the logm Bit-choosers. Given some list assignment L, we say that a partial L-coloring
g : B′ → IN activates vertex ulij if g(pl) = c for some color c ∈ L(pl) and there is a Weak-edge
Wplul

ij
forbidding (c, c′) on (pl, ulij) (or similarly for ql). Thus, if we were to extend g to a

proper L-coloring of the whole graph, we would have one less choice for ulij . In this case,
vertex ulij is called active. A Chain Pij is called active if all its vertices are active. The
crucial observation is that if a Chain Pij is not active, no matter what color c ∈ L′(ulogm

ij)
we assign to ulogm

ij , this can be extended to a proper L′-partial coloring of the chain Pij .
Suppose for example that vertex ulij is not activated, that is, the coloring on the Bit-chooser
Bl does not forbid any color on ulij . Then we can start coloring the vertices u1

ij , u2
ij , . . . ,

ul−1
ij in this order, then the vertices ulogm

ij , ulogm−1
ij , . . . , ul+1

ij in this order, and there is still
at least one available color left for ulij . Furthermore, even if Pij is active, it is possible to
extend the partial coloring of the Bit-choosers to it, but this may force a certain color on
ulogm
ij .

I Lemma 15. If G is not L′-colorable, then any partial L′-coloring of the Bit-choosers
activates at least 3 of the Chains.

Proof. Consider a partial L′-coloring of the Bit-choosers. Suppose that only two Chains
Pi1j1 , Pi2j2 are activated, potentially forcing a coloring on ulogm

i1j1
and ulogm

i2j2
. By ∀L-Property

3, the L′-coloring can be extended through the Weak-stars Si1 and Si2 even if i1 = i2,
potentially reducing |L′(vi1)| and |L′(vi2)| to a unique choice. For every other vertex ulogm

ij

vertex, any color can be extended to its Chain. Hence the Weak-star Si for i 6∈ {i1, i2} does
not forbid any color on vi.

Now observe that, even if both vi1 , vi2 have forced colors c1, c2, there is always a third
color c ∈ L′(w), c1 6= c 6= c2, which we can assign to w. Further observe that, since all other
vi have two available compatible choices with the rest of G, there will be at least one color
in every vi’s list which should be different than c. Use these colors to complete a proper
L′-coloring for G. Of course this is a contradiction. Thus there should be exactly 3 active
Chains. J

I Lemma 16. For every list assignment L′, there is some partial L′-coloring of the Bit-
choosers that activates exactly 3 Chains. Furthermore, for every constraint there exists a
partial L′-coloring that activates its 3 corresponding Chains.

Proof. From ∀L-Property 1, we know that there exists a color cp ∈ L′(pl) which is compatible
with all colors in L′(ql) and a color cq ∈ L′(ql) which is compatible with all colors in L′(pl).
Let c′p be an arbitrary color of L′(pl) different from cp, and let c′q be an arbitrary color
of L′(ql) different from cq. Note that both (cp, c′q) and (c′p, cq) can be extended to the
Bit-chooser Bl and we obtain two different colorings for Bl this way.

Let us consider all possible colorings of the Bit-choosers that arise from selecting one
of these two colorings for each Bl; there are 2logm = m combinations. We claim that each
Chain Pij is activated by at most one of these colorings. Suppose that there are two colorings
that both activate Pij . The two colorings must differ on at least one of the Bit-choosers, say,
on Bl. Suppose that Pij is connected to pl with a Weak-edge (the case when it is connected
to ql is analogous). Color cp appears on pl in one of the colorings and color c′p appears in
the other coloring. As cp 6= c′p, it is not possible that the Weak-edge Wplul

ij
forces a color on

ulij in both cases, a contradiction.

ICALP 2016

28:10 Double-Exponential and Triple-Exponential Bounds for Choosability Problems

Since each of the m colorings activates at least 3 Chains by Lemma 15 and we have
shown that each of the 3m Chains is activated by at most one of the colorings, a counting
argument shows that each coloring activates exactly 3 Chains, and each Chain is activated
by exactly one of the m colorings. That is, the Chains can be partitioned into m triples, and
each triple can be activated by one of the colorings. To prove the second statement of the
lemma, we need to show that each such triple contains Chains corresponding to one of the
constraints. Suppose for a contradiction that one of the m colorings activates two Chains
Pij and Pi′j′ with j 6= j′. As the numbers j and j′ are different, there is a bit l where they
differ, which means that, without loss of generality that Pij is connected to pl, while Pi′j′ is
connected to ql. Suppose that this coloring assigns (cp, c′q) to (pl, ql) (the case when (c′p, cq)
appears is similar). Recall that cp on pl is compatible with any color of L′(ql) appearing on
ql. Let c′′q be the third color of L′(ql), different from cq and c′q. We may modify the coloring
on Bi such that (cp, c′′q) appears on Bit-chooser Bl. Then Pi′j′ will no longer be activated: if
color c′q on ql activated uli′j′ via Weak-edge Wqlul

i′j′
, then color c′′q surely does not activate

it. We observe that this modified coloring cannot activate any Chain that was not active
before. Indeed, if some Chain Pi∗j∗ becomes activated by color c′′q on ql, then Pi∗j∗ was not
activated by any of the m colorings we considered before, as those colorings assigned only
colors cq and c′q to ql. This contradicts our earlier claim that each Pij is activated by exactly
one of the m colorings. Thus the modified coloring satisfies strictly less than 3 of the Chains,
which contradicts Lemma 15. Thus we can conclude that each of the m colorings activates a
(different) triple of Chains corresponding to one the m constraints. J

I Lemma 17. If G is not f -choosable, then H is satisfiable.

Proof. We may assume without loss of generality that L′(w) = {1, 2, 3}. For every Weak-
star Si, consider the color ci ∈ L′(vi) given by ∀L-Property 3. We define the assignment
h(xi) := c∗i , where {c∗i } = L(vi) \ {ci}. We show that this gives a satisfying assignment: for
every constraint yj = (xi1 , xi2 , xi3), the colors appearing on the variables xi1 , xi2 , xi3 form
the set {1, 2, 3}; in particular, this will imply h(i) ∈ {1, 2, 3} for every i.

Let us verify that that constraint yj = (xi1 , xi2 , xi3) is satisfied. By Lemma 16, there is
a partial assignment to the Bit-choosers that activates exactly the Chains Pi1j , Pi2j , and
Pi3j . This means that the vertices ulogm

i1j
, ulogm

i2j
, and ulogm

i3j
are forced to some color, but

the other vertices ulogm
ij are unaffected. Thus for i 6∈ {i1, i2, i3}, the Weak-star Si does

not prevent any color on vit . But for t = 1, 2, 3, the Weak-star St may forbid the use
of color cit on vit . In order to avoid any conflicts, we assign color h(xit) 6= cit to vi. If
{h(xi1), h(xi2), h(xi3)} 6= {1, 2, 3}, then we can assign to w a color not appearing on vi1 , vi2 ,
vi3 , and then extend the coloring to vi for each i 6∈ {i1, i2, i3} by choosing a color different
from the color of w. This would contradict the assumption that L′ is not colorable. Thus
{h(xi1), h(xi2), h(xi3)} = {1, 2, 3}, that is, constraint yj is satisfied. J

3.5 Lower Bounds
Now we are ready to establish the lower bounds stated in Theorem 2(2).

I Theorem 18. (2, 3)-Choosability cannot be decided in time 22o(pw) · nO(1), where pw is
the pathwidth of the input graph, under ETH.

Proof. Suppose we could decide (2,3)-Choosability in time 22o(pw) · nO(1). We know from
Lemma 13 that pw = O(logm).

Thus 22o(pw) · nO(1) = 22o(log m) · nO(1). From Lemmas 14 and 17, this would imply solving
Edge 3-Coloring in time 22o(log m) . This contradicts Theorem 12. J

D. Marx and V. Mitsou 28:11

I Corollary 19 (Theorem 2(2)). Assuming ETH, k-Choosability for any k ≥ 3 cannot be
decided in time 22o(pw) · nO(1), where pw is the pathwidth of the input graph.

Proof. First observe that the problem for k ≥ pw + 1 is meaningless, since the answer is
trivially yes: a graph G of pathwidth pw is pw-degenerate, and thus (pw + 1)-choosable.

Gutner and Tarsi [21] give a reduction from (2, 3)-Choosability to k-Choosability,
where the pathwidth of the constructed graph G′ is O(pw(G)). J

4 Triple-exponential lower bound for k-Choosability Deletion

The goal of this section is to prove Theorem 3(2): the triple-exponential lower bound for
k-Choosability Deletion. For this proof, we choose a variant of list coloring as the source
problem of the reduction.

Our reduction is from Bipartite List 3-Coloring: given a bipartite graph H with
vertex set X = X1 ∪X2, X1 = {x10, x11, . . . x1(n−1)}, X2 = {x20, x21, . . . , x2(n−1)}, edge set
Y with |Y | = m, and a list assignment D : X → 2{1,2,3} with |D(x)| ≥ 2 for all x ∈ X, the
task is to find a proper 3-coloring φ : V (G) → {1, 2, 3} of G where φ(v) ∈ D(v) for every
vertex v. This problem is known to be NP-hard [31] (to ensure |D(x)| ≥ 2, one needs to
observe that any vertex with |D(x)| = 1 can be removed from the graph after omitting its
unique color from the lists of its neighbors). The NP-hardness proof can be observed to give
a tight lower bound, which we state in the following form.

I Lemma 20. Assuming ETH, there is no algorithm for Bipartite List 3-Coloring with
running time 222o(log log n)

on bipartite graphs with n vertices on each side. This remains true
if we consider only graphs where log logn is integer.

Proof. Given a 3SAT formula with n0-variables and m0-clauses, the reduction of Kratochvíl
[31] creates an equivalent instance (G,D) of Bipartite List 3-Coloring with n1 =
O(n0+m0) vertices andm1 = O(n0+m0) edges. Let n be the smallest integer not smaller than
n1 such that log logn is integer. Observe that n ≤ n2

1 (as log logn ≤ log logn1 + 1 and hence
logn ≤ 2 logn1), hence log logn = log logn2

1 = O(log logn1) = O(log log(n0 +m0)). Let us
add dummy vertices to G until each side has exactly n vertices. Using the assumed algorithm
with running time 222o(log log n)

, we would be able to solve the Bipartite List 3-Coloring
instance and hence the equivalent 3SAT instance in time 222o(log log(n0+m0))

= 2o(n0+m0),
contradicting ETH. J

Given an instance of Bipartite List 3-Coloring, we construct an equivalent instance of
(1, 4)-Choosability Deletion consisting of a graph G and a list-capacity function f . More
precisely, there exists a proper D-coloring h : X → {1, 2, 3} of H if and only if there exists a
subset U ⊆ V (G) of vertices with |U | ≤ 4n such that G−U is f -choosable. Moreover, graph
G has treewidth O(log logn). Thus an algorithm for (1, 4)-Choosability Deletion on
graphs of treewidth w with running time 222o(w)

·nO(1) would give an algorithm for Bipartite
List 3-Coloring with running time 222o(log log n)

· nO(1), contradicting Lemma 20.
Similarly to Section 3, we reformulate Bipartite List 3-Coloring as a constraint

satisfaction problem to improve the presentation: the appearance of colors and lists of
colors in both the source and target problems would be a source of confusion. We can view
Bipartite List 3-Coloring as a constraint satisfaction problem, where the variable set
is X and constraints y = (y1, y2) ∈ Y ⊂ X1 × X2 have arity 2. We call an assignment
h : X → {1, 2, 3} a legal assignment if we have h(x) ∈ D(x) for every x ∈ X. We say

ICALP 2016

28:12 Double-Exponential and Triple-Exponential Bounds for Choosability Problems

that H is satisfiable if there exists a legal assignment h : X → {1, 2, 3} such that we have
h(y1) 6= h(y2) for every y = (y1, y2) ∈ Y.

Observe that Choosability Deletion has inherently three levels of quantifier alterna-
tions in its definition: ∃ (set of deleted vertices) ∀ (list assignments L) ∃ (choice of colors
consistent with L). The main idea of the reduction is that we can redefine Bipartite List
3-Coloring using three levels of quantifier alternations. Furthermore, in order to achieve
the triple-exponential lower bound, we need to perform an even tighter compression than the
one we achieved in Section 3. Keeping those two things in mind we proceed with re-defining
Bipartite List 3-Coloring as follows.

From the original definition of Bipartite List 3-Coloring, we have that H is satisfiable
if there exists legal assignment h : X1 ∪X2 → {1, 2, 3}, such that for all x1i ∈ X1, x2j ∈ X2
with h(x1i) 6= h(x2j), we have (x1i, x2j) 6∈ Y . The latter requirement (x1i, x2j) 6∈ Y can
be re-written as ∀y = (x1i′ , x2j′) ∈ Y , either i′ 6= i or j′ 6= j. For some i < n, let
B(i) = [B(i)0,B(i)1, . . . ,B(i)logn−1] be the binary representation of i. Then i 6= i′ can be
expressed as saying that there exists a k ∈ {0, . . . , logn− 1} such that B(i)k 6= B(i′)k.

Putting everything together, we have:

I Definition 21 (CSP Bipartite List 3-Coloring defined with 3 levels of quantifier alterna-
tions). Given a set X = X1 ∪X2 of variables with Xξ = {xξ0, xξ1, . . . , xξ(n−1)} for ξ ∈ {1, 2}
and a set Y ⊆ X1 ×X2 of constraints, the task is to decide if
∃ legal assignment h : Xξ → {1, 2, 3}, such that
∀x1i ∈ X1, ∀x2j ∈ X2, ∀y = (x1i′ , x2j′) ∈ Y with h(x1i) = h(x2j), we have
∃k ∈ {0, . . . , logn− 1} such that either B(i)k 6= B(i′)k or B(j)k 6= B(j′)k.

The reduction closely follows this equivalent definition of Bipartite List 3-Coloring: we
use the three levels of alternation in the definition of (1, 4)-Choosability Deletion to
express these three levels of alternation. Note also that the last level of alternation, when
quantifying over k ∈ {0, . . . , logn − 1} can be described as the selection of log logn bits.
This choice will be expressed by the introduction of log logn Bit-choosers, which will be the
dominating factor in the treewidth of the constructed instance.

References
1 Mohammad Hossein Bateni, Mohammad Taghi Hajiaghayi, and Dániel Marx. Approxima-

tion schemes for Steiner forest on planar graphs and graphs of bounded treewidth. J. ACM,
58(5):21, 2011. doi:10.1145/2027216.2027219.

2 M. Biró, Mihály Hujter, and Zsolt Tuza. Precoloring extension. I. interval graphs. Discrete
Mathematics, 100(1-3):267–279, 1992. doi:10.1016/0012-365X(92)90646-W.

3 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier meets
Möbius: fast subset convolution. In David S. Johnson and Uriel Feige, editors, Proceedings
of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA,
June 11-13, 2007, pages 67–74. ACM, 2007. doi:10.1145/1250790.1250801.

4 Ivan Bliznets, Fedor V. Fomin, Marcin Pilipczuk, and Michal Pilipczuk. Subexponential
parameterized algorithm for interval completion. In Robert Krauthgamer, editor, Pro-
ceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1116–1131. SIAM, 2016.
doi:10.1137/1.9781611974331.ch78.

5 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett., 58(4):171–176, 1996. doi:10.1016/0020-0190(96)00050-6.

6 Yixin Cao. Linear recognition of almost interval graphs. In Robert Krauthgamer, editor,
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,

http://dx.doi.org/10.1145/2027216.2027219
http://dx.doi.org/10.1016/0012-365X(92)90646-W
http://dx.doi.org/10.1145/1250790.1250801
http://dx.doi.org/10.1137/1.9781611974331.ch78
http://dx.doi.org/10.1016/0020-0190(96)00050-6

D. Marx and V. Mitsou 28:13

SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1096–1115. SIAM, 2016.
doi:10.1137/1.9781611974331.ch77.

7 Yixin Cao and Dániel Marx. Chordal editing is fixed-parameter tractable. In Ernst W.
Mayr and Natacha Portier, editors, 31st International Symposium on Theoretical Aspects of
Computer Science (STACS 2014), STACS 2014, March 5-8, 2014, Lyon, France, volume 25
of LIPIcs, pages 214–225. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2014. doi:
10.4230/LIPIcs.STACS.2014.214.

8 Yixin Cao and Dániel Marx. Interval deletion is fixed-parameter tractable. ACM Transac-
tions on Algorithms, 11(3):21:1–21:35, 2015. doi:10.1145/2629595.

9 Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Villanger. Improved
algorithms for feedback vertex set problems. J. Comput. Syst. Sci., 74(7):1188–1198, 2008.
doi:10.1016/j.jcss.2008.05.002.

10 Janka Chlebíková and Klaus Jansen. The d-precoloring problem for k-degenerate graphs.
Discrete Mathematics, 307(16):2042–2052, 2007. doi:10.1016/j.disc.2005.12.049.

11 Bruno Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

13 Marek Cygan, Dániel Marx, Marcin Pilipczuk, and Michal Pilipczuk. Hitting forbidden sub-
graphs in graphs of bounded treewidth. In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger,
and Zoltán Ésik, editors, Mathematical Foundations of Computer Science 2014 – 39th In-
ternational Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings,
Part II, volume 8635 of Lecture Notes in Computer Science, pages 189–200. Springer, 2014.
doi:10.1007/978-3-662-44465-8_17.

14 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25,
2011, pages 150–159. IEEE Computer Society, 2011. doi:10.1109/FOCS.2011.23.

15 Frank K. H. A. Dehne, Michael R. Fellows, Michael A. Langston, Frances A. Rosamond,
and Kim Stevens. An o(2O(k)n3 FPT algorithm for the undirected feedback vertex set
problem. Theory Comput. Syst., 41(3):479–492, 2007. doi:10.1007/s00224-007-1345-z.

16 Paul Erdős, Arthur L Rubin, and Herbert Taylor. Choosability in graphs. Congr. Numer,
26:125–157, 1979.

17 Michael R Fellows, Fedor V Fomin, Daniel Lokshtanov, Frances Rosamond, Saket Saurabh,
Stefan Szeider, and Carsten Thomassen. On the complexity of some colorful problems
parameterized by treewidth. Information and Computation, 209(2):143–153, 2011.

18 Fedor V. Fomin and Yngve Villanger. Subexponential parameterized algorithm for min-
imum fill-in. SIAM J. Comput., 42(6):2197–2216, 2013. doi:10.1137/11085390X.

19 Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order
logic revisited. Ann. Pure Appl. Logic, 130(1-3):3–31, 2004. doi:10.1016/j.apal.2004.
01.007.

20 Elisabeth Gassner. The Steiner forest problem revisited. J. Discrete Algorithms, 8(2):154–
163, 2010. doi:10.1016/j.jda.2009.05.002.

21 Shai Gutner and Michael Tarsi. Some results on (a : b)-choosability. Discrete Mathematics,
309(8):2260–2270, 2009.

22 Ian Holyer. The NP-completeness of edge-coloring. SIAM Journal on computing, 10(4):718–
720, 1981.

ICALP 2016

http://dx.doi.org/10.1137/1.9781611974331.ch77
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.214
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.214
http://dx.doi.org/10.1145/2629595
http://dx.doi.org/10.1016/j.jcss.2008.05.002
http://dx.doi.org/10.1016/j.disc.2005.12.049
http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-3-662-44465-8_17
http://dx.doi.org/10.1109/FOCS.2011.23
http://dx.doi.org/10.1007/s00224-007-1345-z
http://dx.doi.org/10.1137/11085390X
http://dx.doi.org/10.1016/j.apal.2004.01.007
http://dx.doi.org/10.1016/j.apal.2004.01.007
http://dx.doi.org/10.1016/j.jda.2009.05.002

28:14 Double-Exponential and Triple-Exponential Bounds for Choosability Problems

23 M. Hujter and Zs. Tuza. Precoloring extension. II. Graphs classes related to bipartite
graphs. Acta Math. Univ. Comenian. (N.S.), 62(1):1–11, 1993.

24 Mihály Hujter and Zsolt Tuza. Precoloring extension III: Classes of perfect graphs. Com-
binatorics, Probability & Computing, 5:35–56, 1996. doi:10.1017/S0963548300001826.

25 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62:367–375, 2001.

26 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

27 Yoichi Iwata, Keigo Oka, and Yuichi Yoshida. Linear-time FPT algorithms via network
flow. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7,
2014, pages 1749–1761. SIAM, 2014. doi:10.1137/1.9781611973402.127.

28 Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization
algorithm. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January
5-7, 2014, pages 1802–1811. SIAM, 2014. doi:10.1137/1.9781611973402.130.

29 Klaus Jansen and Petra Scheffler. Generalized coloring for tree-like graphs. Discrete Applied
Mathematics, 75(2):135–155, 1997. doi:10.1016/S0166-218X(96)00085-6.

30 Haim Kaplan, Ron Shamir, and Robert Endre Tarjan. Tractability of parameterized comple-
tion problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput.,
28(5):1906–1922, 1999. doi:10.1137/S0097539796303044.

31 J. Kratochvíl. Precoloring extension with fixed color bound. Acta Math. Univ. Comenian.
(N.S.), 62(2):139–153, 1993.

32 Jan Kratochvíl and Zsolt Tuza. Algorithmic complexity of list colorings. Discrete Applied
Mathematics, 50(3):297–302, 1994. doi:10.1016/0166-218X(94)90150-3.

33 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs on
bounded treewidth are probably optimal. In Dana Randall, editor, Proceedings of the
Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San
Francisco, California, USA, January 23-25, 2011, pages 777–789. SIAM, 2011. doi:10.
1137/1.9781611973082.61.

34 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the Ex-
ponential Time Hypothesis. Bulletin of the EATCS, 105:41–72, 2011. URL: http:
//albcom.lsi.upc.edu/ojs/index.php/beatcs/article/view/96.

35 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential paramet-
erized problems. In Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA,
January 23-25, 2011, pages 760–776. SIAM, 2011. doi:10.1137/1.9781611973082.60.

36 Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Transactions
on Algorithms, 11(2):15:1–15:31, 2014. doi:10.1145/2566616.

37 Dániel Marx. NP-completeness of list coloring and precoloring extension on the edges of
planar graphs. Journal of Graph Theory, 49(4):313–324, 2005. doi:10.1002/jgt.20085.

38 Dániel Marx. Precoloring extension on unit interval graphs. Discrete Applied Mathematics,
154(6):995–1002, 2006. doi:10.1016/j.dam.2005.10.008.

39 Dániel Marx. Chordal deletion is fixed-parameter tractable. Algorithmica, 57(4):747–768,
2010. doi:10.1007/s00453-008-9233-8.

40 Dániel Marx and Ildikó Schlotter. Obtaining a planar graph by vertex deletion. Algorith-
mica, 62(3-4):807–822, 2012. doi:10.1007/s00453-010-9484-z.

http://dx.doi.org/10.1017/S0963548300001826
http://dx.doi.org/10.1137/1.9781611973402.127
http://dx.doi.org/10.1137/1.9781611973402.130
http://dx.doi.org/10.1016/S0166-218X(96)00085-6
http://dx.doi.org/10.1137/S0097539796303044
http://dx.doi.org/10.1016/0166-218X(94)90150-3
http://dx.doi.org/10.1137/1.9781611973082.61
http://dx.doi.org/10.1137/1.9781611973082.61
http://albcom.lsi.upc.edu/ojs/index.php/beatcs/article/view/96
http://albcom.lsi.upc.edu/ojs/index.php/beatcs/article/view/96
http://dx.doi.org/10.1137/1.9781611973082.60
http://dx.doi.org/10.1145/2566616
http://dx.doi.org/10.1002/jgt.20085
http://dx.doi.org/10.1016/j.dam.2005.10.008
http://dx.doi.org/10.1007/s00453-008-9233-8
http://dx.doi.org/10.1007/s00453-010-9484-z

D. Marx and V. Mitsou 28:15

41 Takao Nishizeki, Jens Vygen, and Xiao Zhou. The edge-disjoint paths problem is NP-
complete for series-parallel graphs. Discrete Applied Mathematics, 115(1-3):177–186, 2001.
doi:10.1016/S0166-218X(01)00223-2.

42 Guoqiang Pan and Moshe Y. Vardi. Fixed-parameter hierarchies inside PSPACE. In LICS,
pages 27–36. IEEE Computer Society, 2006.

43 Michal Pilipczuk. Problems parameterized by treewidth tractable in single exponential time:
A logical approach. In Filip Murlak and Piotr Sankowski, editors, Mathematical Found-
ations of Computer Science 2011 – 36th International Symposium, MFCS 2011, Warsaw,
Poland, August 22-26, 2011. Proceedings, volume 6907 of Lecture Notes in Computer Sci-
ence, pages 520–531. Springer, 2011. doi:10.1007/978-3-642-22993-0_47.

44 M. S. Ramanujan and Saket Saurabh. Linear time parameterized algorithms via skew-
symmetric multicuts. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA,
January 5-7, 2014, pages 1739–1748. SIAM, 2014. doi:10.1137/1.9781611973402.126.

45 Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper.
Res. Lett., 32(4):299–301, 2004. doi:10.1016/j.orl.2003.10.009.

46 Zsolt Tuza. Graph colorings with local constraints – a survey. Discussiones Mathematicae
Graph Theory, 17(2):161–228, 1997. doi:10.7151/dmgt.1049.

47 Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic programming
on tree decompositions using generalised fast subset convolution. In Amos Fiat and Peter
Sanders, editors, Algorithms – ESA 2009, 17th Annual European Symposium, Copenhagen,
Denmark, September 7-9, 2009. Proceedings, volume 5757 of Lecture Notes in Computer
Science, pages 566–577. Springer, 2009. doi:10.1007/978-3-642-04128-0_51.

ICALP 2016

http://dx.doi.org/10.1016/S0166-218X(01)00223-2
http://dx.doi.org/10.1007/978-3-642-22993-0_47
http://dx.doi.org/10.1137/1.9781611973402.126
http://dx.doi.org/10.1016/j.orl.2003.10.009
http://dx.doi.org/10.7151/dmgt.1049
http://dx.doi.org/10.1007/978-3-642-04128-0_51

	Introduction
	k-Choosability
	k-Choosability Deletion

	Preliminaries
	Double-exponential lower bound for k-Choosability
	Gadgets
	Construction
	Satisfying assignment -> uncolorable list assignment
	Uncolorable list assignment -> satisfying assignment
	Lower Bounds

	Triple-exponential lower bound for k-Choosability Deletion

