

Important separators and parameterized algorithms

Dániel Marx

Humboldt-Universität zu Berlin, Germany

Methods for Discrete Structures

February 7, 2011

Important separators and parameterized algorithms - p.1/27

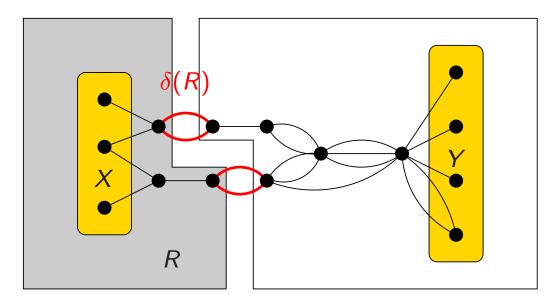
Main message: Small separators in graphs have interesting extremal properties that can be exploited in combinatorial and algorithmic results.

- 6 Bounding the number of "important" separators.
- 6 Combinatorial application: Erdős-Pósa property for "spiders."
- 6 Algorithmic applications: FPT algorithm for multiway cut and a directed feedback vertex set.

Definition: $\delta(R)$ is the set of edges with exactly one endpoint in *R*.

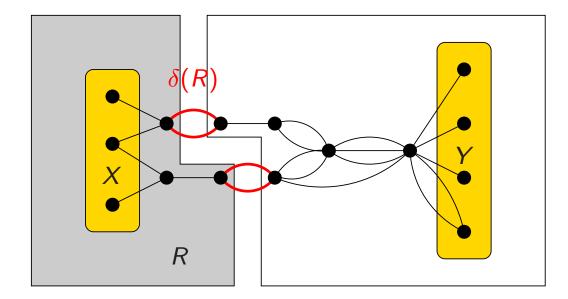
Definition: A set *S* of edges is an (X, Y)-**separator** if there is no X - Y path in $G \setminus S$ and no proper subset of *S* breaks every X - Y path.

Observation: Every (X, Y)-separator *S* can be expressed as $S = \delta(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$.



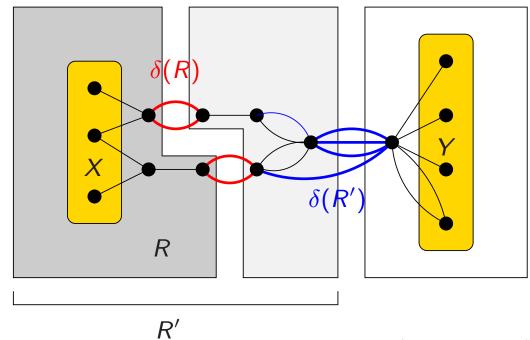
Definition: An (X, Y)-separator $\delta(R)$ is **important** if there is no (X, Y)-separator $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$.

Note: Can be checked in polynomial time if a separator is important.



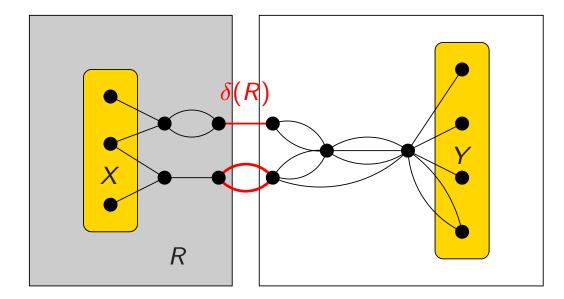
Definition: An (X, Y)-separator $\delta(R)$ is **important** if there is no (X, Y)-separator $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$.

Note: Can be checked in polynomial time if a separator is important.



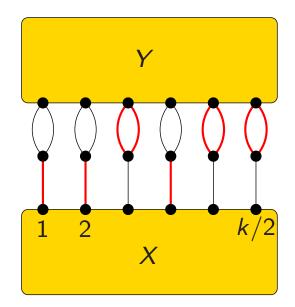
Definition: An (X, Y)-separator $\delta(R)$ is **important** if there is no (X, Y)-separator $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$.

Note: Can be checked in polynomial time if a separator is important.



The number of important separators can be exponentially large.

Example:



This graph has exactly $2^{k/2}$ important (X, Y)-separators of size at most k.

Theorem: There are at most 4^k important (X, Y)-separators of size at most k. (Proof is implicit in [Chen, Liu, Lu 2007], worse bound in [M. 2004].)

Submodularity

Fact: The function δ is **submodular:** for arbitrary sets *A*, *B*,

 $|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$

Consequence: Let λ be the minimum (X, Y)-separator size. There is a unique maximal $R_{\max} \supseteq X$ such that $\delta(R_{\max})$ is an (X, Y)-separator of size λ .

Submodularity

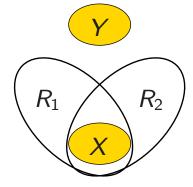
Fact: The function δ is **submodular:** for arbitrary sets *A*, *B*,

 $|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$

Consequence: Let λ be the minimum (X, Y)-separator size. There is a unique maximal $R_{\max} \supseteq X$ such that $\delta(R_{\max})$ is an (X, Y)-separator of size λ .

Proof: Let R_1 , $R_2 \supseteq X$ be two sets such that $\delta(R_1)$, $\delta(R_2)$ are (X, Y)-separators of size λ .

$$\begin{aligned} |\delta(R_1)| + |\delta(R_2)| &\geq |\delta(R_1 \cap R_2)| + |\delta(R_1 \cup R_2)| \\ \lambda & \lambda &\geq \lambda \\ &\Rightarrow |\delta(R_1 \cup R_2)| \leq \lambda \end{aligned}$$



Note: Analogous result holds for a unique minimal R_{\min} .

Theorem: There are at most 4^k important (X, Y)-separators of size at most k.

Proof: Let λ be the minimum (*X*, *Y*)-separator size and let $\delta(R_{max})$ be the unique important separator of size λ such that R_{max} is maximal.

First we show that $R_{\max} \subseteq R$ for every important separator $\delta(R)$.

Theorem: There are at most 4^k important (X, Y)-separators of size at most k.

Proof: Let λ be the minimum (*X*, *Y*)-separator size and let $\delta(R_{max})$ be the unique important separator of size λ such that R_{max} is maximal.

First we show that $R_{\max} \subseteq R$ for every important separator $\delta(R)$.

By the submodularity of δ :

 \Rightarrow We can assume $X = R_{max}$.

Important separators and parameterized algorithms – p.6/27

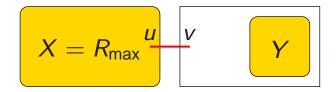
Lemma: There are at most 4^k important (X, Y)-separators of size at most k.

Search tree algorithm for enumerating all these separators:

An (arbitrary) edge uv leaving $X = R_{max}$ is either in the separator or not.

Branch 1: If $uv \in S$, then $S \setminus uv$ is an important (X, Y)-separator of size at most k - 1 in $G \setminus uv$.

Branch 2: If $uv \notin S$, then S is an important $(X \cup v, Y)$ -separator of size at most k in G.



Lemma: There are at most 4^k important (X, Y)-separators of size at most k.

Search tree algorithm for enumerating all these separators:

An (arbitrary) edge uv leaving $X = R_{max}$ is either in the separator or not.

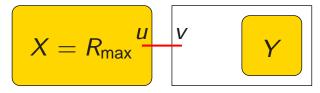
Branch 1: If $uv \in S$, then $S \setminus uv$ is an important

(*X*, *Y*)-separator of size at most k - 1 in $G \setminus uv$.

 \Rightarrow k decreases by one, λ decreases by at most 1.

Branch 2: If $uv \notin S$, then S is an important $(X \cup v, Y)$ -separator of size at most k in G.

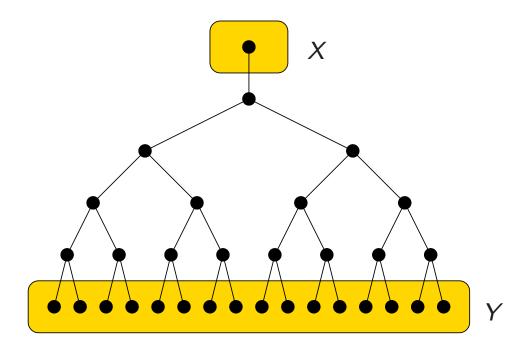
 \Rightarrow k remains the same, λ increases by 1.



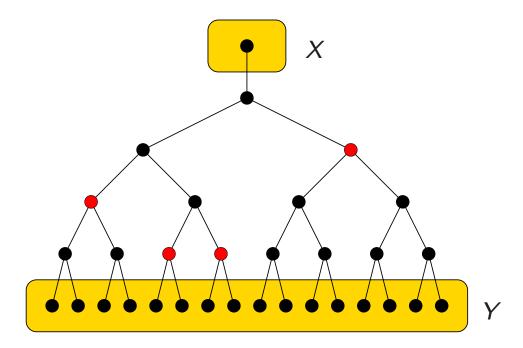
The measure $2k - \lambda$ decreases in each step.

 \Rightarrow Height of the search tree $\leq 2k \Rightarrow \leq 2^{2k}$ important separators of size $\leq k$.

Example: The bound 4^k is essentially tight.

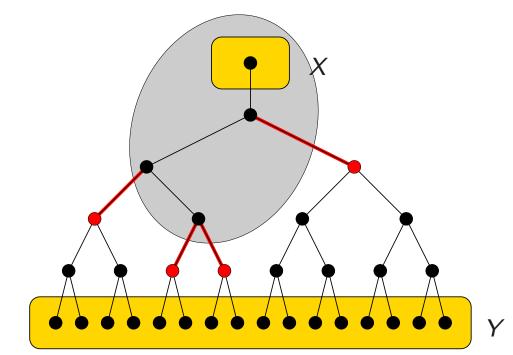


Example: The bound 4^k is essentially tight.



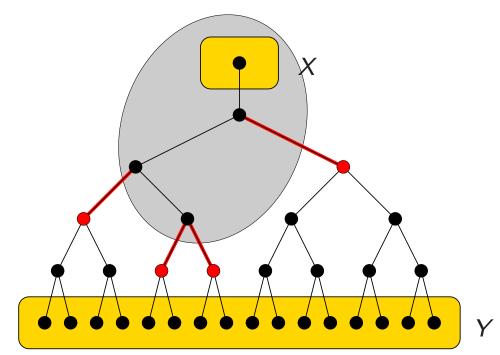
Any subtree with k leaves gives an important (X, Y)-separator of size k.

Example: The bound 4^k is essentially tight.



Any subtree with k leaves gives an important (X, Y)-separator of size k.

Example: The bound 4^k is essentially tight.



Any subtree with k leaves gives an important (X, Y)-separator of size k. The number of subtrees with k leaves is the Catalan number

$$C_{k-1} = rac{1}{k} inom{2k-2}{k-1} \geq 4^k / extsf{poly}(k).$$

Important separators and parameterized algorithms - p.8/27

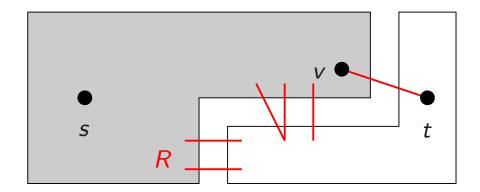
Simple application

Lemma: At most $k \cdot 4^k$ edges incident to *t* can be part of an inclusionwise minimal s - t cut of size at most *k*.

Simple application

Lemma: At most $k \cdot 4^k$ edges incident to t can be part of an inclusionwise minimal s - t cut of size at most k.

Proof: We show that every such edge is contained in an important (s, t)-separator of size at most k.

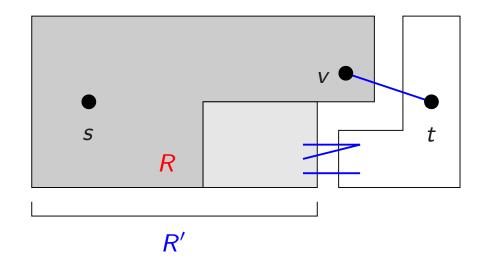


Suppose that $vt \in \delta(R)$ and $|\delta(R)| = k$.

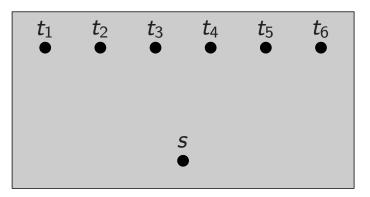
Simple application

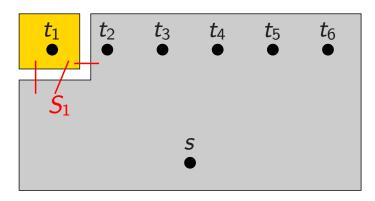
Lemma: At most $k \cdot 4^k$ edges incident to t can be part of an inclusionwise minimal s - t cut of size at most k.

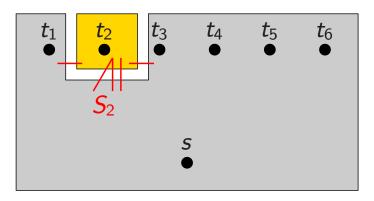
Proof: We show that every such edge is contained in an important (s, t)-separator of size at most k.

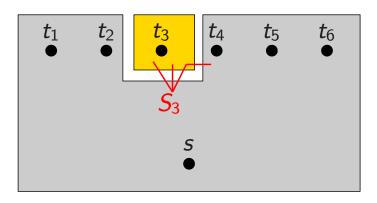


Suppose that $vt \in \delta(R)$ and $|\delta(R)| = k$. There is an important (s, t)-separator $\delta(R')$ with $R \subseteq R'$ and $|\delta(R')| \leq k$. Clearly, $vt \in \delta(R')$: $v \in R$, hence $v \in R'$.

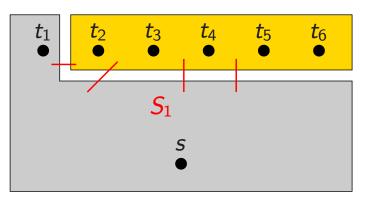






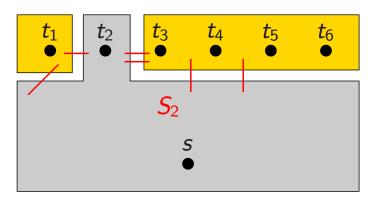


Let $s, t_1, ..., t_n$ be vertices and $S_1, ..., S_n$ be sets of at most k edges such that S_i separates t_i from s, but S_i **does not** separate t_j from s for any $j \neq i$. It is possible that n is "large" even if k is "small."



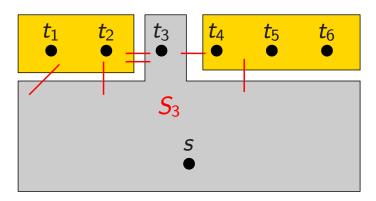
Is the opposite possible, i.e., S_i separates every t_j except t_i ?

Let $s, t_1, ..., t_n$ be vertices and $S_1, ..., S_n$ be sets of at most k edges such that S_i separates t_i from s, but S_i **does not** separate t_j from s for any $j \neq i$. It is possible that n is "large" even if k is "small."



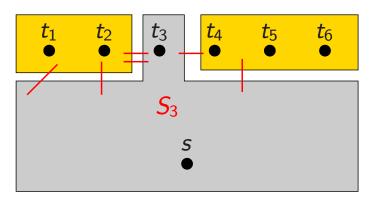
Is the opposite possible, i.e., S_i separates every t_j except t_i ?

Let $s, t_1, ..., t_n$ be vertices and $S_1, ..., S_n$ be sets of at most k edges such that S_i separates t_i from s, but S_i **does not** separate t_j from s for any $j \neq i$. It is possible that n is "large" even if k is "small."



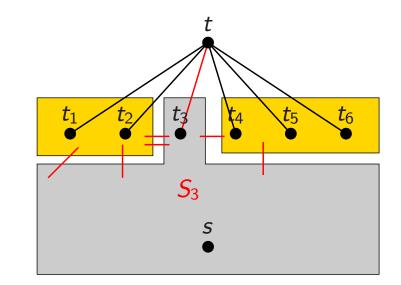
Is the opposite possible, i.e., S_i separates every t_j except t_i ?

Let $s, t_1, ..., t_n$ be vertices and $S_1, ..., S_n$ be sets of at most k edges such that S_i separates t_i from s, but S_i **does not** separate t_j from s for any $j \neq i$. It is possible that n is "large" even if k is "small."



Is the opposite possible, i.e., S_i separates every t_j except t_i ?

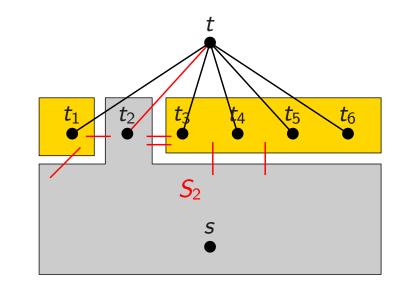
Lemma: If S_i separates t_j from s if and only $j \neq i$ and every S_i has size at most k, then $n \leq (k+1) \cdot 4^{k+1}$.



Is the opposite possible, i.e., S_i separates every t_j except t_i ?

Lemma: If S_i separates t_j from s if and only $j \neq i$ and every S_i has size at most k, then $n \leq (k+1) \cdot 4^{k+1}$.

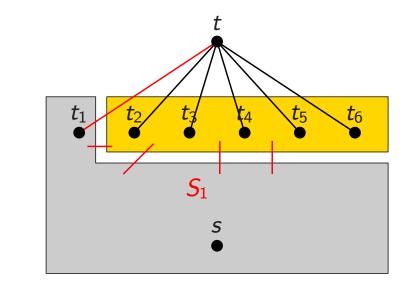
Proof: Add a new vertex *t*. Every edge tt_i is part of an (inclusionwise minimal) (s, t)-separator of size at most k + 1. Use the previous lemma.



Is the opposite possible, i.e., S_i separates every t_j except t_i ?

Lemma: If S_i separates t_j from s if and only $j \neq i$ and every S_i has size at most k, then $n \leq (k+1) \cdot 4^{k+1}$.

Proof: Add a new vertex *t*. Every edge tt_i is part of an (inclusionwise minimal) (s, t)-separator of size at most k + 1. Use the previous lemma.



Is the opposite possible, i.e., S_i separates every t_j except t_i ?

Lemma: If S_i separates t_j from s if and only $j \neq i$ and every S_i has size at most k, then $n \leq (k+1) \cdot 4^{k+1}$.

Proof: Add a new vertex *t*. Every edge tt_i is part of an (inclusionwise minimal) (s, t)-separator of size at most k + 1. Use the previous lemma.

Erdős-Pósa property

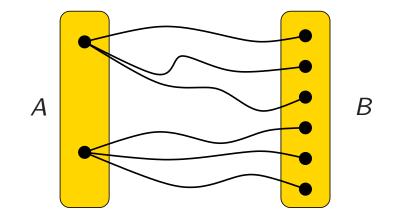
Theorem: [Erdős-Pósa 1965] There is a function $f(k) = O(k \log k)$ such that for every undirected graph *G* and integer *k*, either

- 6 G has k vertex-disjoint cycles, or
- 6 G has a set S of at most f(k) vertices such that $G \setminus S$ is acyclic.

More generally: A set of objects has the Erdős-Pósa property if the covering (hitting number) can be bounded by a function of the packing number.

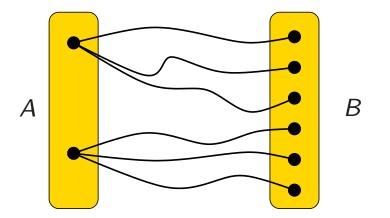
Let *A* and *B* be two disjoint sets of vertices in *G*. A *d*-spider with center *v* is a set of *d* edge disjoint paths connecting $v \in A$ with *B*.

Suppose for simplicity that every vertex of A has degree exactly d.



Let *A* and *B* be two disjoint sets of vertices in *G*. A *d*-spider with center *v* is a set of *d* edge disjoint paths connecting $v \in A$ with *B*.

Suppose for simplicity that every vertex of A has degree exactly d.

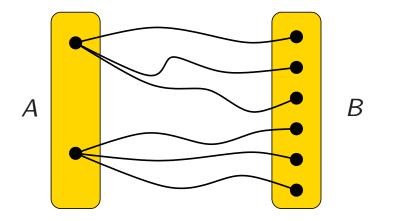


Theorem: There is a function $f(k, d) = 2^{O(kd)}$ such that for every graph *G* and disjoint sets *A*, *B* either

- 6 there are k edge-disjoint d-spiders, or
- 6 there is a set D of at most f(k, d) edges that intersects every d-spider.

Let *A* and *B* be two disjoint sets of vertices in *G*. A *d*-spider with center *v* is a set of *d* edge disjoint paths connecting $v \in A$ with *B*.

Suppose for simplicity that every vertex of A has degree exactly d.



Proved by Robertson and Seymour in Graph Minors XXIII:

7.2. Let T be a tangle in a hypergraph G, and let $W \subseteq V(G)$ be free relative to T, with $|W| \leq w$. Let $h \geq 1$ be an integer, and let T have order $\geq (w + h)^{h+1} + h$. Then there exists $W' \subseteq V(G)$ with $W \subseteq W'$ and $|W'| \leq (w + h)^{h+1}$ such that for every $(C, D) \in T$ of order $\langle |W| + h$ with $W \subseteq V(C)$, there exists $(A', B') \in T$ with $W' \subseteq V(A' \cap B')$, $|V(A' \cap B') \setminus W'| < h$, $C \subseteq A'$ and $E(B') \subseteq E(D)$.

Theorem: There is a function f(k, d) such that for every graph G and disjoint sets A, B either

- 6 there are *k* edge-disjoint *d*-spiders, or
- ⁶ there is a set D of at most f(k, d) edges that intersects every d-spider.

Proof: Assuming that there are no *k* edge-disjoint *d*-spiders,

- 1. we construct a set D and
- 2. show that D intersects every d-spider.

Theorem: There is a function f(k, d) such that for every graph G and disjoint sets A, B either

- 6 there are *k* edge-disjoint *d*-spiders, or
- ⁶ there is a set D of at most f(k, d) edges that intersects every d-spider.

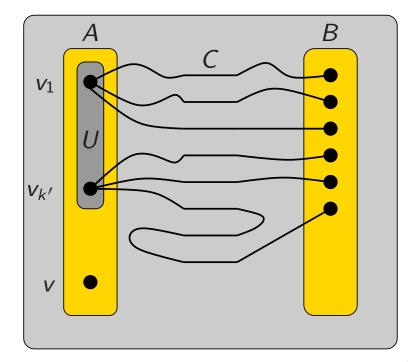
Proof: Suppose that there are k' < k disjoint *d*-spiders with centers $U = \{v_1, ..., v_{k'}\}$, but there are no k' + 1 disjoint spiders.

Let *D* be the union of all the important (v_i, B) -separators of size at most *kd* for $1 \le i \le k'$.

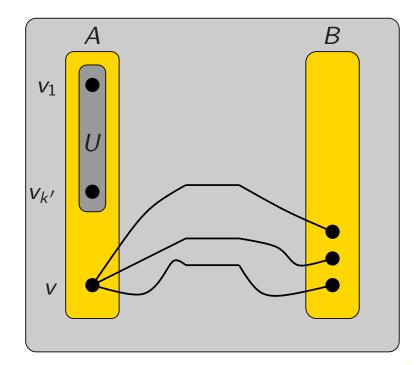
 \Rightarrow size of D is at most $f(k, d) := k \cdot 4^{kd} \cdot kd$.

We claim that *D* intersects every *d*-spider.

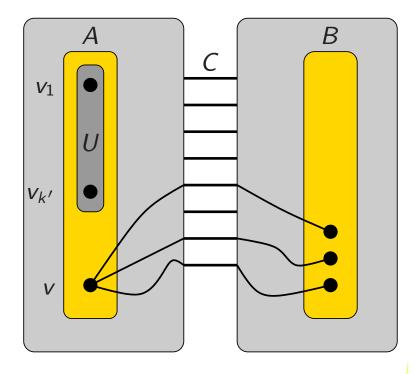
Remember: *D* contains every important (v_i , *B*)-separator of size $\leq kd$.



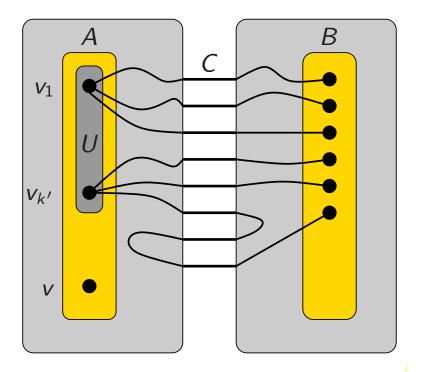
Remember: *D* contains every important (v_i , *B*)-separator of size $\leq kd$.



Remember: *D* contains every important (v_i , *B*)-separator of size $\leq kd$.



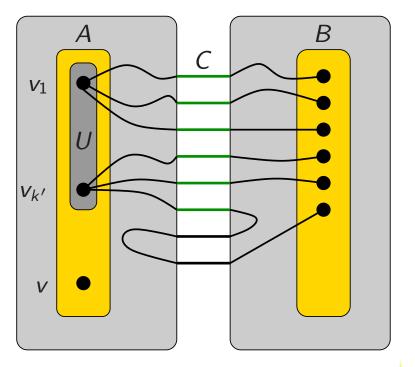
Remember: *D* contains every important (v_i , *B*)-separator of size $\leq kd$.



Remember: *D* contains every important (v_i , *B*)-separator of size $\leq kd$.

An edge of *C* is green if it is the first edge in *C* of any of the paths of the k' spiders

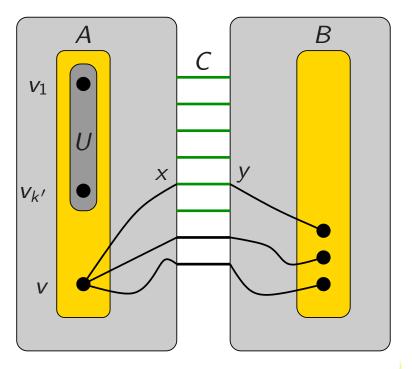
- \Rightarrow there are k'd green edges.
- \Rightarrow there are $\leq d 1$ non-green edges.



Remember: *D* contains every important (v_i , *B*)-separator of size $\leq kd$.

An edge of *C* is green if it is the first edge in *C* of any of the paths of the k'spiders

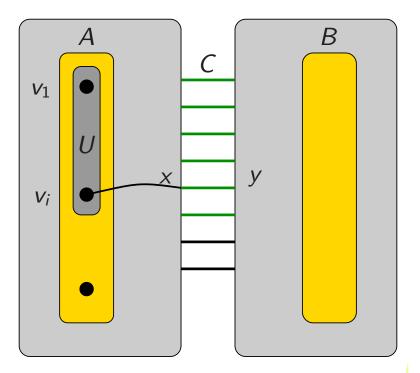
- \Rightarrow there are k'd green edges.
- \Rightarrow there are $\leq d 1$ non-green edges.
- ⇒ Spider *S* contains a green edge xy⇒ Spider *S* connects *x* and *B*.



Remember: *D* contains every important (v_i , *B*)-separator of size $\leq kd$.

An edge of *C* is green if it is the first edge in *C* of any of the paths of the k'spiders

- \Rightarrow there are k'd green edges.
- \Rightarrow there are $\leq d 1$ non-green edges.
- \Rightarrow Spider *S* contains a green edge *xy*
- \Rightarrow Spider S connects x and B.

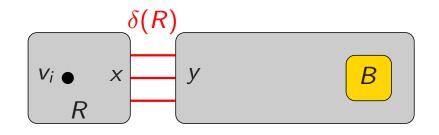


Remember: D contains every important (v_i , B)-separator of size $\leq kd$.

Spider *S* connects *x* and *B*.

Let *R* be the set of vertices reachable from v_i in $G \setminus C$: $x \in R$ and $R \cap B = \emptyset$

 $\delta(R)$ is a (v_i , B)-separator of size < kd



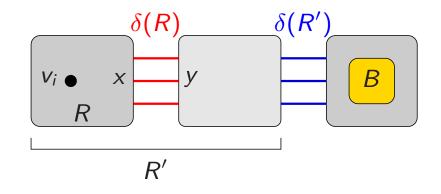
Remember: D contains every important (v_i , B)-separator of size $\leq kd$.

Spider *S* connects *x* and *B*.

Let *R* be the set of vertices reachable from v_i in $G \setminus C$: $x \in R$ and $R \cap B = \emptyset$

 $\delta(R)$ is a (v_i, B) -separator of size < kd $\Rightarrow D$ contains a separator $\delta(R')$ with $R \subseteq R'$.

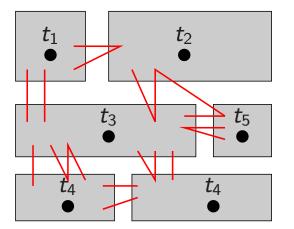
 $x \in R' \Rightarrow \delta(R')$ separates x and B $\Rightarrow D \supseteq \delta(R')$ intersects the spider S.



Definition: A **multiway cut** of a set of terminals T is a set S of edges such that each component of $G \setminus S$ contains at most one vertex of T.

MULTIWAY CUT **Input:** Graph *G*, set *T* of vertices, integer *k*

Find: A multiway cut *S* of at most *k* edges.



Polynomial for $|\mathcal{T}| = 2$, but NP-hard for any fixed $|\mathcal{T}| \ge 3$ [Dalhaus et al. 1994].

Trivial to solve in polynomial time for fixed k (in time $n^{O(k)}$).

Central notion of parameterized complexity:

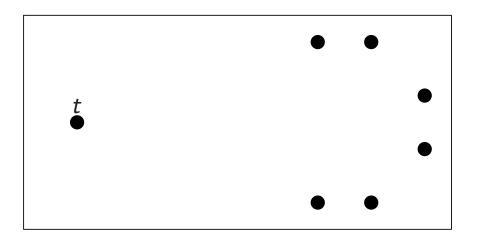
Definition: A problem is **fixed-parameter tractable (FPT)** parameterized by *k* if it can be solved in time $f(k) \cdot n^{O(1)}$ for some function f(k) depending only on *k*.

FPT means that the k can be removed from the exponent of n and the combinatorial explosion can be restricted to k.

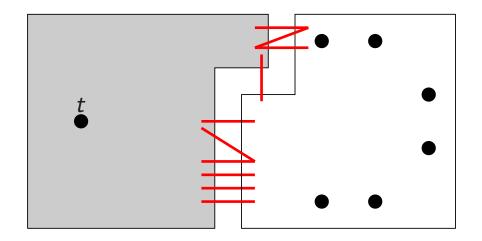
If f(k) is e.g., 1.2^k , then this can be actually an efficient algorithm!

Theorem: MULTIWAY CUT can be solved in time $4^k \cdot n^{O(1)}$, i.e., it is fixed-parameter tractable (FPT) parameterized by *k*.

Intuition: Consider a $t \in T$. A subset of the solution *S* is a $(t, T \setminus t)$ -separator.

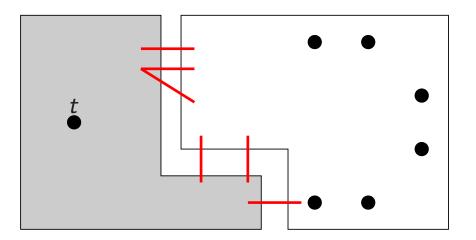


Intuition: Consider a $t \in T$. A subset of the solution *S* is a $(t, T \setminus t)$ -separator.



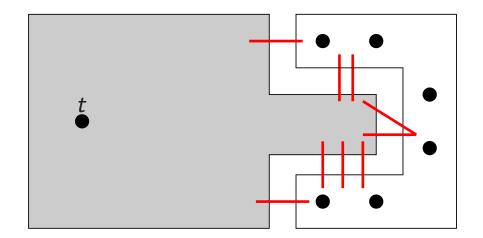
There are many such separators.

Intuition: Consider a $t \in T$. A subset of the solution *S* is a $(t, T \setminus t)$ -separator.



There are many such separators.

Intuition: Consider a $t \in T$. A subset of the solution *S* is a $(t, T \setminus t)$ -separator.



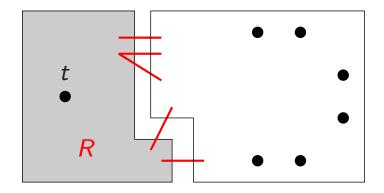
There are many such separators.

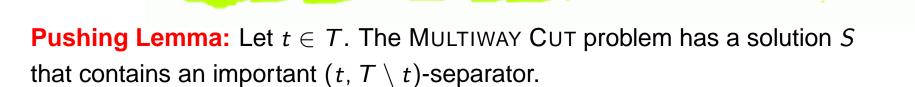
But a separator farther from t and closer to $T \setminus t$ seems to be more useful.

Pushing Lemma: Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -separator.

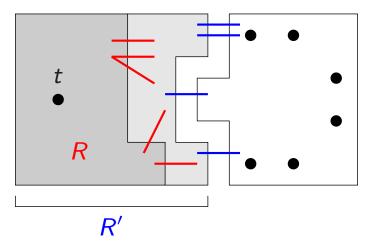
Pushing Lemma: Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -separator.

Proof: Let *R* be the vertices reachable from *t* in $G \setminus S$ for a solution *S*.

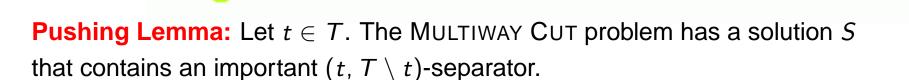




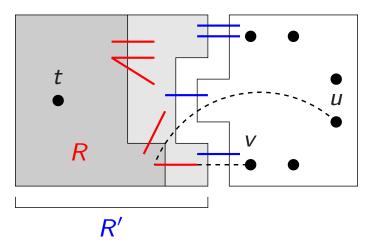
Proof: Let *R* be the vertices reachable from *t* in $G \setminus S$ for a solution *S*.



If $\delta(R)$ is not important, then there is an important separator $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$. Replace *S* with $S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \leq |S|$

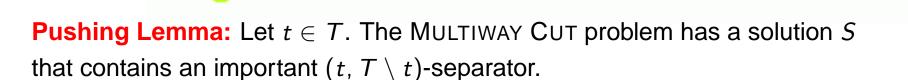


Proof: Let *R* be the vertices reachable from *t* in $G \setminus S$ for a solution *S*.

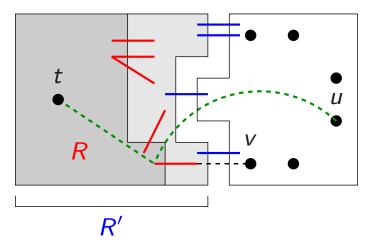


If $\delta(R)$ is not important, then there is an important separator $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$. Replace *S* with $S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \leq |S|$

S' is a multiway cut: (1) There is no *t*-*u* path in $G \setminus S'$ and (2) a *u*-*v* path in $G \setminus S'$ implies a *t*-*u* path, a contradiction.



Proof: Let *R* be the vertices reachable from *t* in $G \setminus S$ for a solution *S*.



If $\delta(R)$ is not important, then there is an important separator $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$. Replace *S* with $S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \leq |S|$

S' is a multiway cut: (1) There is no *t*-*u* path in $G \setminus S'$ and (2) a *u*-*v* path in $G \setminus S'$ implies a *t*-*u* path, a contradiction.

Algorithm for MULTIWAY CUT

- 1. If every vertex of T is in a different component, then we are done.
- 2. Let $t \in T$ be a vertex with that is not separated from every $T \setminus t$.
- 3. Branch on a choice of an important $(t, T \setminus t)$ separator *S* of size at most *k*.
- 4. Set $G := G \setminus S$ and k := k |S|.
- 5. Go to step 1.

We branch into at most 4^k directions at most k times.

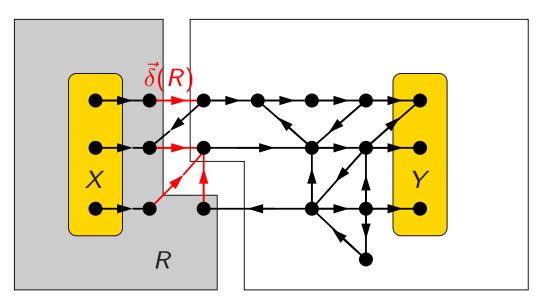
(Better analysis gives 4^k bound on the size of the search tree.)

Directed graphs

Definition: $\vec{\delta}(R)$ is the set of edges leaving *R*.

Observation: Every inclusionwise-minimal directed (*X*, *Y*)-separator *S* can be expressed as $S = \vec{\delta}(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$.

Definition: An (X, Y)-separator $\vec{\delta}(R)$ is **important** if there is no (X, Y)-separator $\vec{\delta}(R')$ with $R \subset R'$ and $|\vec{\delta}(R')| \leq |\vec{\delta}(R)|$.

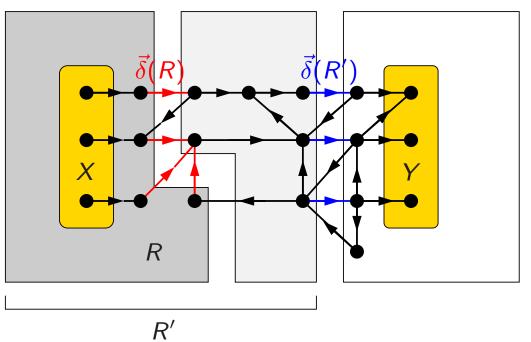


Directed graphs

Definition: $\vec{\delta}(R)$ is the set of edges leaving *R*.

Observation: Every inclusionwise-minimal directed (*X*, *Y*)-separator *S* can be expressed as $S = \vec{\delta}(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$.

Definition: An (X, Y)-separator $\vec{\delta}(R)$ is **important** if there is no (X, Y)-separator $\vec{\delta}(R')$ with $R \subset R'$ and $|\vec{\delta}(R')| \leq |\vec{\delta}(R)|$.



Directed graphs

Definition: $\vec{\delta}(R)$ is the set of edges leaving *R*.

Observation: Every inclusionwise-minimal directed (*X*, *Y*)-separator *S* can be expressed as $S = \vec{\delta}(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$.

Definition: An (X, Y)-separator $\vec{\delta}(R)$ is **important** if there is no (X, Y)-separator $\vec{\delta}(R')$ with $R \subset R'$ and $|\vec{\delta}(R')| \leq |\vec{\delta}(R)|$.

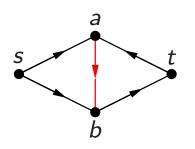
The proof for the undirected case goes through for the directed case:

Theorem: There are at most 4^k important directed (X, Y)-separators of size at most k.

It is open [?] whether DIRECTED MULTIWAY CUT is FPT or not. The approach for undirected graphs does not work: the pushing lemma is not true.

Pushing Lemma: [for undirected graphs] Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -separator.

Directed counterexample:

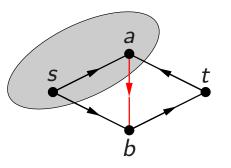


Unique solution with k = 1 edges, but it is not an important separator (boundary of $\{s, a\}$, but the boundary of $\{s, a, b\}$ is of the same size).

It is open [?] whether DIRECTED MULTIWAY CUT is FPT or not. The approach for undirected graphs does not work: the pushing lemma is not true.

Pushing Lemma: [for undirected graphs] Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -separator.

Directed counterexample:

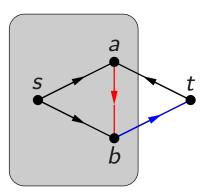


Unique solution with k = 1 edges, but it is not an important separator (boundary of $\{s, a\}$, but the boundary of $\{s, a, b\}$ is of the same size).

It is open [?] whether DIRECTED MULTIWAY CUT is FPT or not. The approach for undirected graphs does not work: the pushing lemma is not true.

Pushing Lemma: [for undirected graphs] Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -separator.

Directed counterexample:

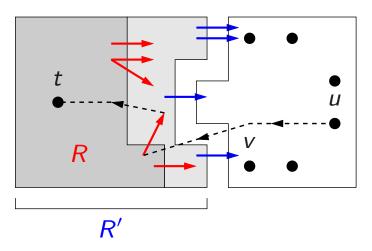


Unique solution with k = 1 edges, but it is not an important separator (boundary of $\{s, a\}$, but the boundary of $\{s, a, b\}$ is of the same size).

It is open [?] whether DIRECTED MULTIWAY CUT is FPT or not. The approach for undirected graphs does not work: the pushing lemma is not true.

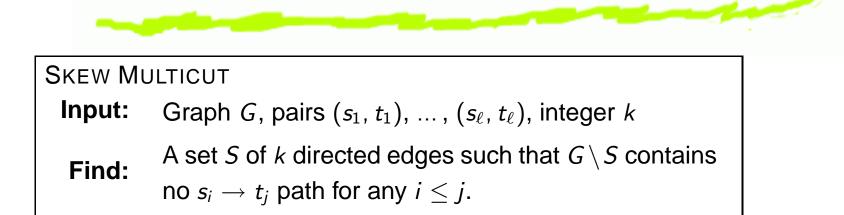
Pushing Lemma: [for undirected graphs] Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -separator.

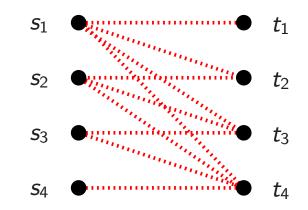
Problem in the undirected proof:



Replacing *R* by *R'* cannot create a $t \rightarrow u$ path, but can create a $u \rightarrow t$ path.

SKEW MULTICUT





Pushing Lemma: SKEW MULTCUT problem has a solution *S* that contains an important $(s_1, \{t_1, ..., t_\ell\})$ -separator.

Theorem: [Chen et al. 2008] SKEW MULTICUT can be solved in time $4^k \cdot n^{O(1)}$.

DIRECTED FEEDBACK VERTEX SET

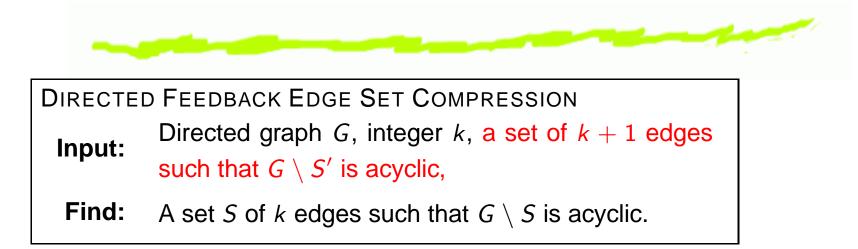
Input: Directed graph *G*, integer *k*

Find: A set *S* of *k* vertices/edges such that $G \setminus S$ is acyclic.

Note: Edge and vertex versions are equivalent, we will consider the edge version here.

Theorem: [Chen et al. 2008] DIRECTED FEEDBACK EDGE SET is FPT parameterized by *k*.

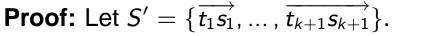
Solution uses the technique of **iterative compression** introduced by [Reed et at. 2004].

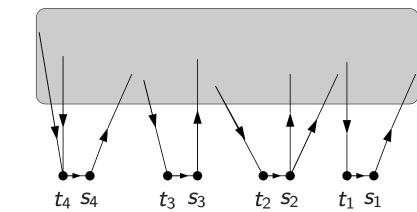


Easier than the original problem, as the extra input S' gives us useful structural information about G.

Lemma: The compression problem is FPT parameterized by k.

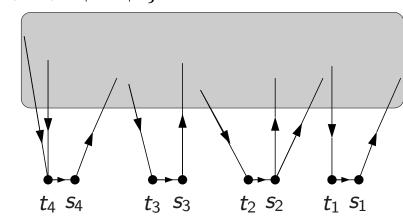
Lemma: The compression problem is FPT parameterized by k.





- 6 By guessing and removing $S \cap S'$, we can assume that S and S' are disjoint $[2^{k+1} \text{ possibilities}]$.
- 6 By guessing the order of $\{s_1, ..., s_{k+1}\}$ in the acyclic ordering of $G \setminus S$, we can assume that $s_{k+1} < s_k < \cdots < s_1$ in $G \setminus S$ [(k + 1)! possibilities].

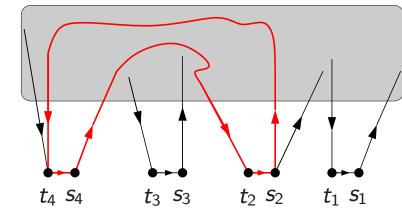
Lemma: The compression problem is FPT parameterized by *k*. **Proof:** Let $S' = {\overrightarrow{t_1 s_1}, \dots, \overrightarrow{t_{k+1} s_{k+1}}}$.



Claim: Suppose that $S' \cap S = \emptyset$.

 $G \setminus S$ is acyclic and has an ordering with $s_{k+1} < s_k < \cdots < s_1$ fS covers every $s_i \to t_j$ path for every $i \le j$

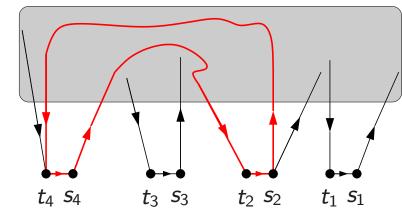
Lemma: The compression problem is FPT parameterized by k. **Proof:** Let $S' = {\overrightarrow{t_1 s_1}, ..., \overrightarrow{t_{k+1} s_{k+1}}}$.



Claim: Suppose that $S' \cap S = \emptyset$.

 $G \setminus S$ is acyclic and has an ordering with $s_{k+1} < s_k < \cdots < s_1$ fS covers every $s_i \to t_j$ path for every $i \le j$

Lemma: The compression problem is FPT parameterized by k. **Proof:** Let $S' = {\overrightarrow{t_1s_1}, ..., \overrightarrow{t_{k+1}s_{k+1}}}$.



Claim: Suppose that $S' \cap S = \emptyset$.

 $G \setminus S$ is acyclic and has an ordering with $s_{k+1} < s_k < \cdots < s_1$

S covers every $s_i \rightarrow t_j$ path for every $i \leq j$

⇒ We can solve the compression problem by $2^{k+1} \cdot (k+1)!$ applications of SKEW MULTICUT.

We have given a $f(k)n^{O(1)}$ algorithm for the following problem:

DIRECTED FEEDBACK EDGE SET COMPRESSION	
Input:	Directed graph G, integer k, a set of $k + 1$ edges
	such that $G \setminus S'$ is acyclic,
Find:	A set S of k edges such that $G \setminus S$ is acyclic.

Nice, but how do we get a solution S' of size k + 1?

We have given a $f(k)n^{O(1)}$ algorithm for the following problem:

DIRECTED FEEDBACK EDGE SET COMPRESSION	
Input:	Directed graph G, integer k, a set of $k + 1$ edges
	such that $G \setminus S'$ is acyclic,
Find:	A set S of k edges such that $G \setminus S$ is acyclic.

Nice, but how do we get a solution S' of size k + 1?

We get it for free!

Useful trick: **iterative compression** (introduced by [Reed, Smith, Vetta 2004] for BIPARTITE DELETION).

Let $e_1, ..., e_m$ be the edges of *G* and let G_i be the subgraph containing only the first *i* edges (and all vertices).

For every i = 1, ..., m, we find a set S_i of k edges such that $G_i \setminus S_i$ is acyclic.

Let $e_1, ..., e_m$ be the edges of *G* and let G_i be the subgraph containing only the first *i* edges (and all vertices).

For every i = 1, ..., m, we find a set S_i of k edges such that $G_i \setminus S_i$ is acyclic.

- 6 For i = k, we have the trivial solution $S_i = \{e_1, \dots, e_k\}$.
- Suppose we have a solution S_i for G_i . Then $S_i \cup \{e_{i+1}\}$ is a solution of size k+1 in the graph G_{i+1}
- 6 Use the compression algorithm for G_{i+1} with the solution $S_i \cup \{e_{i+1}\}$.
 - If the there is no solution of size k for G_{i+1} , then we can stop.
 - Otherwise the compression algorithm gives a solution S_{i+1} of size k for G_{i+1} .

We call the compression algorithm m times, everything else is polynomial.

 \Rightarrow Directed Feedback Edge Set is FPT.

Conclusions

- 6 A simple (but essentially tight) bound on the number of important separators.
- 6 Combinatorial result: Erdős-Pósa property for spiders. Is the function f(k, d) really exponential?
- 6 Algorithmic results: FPT algorithms for
 - △ MULTIWAY CUT in undirected graphs,
 - ▲ SKEW MULTICUT in directed graphs, and
 - △ DIRECTED FEEDBACK VERTEX/EDGE SET.