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Overview

Main message: Small separators in graphs have interesting extremal

properties that can be exploited in combinatorial and algorithmic results.

Bounding the number of “important” separators.

Combinatorial application: Erdős-Pósa property for “spiders.”

Algorithmic applications: FPT algorithm for multiway cut and a directed
feedback vertex set.
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Important separators

Definition: δ(R) is the set of edges with exactly one endpoint in R.

Definition: A set S of edges is an (X , Y )-separator if there is no X − Y path

in G \ S and no proper subset of S breaks every X − Y path.

Observation: Every (X , Y )-separator S can be expressed as S = δ(R) for

some X ⊆ R and R ∩ Y = ∅.

δ(R)

R

X
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Important separators

Definition: An (X , Y )-separator δ(R) is important if there is no (X , Y )-

separator δ(R ′) with R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|.

Note: Can be checked in polynomial time if a separator is important.
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Important separators

Definition: An (X , Y )-separator δ(R) is important if there is no (X , Y )-

separator δ(R ′) with R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|.

Note: Can be checked in polynomial time if a separator is important.
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Important separators

The number of important separators can be exponentially large.

Example:

X

Y

k/21 2

This graph has exactly 2k/2 important (X ,Y )-separators of size at most k .

Theorem: There are at most 4k important (X , Y )-separators of size at most k .

(Proof is implicit in [Chen, Liu, Lu 2007], worse bound in [M. 2004].)
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Submodularity

Fact: The function δ is submodular: for arbitrary sets A, B,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|

Consequence: Let λ be the minimum (X , Y )-separator size. There is a

unique maximal Rmax ⊇ X such that δ(Rmax) is an (X , Y )-separator of size λ.
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Submodularity

Fact: The function δ is submodular: for arbitrary sets A, B,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|

Consequence: Let λ be the minimum (X , Y )-separator size. There is a

unique maximal Rmax ⊇ X such that δ(Rmax) is an (X , Y )-separator of size λ.

Proof: Let R1, R2 ⊇ X be two sets such that δ(R1), δ(R2) are (X , Y )-separators

of size λ.

|δ(R1)| + |δ(R2)| ≥ |δ(R1 ∩ R2)| + |δ(R1 ∪ R2)|

λ λ ≥ λ

⇒ |δ(R1 ∪ R2)| ≤ λ

R2R1

Y

X

Note: Analogous result holds for a unique minimal Rmin.
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Important separators

Theorem: There are at most 4k important (X , Y )-separators of size at most k .

Proof: Let λ be the minimum (X , Y )-separator size and let δ(Rmax) be the

unique important separator of size λ such that Rmax is maximal.

First we show that Rmax ⊆ R for every important separator δ(R).
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Important separators

Theorem: There are at most 4k important (X , Y )-separators of size at most k .

Proof: Let λ be the minimum (X , Y )-separator size and let δ(Rmax) be the

unique important separator of size λ such that Rmax is maximal.

First we show that Rmax ⊆ R for every important separator δ(R).

By the submodularity of δ:

|δ(Rmax)| + |δ(R)| ≥ |δ(Rmax ∩ R)| + |δ(Rmax ∪ R)|

λ ≥ λ

⇓

|δ(Rmax ∪ R)| ≤ |δ(R)|

⇓

If R 6= Rmax ∪ R, then δ(R) is not important.

Thus the important (X ,Y )- and (Rmax, Y )-separators are the same.

⇒ We can assume X = Rmax. Important separators and parameterized algorithms – p.6/27



Important separators

Lemma: There are at most 4k important (X ,Y )-separators of size at most k .

Search tree algorithm for enumerating all these separators:

An (arbitrary) edge uv leaving X = Rmax is either in the separator or not.

Branch 1: If uv ∈ S , then S \ uv is an important
(X , Y )-separator of size at most k − 1 in G \ uv .

Branch 2: If uv 6∈ S , then S is an important
(X ∪ v , Y )-separator of size at most k in G .

X = Rmax Y
vu
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Important separators

Lemma: There are at most 4k important (X ,Y )-separators of size at most k .

Search tree algorithm for enumerating all these separators:

An (arbitrary) edge uv leaving X = Rmax is either in the separator or not.

Branch 1: If uv ∈ S , then S \ uv is an important
(X , Y )-separator of size at most k − 1 in G \ uv .

⇒ k decreases by one, λ decreases by at most 1.

Branch 2: If uv 6∈ S , then S is an important
(X ∪ v , Y )-separator of size at most k in G .

⇒ k remains the same, λ increases by 1.

X = Rmax Y
vu

The measure 2k − λ decreases in each step.

⇒ Height of the search tree ≤ 2k ⇒ ≤ 22k important separators of size ≤ k .
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Important separators

Example: The bound 4k is essentially tight.

X

Y
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Important separators

Example: The bound 4k is essentially tight.

Y

X

Any subtree with k leaves gives an important (X , Y )-separator of size k .
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Example: The bound 4k is essentially tight.
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Important separators

Example: The bound 4k is essentially tight.

X

Y

Any subtree with k leaves gives an important (X , Y )-separator of size k .

The number of subtrees with k leaves is the Catalan number

Ck−1 =
1

k

(

2k − 2

k − 1

)

≥ 4k/poly(k).
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Simple application

Lemma: At most k · 4k edges incident to t can be part of an inclusionwise
minimal s − t cut of size at most k .
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Simple application

Lemma: At most k · 4k edges incident to t can be part of an inclusionwise
minimal s − t cut of size at most k .

Proof: We show that every such edge is contained in an important

(s, t)-separator of size at most k .

v

R

ts

Suppose that vt ∈ δ(R) and |δ(R)| = k .
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Simple application

Lemma: At most k · 4k edges incident to t can be part of an inclusionwise
minimal s − t cut of size at most k .

Proof: We show that every such edge is contained in an important

(s, t)-separator of size at most k .

v

R ′

R

s t

Suppose that vt ∈ δ(R) and |δ(R)| = k .
There is an important (s, t)-separator δ(R ′) with R ⊆ R ′ and |δ(R ′)| ≤ k .

Clearly, vt ∈ δ(R ′): v ∈ R, hence v ∈ R ′.
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Anti isolation

Let s, t1, ... , tn be vertices and S1, ... , Sn be sets of at most k edges such that Si

separates ti from s, but Si does not separate tj from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1
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Anti isolation

Let s, t1, ... , tn be vertices and S1, ... , Sn be sets of at most k edges such that Si

separates ti from s, but Si does not separate tj from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

t1

s

t6t5t3 t4t2

S1
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Anti isolation

Let s, t1, ... , tn be vertices and S1, ... , Sn be sets of at most k edges such that Si

separates ti from s, but Si does not separate tj from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

t5 t6

s

t1 t3t2 t4

S2

Important separators and parameterized algorithms – p.10/27



Anti isolation

Let s, t1, ... , tn be vertices and S1, ... , Sn be sets of at most k edges such that Si

separates ti from s, but Si does not separate tj from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

t2t1

s

t6t4 t5t3

S3
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Anti isolation

Let s, t1, ... , tn be vertices and S1, ... , Sn be sets of at most k edges such that Si

separates ti from s, but Si does not separate tj from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

t2t1

s

t6t4 t5t3

S1

Is the opposite possible, i.e., Si separates every tj except ti?

Important separators and parameterized algorithms – p.10/27



Anti isolation

Let s, t1, ... , tn be vertices and S1, ... , Sn be sets of at most k edges such that Si

separates ti from s, but Si does not separate tj from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

t3t2t1 t6

s

t5t4

S2

Is the opposite possible, i.e., Si separates every tj except ti?
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Anti isolation

Let s, t1, ... , tn be vertices and S1, ... , Sn be sets of at most k edges such that Si

separates ti from s, but Si does not separate tj from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

t3t2t1 t6

s

t5t4

S3

Is the opposite possible, i.e., Si separates every tj except ti?
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Anti isolation

Let s, t1, ... , tn be vertices and S1, ... , Sn be sets of at most k edges such that Si

separates ti from s, but Si does not separate tj from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

t3t2t1 t6

s

t5t4

S3

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma: If Si separates tj from s if and only j 6= i and every Si has size at

most k , then n ≤ (k + 1) · 4k+1.
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Anti isolation

t5t1 t2 t3 t4

t

s

t6

S3

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma: If Si separates tj from s if and only j 6= i and every Si has size at

most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an (inclusionwise minimal)

(s, t)-separator of size at most k + 1. Use the previous lemma.
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Anti isolation

t4

s

t6t5

t

t1 t2 t3

S2

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma: If Si separates tj from s if and only j 6= i and every Si has size at

most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an (inclusionwise minimal)

(s, t)-separator of size at most k + 1. Use the previous lemma.
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Anti isolation

t4t3t2t1

t

s

t6t5

S1

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma: If Si separates tj from s if and only j 6= i and every Si has size at

most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an (inclusionwise minimal)

(s, t)-separator of size at most k + 1. Use the previous lemma.
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Erdős-Pósa property

Theorem: [Erdős-Pósa 1965] There is a function f (k) = O(k log k) such that
for every undirected graph G and integer k , either

G has k vertex-disjoint cycles, or

G has a set S of at most f (k) vertices such that G \ S is acyclic.

More generally: A set of objects has the Erdős-Pósa property if the covering
(hitting number) can be bounded by a function of the packing number.
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Spiders

Let A and B be two disjoint sets of vertices in G . A d-spider with center v is a

set of d edge disjoint paths connecting v ∈ A with B.

Suppose for simplicity that every vertex of A has degree exactly d .

A B
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Spiders

Let A and B be two disjoint sets of vertices in G . A d-spider with center v is a

set of d edge disjoint paths connecting v ∈ A with B.

Suppose for simplicity that every vertex of A has degree exactly d .

A B

Theorem: There is a function f (k, d) = 2O(kd) such that for every graph G and

disjoint sets A, B either

there are k edge-disjoint d-spiders, or

there is a set D of at most f (k, d) edges that intersects every d-spider.
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Spiders

Let A and B be two disjoint sets of vertices in G . A d-spider with center v is a

set of d edge disjoint paths connecting v ∈ A with B.

Suppose for simplicity that every vertex of A has degree exactly d .

A B

Proved by Robertson and Seymour in Graph Minors XXIII:
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Spiders

Theorem: There is a function f (k, d) such that for every graph G and disjoint

sets A, B either

there are k edge-disjoint d-spiders, or

there is a set D of at most f (k, d) edges that intersects every d-spider.

Proof: Assuming that there are no k edge-disjoint d-spiders,

1. we construct a set D and

2. show that D intersects every d-spider.
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Spiders

Theorem: There is a function f (k, d) such that for every graph G and disjoint

sets A, B either

there are k edge-disjoint d-spiders, or

there is a set D of at most f (k, d) edges that intersects every d-spider.

Proof: Suppose that there are k ′ < k disjoint d-spiders with centers

U = {v1, ... , vk′}, but there are no k ′ + 1 disjoint spiders.

Let D be the union of all the important (vi , B)-separators of size at most kd for
1 ≤ i ≤ k ′.

⇒ size of D is at most f (k, d) := k · 4kd · kd .

We claim that D intersects every d-spider.
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Spiders

Remember: D contains every important (vi , B)-separator of size ≤ kd .

B

v

C
v1

vk′

U

A
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Spiders

Remember: D contains every important (vi , B)-separator of size ≤ kd .

Consider a spider S with center v . As there are no k ′ + 1 spiders with centers

U ∪ v , there is a (U ∪ v , B)-separator C with |C | < (k ′ + 1)d .

U

v

BA

vk′

v1
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Remember: D contains every important (vi , B)-separator of size ≤ kd .

Consider a spider S with center v . As there are no k ′ + 1 spiders with centers

U ∪ v , there is a (U ∪ v , B)-separator C with |C | < (k ′ + 1)d .
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Spiders

Remember: D contains every important (vi , B)-separator of size ≤ kd .

Consider a spider S with center v . As there are no k ′ + 1 spiders with centers

U ∪ v , there is a (U ∪ v , B)-separator C with |C | < (k ′ + 1)d .

An edge of C is green if it is the first
edge in C of any of the paths of the k ′

spiders
⇒ there are k ′d green edges.

⇒ there are ≤ d − 1 non-green edges.

B

v

C
v1

vk′

U

A
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Spiders

Remember: D contains every important (vi , B)-separator of size ≤ kd .

Consider a spider S with center v . As there are no k ′ + 1 spiders with centers

U ∪ v , there is a (U ∪ v , B)-separator C with |C | < (k ′ + 1)d .

An edge of C is green if it is the first
edge in C of any of the paths of the k ′

spiders
⇒ there are k ′d green edges.

⇒ there are ≤ d − 1 non-green edges.

⇒ Spider S contains a green edge xy

⇒ Spider S connects x and B.

C

v

yx

BA

vk′

v1

U
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Spiders

Remember: D contains every important (vi , B)-separator of size ≤ kd .

Consider a spider S with center v . As there are no k ′ + 1 spiders with centers

U ∪ v , there is a (U ∪ v , B)-separator C with |C | < (k ′ + 1)d .

An edge of C is green if it is the first
edge in C of any of the paths of the k ′

spiders
⇒ there are k ′d green edges.

⇒ there are ≤ d − 1 non-green edges.

⇒ Spider S contains a green edge xy

⇒ Spider S connects x and B.

v1

A

U

C

x
vi

y

B
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Spiders

Remember: D contains every important (vi , B)-separator of size ≤ kd .

Consider a spider S with center v . As there are no k ′ + 1 spiders with centers

U ∪ v , there is a (U ∪ v , B)-separator C with |C | < (k ′ + 1)d .

Spider S connects x and B.

Let R be the set of vertices reachable
from vi in G \ C : x ∈ R and R ∩ B = ∅

δ(R) is a (vi , B)-separator of size < kd

y

R

Bx

δ(R)

vi
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Spiders

Remember: D contains every important (vi , B)-separator of size ≤ kd .

Consider a spider S with center v . As there are no k ′ + 1 spiders with centers

U ∪ v , there is a (U ∪ v , B)-separator C with |C | < (k ′ + 1)d .

Spider S connects x and B.

Let R be the set of vertices reachable
from vi in G \ C : x ∈ R and R ∩ B = ∅

δ(R) is a (vi , B)-separator of size < kd

⇒ D contains a separator δ(R ′) with

R ⊆ R ′.

x ∈ R ′ ⇒ δ(R ′) separates x and B

⇒ D ⊇ δ(R ′) intersects the spider S .

y

R ′

δ(R ′)

vi

δ(R)

x B

R
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MULTIWAY CUT

Definition: A multiway cut of a set of terminals T is a set S of edges such

that each component of G \ S contains at most one vertex of T .

MULTIWAY CUT

Input: Graph G , set T of vertices, integer k

Find: A multiway cut S of at most k edges.

t3

t2t1

t5

t4 t4

Polynomial for |T | = 2, but NP-hard for any fixed |T | ≥ 3 [Dalhaus et al. 1994].

Trivial to solve in polynomial time for fixed k (in time nO(k)).
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MULTIWAY CUT

Central notion of parameterized complexity:

Definition: A problem is fixed-parameter tractable (FPT) pa-

rameterized by k if it can be solved in time f (k) · nO(1) for some
function f (k) depending only on k .

FPT means that the k can be removed from the exponent of n and the
combinatorial explosion can be restricted to k .

If f (k) is e.g., 1.2k , then this can be actually an efficient algorithm!

Theorem: MULTIWAY CUT can be solved in time 4k · nO(1), i.e., it is
fixed-parameter tractable (FPT) parameterized by k .
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MULTIWAY CUT

Intuition: Consider a t ∈ T . A subset of the solution S is a

(t, T \ t)-separator.

t
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MULTIWAY CUT

Intuition: Consider a t ∈ T . A subset of the solution S is a

(t, T \ t)-separator.

t

There are many such separators.
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MULTIWAY CUT

Intuition: Consider a t ∈ T . A subset of the solution S is a

(t, T \ t)-separator.

t

There are many such separators.
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MULTIWAY CUT

Intuition: Consider a t ∈ T . A subset of the solution S is a

(t, T \ t)-separator.

t

There are many such separators.

But a separator farther from t and closer to T \ t seems to be more useful.
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MULTIWAY CUT and important separators

Pushing Lemma: Let t ∈ T . The MULTIWAY CUT problem has a solution S

that contains an important (t,T \ t)-separator.
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MULTIWAY CUT and important separators

Pushing Lemma: Let t ∈ T . The MULTIWAY CUT problem has a solution S

that contains an important (t,T \ t)-separator.

Proof: Let R be the vertices reachable from t in G \ S for a solution S .

R

t

Important separators and parameterized algorithms – p.18/27



MULTIWAY CUT and important separators

Pushing Lemma: Let t ∈ T . The MULTIWAY CUT problem has a solution S

that contains an important (t,T \ t)-separator.

Proof: Let R be the vertices reachable from t in G \ S for a solution S .

R ′

R

t

If δ(R) is not important, then there is an important separator δ(R ′) with R ⊂ R ′

and |δ(R ′)| ≤ |δ(R)|. Replace S with S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |
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MULTIWAY CUT and important separators

Pushing Lemma: Let t ∈ T . The MULTIWAY CUT problem has a solution S

that contains an important (t,T \ t)-separator.

Proof: Let R be the vertices reachable from t in G \ S for a solution S .

u

v

t

R

R ′

If δ(R) is not important, then there is an important separator δ(R ′) with R ⊂ R ′

and |δ(R ′)| ≤ |δ(R)|. Replace S with S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |

S ′ is a multiway cut: (1) There is no t-u path in G \ S ′ and (2) a u-v path in

G \ S ′ implies a t-u path, a contradiction.
Important separators and parameterized algorithms – p.18/27



MULTIWAY CUT and important separators

Pushing Lemma: Let t ∈ T . The MULTIWAY CUT problem has a solution S

that contains an important (t,T \ t)-separator.

Proof: Let R be the vertices reachable from t in G \ S for a solution S .

t
u

R ′

R
v

If δ(R) is not important, then there is an important separator δ(R ′) with R ⊂ R ′

and |δ(R ′)| ≤ |δ(R)|. Replace S with S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |

S ′ is a multiway cut: (1) There is no t-u path in G \ S ′ and (2) a u-v path in

G \ S ′ implies a t-u path, a contradiction.
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Algorithm for MULTIWAY CUT

1. If every vertex of T is in a different component, then we are done.

2. Let t ∈ T be a vertex with that is not separated from every T \ t.

3. Branch on a choice of an important (t,T \ t) separator S of size at most k .

4. Set G := G \ S and k := k − |S |.

5. Go to step 1.

We branch into at most 4k directions at most k times.

(Better analysis gives 4k bound on the size of the search tree.)
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Directed graphs

Definition: ~δ(R) is the set of edges leaving R.

Observation: Every inclusionwise-minimal directed (X , Y )-separator S can be

expressed as S = ~δ(R) for some X ⊆ R and R ∩ Y = ∅.

Definition: An (X , Y )-separator ~δ(R) is important if there is no (X , Y )-
separator ~δ(R ′) with R ⊂ R ′ and |~δ(R ′)| ≤ |~δ(R)|.

R

~δ(R)

X Y
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Directed graphs

Definition: ~δ(R) is the set of edges leaving R.

Observation: Every inclusionwise-minimal directed (X , Y )-separator S can be

expressed as S = ~δ(R) for some X ⊆ R and R ∩ Y = ∅.

Definition: An (X , Y )-separator ~δ(R) is important if there is no (X , Y )-
separator ~δ(R ′) with R ⊂ R ′ and |~δ(R ′)| ≤ |~δ(R)|.

R ′

~δ(R) ~δ(R ′)

R

X Y
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Directed graphs

Definition: ~δ(R) is the set of edges leaving R.

Observation: Every inclusionwise-minimal directed (X , Y )-separator S can be

expressed as S = ~δ(R) for some X ⊆ R and R ∩ Y = ∅.

Definition: An (X , Y )-separator ~δ(R) is important if there is no (X , Y )-
separator ~δ(R ′) with R ⊂ R ′ and |~δ(R ′)| ≤ |~δ(R)|.

The proof for the undirected case goes through for the directed case:

Theorem: There are at most 4k important directed (X , Y )-separators of size at

most k .
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Directed Multiway Cut

It is open [?] whether DIRECTED MULTIWAY CUT is FPT or not. The approach

for undirected graphs does not work: the pushing lemma is not true.

Pushing Lemma: [for undirected graphs] Let t ∈ T . The MULTIWAY CUT

problem has a solution S that contains an important (t, T \ t)-separator.

Directed counterexample:

s t

b

a

Unique solution with k = 1 edges, but it is not an important separator

(boundary of {s, a}, but the boundary of {s, a, b} is of the same size).
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Pushing Lemma: [for undirected graphs] Let t ∈ T . The MULTIWAY CUT

problem has a solution S that contains an important (t, T \ t)-separator.

Directed counterexample:
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a
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b

Unique solution with k = 1 edges, but it is not an important separator
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Directed Multiway Cut

It is open [?] whether DIRECTED MULTIWAY CUT is FPT or not. The approach

for undirected graphs does not work: the pushing lemma is not true.

Pushing Lemma: [for undirected graphs] Let t ∈ T . The MULTIWAY CUT

problem has a solution S that contains an important (t, T \ t)-separator.

Directed counterexample:

b

s t

a

Unique solution with k = 1 edges, but it is not an important separator

(boundary of {s, a}, but the boundary of {s, a, b} is of the same size).
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Directed Multiway Cut

It is open [?] whether DIRECTED MULTIWAY CUT is FPT or not. The approach

for undirected graphs does not work: the pushing lemma is not true.

Pushing Lemma: [for undirected graphs] Let t ∈ T . The MULTIWAY CUT

problem has a solution S that contains an important (t, T \ t)-separator.

Problem in the undirected proof:

R ′

v

u
t

R

Replacing R by R ′ cannot create a t → u path, but can create a u → t path.
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SKEW MULTICUT

SKEW MULTICUT

Input: Graph G , pairs (s1, t1), ... , (sℓ, tℓ), integer k

Find:
A set S of k directed edges such that G \S contains
no si → tj path for any i ≤ j .

t2

t1

s4

s3

s2

s1

t4

t3

Pushing Lemma: SKEW MULTCUT problem has a solution S that contains an
important (s1, {t1, ... , tℓ})-separator.

Theorem: [Chen et al. 2008] SKEW MULTICUT can be solved in time 4k · nO(1).
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DIRECTED FEEDBACK VERTEX SET

DIRECTED FEEDBACK VERTEX/EDGE SET

Input: Directed graph G , integer k

Find:
A set S of k vertices/edges such that G \ S is
acyclic.

Note: Edge and vertex versions are equivalent, we will consider the edge
version here.

Theorem: [Chen et al. 2008] DIRECTED FEEDBACK EDGE SET is FPT
parameterized by k .

Solution uses the technique of iterat ive com press ion introduced by [Reed et
at. 2004].
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The compression problem

DIRECTED FEEDBACK EDGE SET COMPRESSION

Input:
Directed graph G , integer k , a set of k + 1 edges
such that G \ S ′ is acyclic,

Find: A set S of k edges such that G \ S is acyclic.

Easier than the original problem, as the extra input S ′ gives us useful structural

information about G .

Lemma: The compression problem is FPT parameterized by k .
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The compression problem

Lemma: The compression problem is FPT parameterized by k .
Proof: Let S ′ = {

−→
t1s1, ... ,

−−−−−→
tk+1sk+1}.

s1t2 s2t3 s3t4 s4 t1

By guessing and removing S ∩ S ′, we can assume that S and S ′ are

disjoint [2k+1 possibilities].

By guessing the order of {s1, ... , sk+1} in the acyclic ordering of G \ S , we
can assume that sk+1 < sk < · · · < s1 in G \ S [(k + 1)! possibilities].
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The compression problem

Lemma: The compression problem is FPT parameterized by k .
Proof: Let S ′ = {

−→
t1s1, ... ,

−−−−−→
tk+1sk+1}.

s1t2 s2t3 s3t4 s4 t1

Claim: Suppose that S ′ ∩ S = ∅.

G \ S is acyclic and has an ordering with sk+1 < sk < · · · < s1

m

S covers every si → tj path for every i ≤ j
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The compression problem

Lemma: The compression problem is FPT parameterized by k .
Proof: Let S ′ = {

−→
t1s1, ... ,

−−−−−→
tk+1sk+1}.

t1s3t4 s4 s1t2 s2t3

Claim: Suppose that S ′ ∩ S = ∅.

G \ S is acyclic and has an ordering with sk+1 < sk < · · · < s1

m

S covers every si → tj path for every i ≤ j
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The compression problem

Lemma: The compression problem is FPT parameterized by k .
Proof: Let S ′ = {

−→
t1s1, ... ,

−−−−−→
tk+1sk+1}.

t1s3t4 s4 s1t2 s2t3

Claim: Suppose that S ′ ∩ S = ∅.

G \ S is acyclic and has an ordering with sk+1 < sk < · · · < s1

m

S covers every si → tj path for every i ≤ j

⇒ We can solve the compression problem by 2k+1 ·(k+1)! applications of SKEW

MULTICUT.
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Iterative compression

We have given a f (k)nO(1) algorithm for the following problem:

DIRECTED FEEDBACK EDGE SET COMPRESSION

Input:
Directed graph G , integer k , a set of k + 1 edges
such that G \ S ′ is acyclic,

Find: A set S of k edges such that G \ S is acyclic.

Nice, but how do we get a solution S ′ of size k + 1?
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Iterative compression

We have given a f (k)nO(1) algorithm for the following problem:

DIRECTED FEEDBACK EDGE SET COMPRESSION

Input:
Directed graph G , integer k , a set of k + 1 edges
such that G \ S ′ is acyclic,

Find: A set S of k edges such that G \ S is acyclic.

Nice, but how do we get a solution S ′ of size k + 1?

We get it for free!

Useful trick: iterat ive com press ion (introduced by [Reed, Smith, Vetta 2004]

for BIPARTITE DELETION).
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Iterative compression

Let e1, ... , em be the edges of G and let Gi be the subgraph containing only the

first i edges (and all vertices).

For every i = 1, ... , m, we find a set Si of k edges such that Gi \ Si is acyclic.
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Iterative compression

Let e1, ... , em be the edges of G and let Gi be the subgraph containing only the

first i edges (and all vertices).

For every i = 1, ... , m, we find a set Si of k edges such that Gi \ Si is acyclic.

For i = k , we have the trivial solution Si = {e1, ... , ek}.

Suppose we have a solution Si for Gi . Then Si ∪ {ei+1} is a solution of size
k + 1 in the graph Gi+1

Use the compression algorithm for Gi+1 with the solution Si ∪ {ei+1}.

If the there is no solution of size k for Gi+1, then we can stop.

Otherwise the compression algorithm gives a solution Si+1 of size k for
Gi+1.

We call the compression algorithm m times, everything else is polynomial.

⇒ DIRECTED FEEDBACK EDGE SET is FPT.
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Conclusions

A simple (but essentially tight) bound on the number of important

separators.

Combinatorial result: Erdős-Pósa property for spiders. Is the function
f (k, d) really exponential?

Algorithmic results: FPT algorithms for

MULTIWAY CUT in undirected graphs,

SKEW MULTICUT in directed graphs, and

DIRECTED FEEDBACK VERTEX/EDGE SET.
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