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Overview

Main message: Small separators in graphs have interesting extremal
properties that can be exploited in combinatorial and algorithmic results.

Bounding the number of “important” separators.
Combinatorial application: Erdos-Posa property for “spiders.”

Algorithmic applications: FPT algorithm for multiway cut and a directed
feedback vertex set.
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Important separators

Definition: §(R) is the set of edges with exactly one endpoint in R.

Definition: A set S of edges is an (X, Y)-separator if there is no X — Y path
in G \ S and no proper subset of S breaks every X — Y path.

Observation: Every (X, Y)-separator S can be expressed as S = §(R) for
some X CRand RNY = 0.
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Important separators

Definition:  An (X, Y)-separator §(R) is important if there is no (X, Y)-
separator §(R") with R C R" and |6(R")| < [6(R)].

Note: Can be checked in polynomial time if a separator is important.
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Important separators

The number of important separators can be exponentially large.

Example:

1 2 k/2
X

This graph has exactly 2%/2 important (X, Y)-separators of size at most k.

Theorem: There are at most 4 important (X, Y)-separators of size at most k.
(Proof is implicit in [Chen, Liu, Lu 2007], worse bound in [M. 2004].)
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Submodularity

Fact: The function ¢ is submodular: for arbitrary sets A, B,
0(A)[ + [6(B)| = [6(AN B)| +[0(AU B)|

Consequence: Let A be the minimum (X, Y)-separator size. There is a
unique maximal Rmax 2 X such that 6( Rmax) is an (X, Y')-separator of size \.
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Submodularity

Fact: The function ¢ is submodular: for arbitrary sets A, B,
0(A)[ + [6(B)| = [6(AN B)| +[0(AU B)|

Consequence: Let A be the minimum (X, Y)-separator size. There is a
unique maximal Rmax 2 X such that 6( Rmax) is an (X, Y')-separator of size \.

Proof: Let Ri, R» © X be two sets such that §(R1), 6(R2) are (X, Y)-separators
of size .

10(R1)| + [0(R2)] > [6(Ri N R2)| + [6(R1 U Ry)| @

A A >\
= [6(RIUR)| < A @

Note: Analogous result holds for a unique minimal Ruin.
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Important separators

Theorem: There are at most 4 important (X, Y)-separators of size at most k.

Proof: Let A be the minimum (X, Y)-separator size and let §( Rmax) be the
uniqgue important separator of size A such that Rnax is maximal.

First we show that Rnax C R for every important separator §(R).
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Important separators

Theorem: There are at most 4 important (X, Y)-separators of size at most k.

Proof: Let A be the minimum (X, Y)-separator size and let §( Rmax) be the
uniqgue important separator of size A such that Rnax is maximal.

First we show that Rnax C R for every important separator §(R).

By the submodularity of ¢:

[0(Rmax)| + |0(R)| = [0(Rmax N R)| + [0(Rmax U R)|

A\ > A
4
[6(Rmax U R)| < |6(R)|
U

If R # Rmax U R, then §(R) is not important.

Thus the important (X, Y)- and (Rmax, Y)-Separators are the same.
= We can assume X = Rmax.
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Important separators

Lemma: There are at most 4* important (X, Y)-separators of size at most k.
Search tree algorithm for enumerating all these separators:

An (arbitrary) edge uv leaving X = Rnax IS either in the separator or not.

Branch 1: If uv € S, then S\ wv is an important
(X, Y)-separator of size at most k —1in G \ uv.

Branch 2: If uv € S, then S is an important
(X U v, Y)-separator of size at most k in G.

Important separators and parameterized algorithms — p.7/27



Important separators

Lemma: There are at most 4* important (X, Y)-separators of size at most k.
Search tree algorithm for enumerating all these separators:

An (arbitrary) edge uv leaving X = Rnax IS either in the separator or not.

Branch 1: If uv € S, then S\ wv is an important
(X, Y)-separator of size at most k —1in G \ uv.

— k decreases by one, \ decreases by at most 1.

Branch 2: If uv € S, then S is an important
(X U v, Y)-separator of size at most k in G.

= k remains the same, X increases by 1.

The measure 2k — )\ decreases in each step.
— Height of the search tree < 2k = < 22K important separators of size < k.
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Important separators

Example: The bound 4 is essentially tight.

X

ER R R R TR TR TR PR
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Example: The bound 4 is essentially tight.

X

ERRRTR R TR TR TR PR

Any subtree with k leaves gives an important (X, Y')-separator of size k.
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Important separators

Example: The bound 4 is essentially tight.

ER R R R TR TR TR PR

Any subtree with k leaves gives an important (X, Y')-separator of size k.
The number of subtrees with k leaves is the Catalan number

1(2k—2 K
1= — > :
Ci—1 k<k1>4/poly(k)
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Simple application

Lemma: At most k - 4% edges incident to t can be part of an inclusionwise
minimal s — t cut of size at most k.
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Simple application

Lemma: At most k - 4% edges incident to t can be part of an inclusionwise

minimal s — t cut of size at most k.

Proof: We show that every such edge is contained in an important

(s, t)-separator of size at most k.

V.\

Suppose that vt € 5(R) and [§(R)| = k.
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Simple application

Lemma: At most k - 4% edges incident to t can be part of an inclusionwise
minimal s — t cut of size at most k.

Proof: We show that every such edge is contained in an important
(s, t)-separator of size at most k.

v @

R -

R/
Suppose that vt € 5(R) and [§(R)| = k.
There is an important (s, t)-separator 6(R') with R C R’ and |6(R")| < k.
Clearly, vt € §(R'): v € R, hence v € R’.
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Anti i1solation

Lets, t1, ..., t, be vertices and Sy, ..., S, be sets of at most k edges such that S;
separates t; from s, but S; does not separate t; from s for any j # i.
It is possible that n is “large” even if k is “small.”

own
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Is the opposite possible, i.e., S; separates every t; except t;?
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Lets, t1, ..., t, be vertices and Sy, ..., S, be sets of at most k edges such that S;
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Is the opposite possible, i.e., S; separates every t; except t;?

Lemma: If S; separates t; from s if and only j # i and every S; has size at
most k, then n < (k + 1) - 41,
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Anti i1solation

N

RN

/
/

/

53

S
|

Is the opposite possible, i.e., S; separates every t; except t;?

Lemma: If S; separates t; from s if and only j # i and every S; has size at
most k, then n < (k + 1) - 41,

Proof: Add a new vertex t. Every edge tt; is part of an (inclusionwise minimal)
(s, t)-separator of size at most k + 1. Use the previous lemma.
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Anti i1solation
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Erd 0s-Pdsa property

Theorem: [Erd0s-Posa 1965] There is a function (k) = O(k log k) such that
for every undirected graph G and integer k, either

G has k vertex-disjoint cycles, or

G has a set S of at most f (k) vertices such that G \ S is acyclic.

More generally: A set of objects has the Erdds-Pdsa property if the covering
(hitting number) can be bounded by a function of the packing number.
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Spiders

Let A and B be two disjoint sets of vertices in G. A d-spider with center v is a
set of d edge disjoint paths connecting v € A with B.

Suppose for simplicity that every vertex of A has degree exactly d.
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Spiders

Let A and B be two disjoint sets of vertices in G. A d-spider with center v is a
set of d edge disjoint paths connecting v € A with B.

Suppose for simplicity that every vertex of A has degree exactly d.
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Theorem: There is a function f(k, d) = 2°%9) such that for every graph G and
disjoint sets A, B either

there are k edge-disjoint d-spiders, or

there is a set D of at most f(k, d) edges that intersects every d-spider.
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Spiders

Let A and B be two disjoint sets of vertices in G. A d-spider with center v is a
set of d edge disjoint paths connecting v € A with B.

Suppose for simplicity that every vertex of A has degree exactly d.

o~ —*
\/\/\”’
A ® | B
/_\__/ —@
~ e
\_/—\\.
. .

Proved by Robertson and Seymour in Graph Minors XXIII:

7.2.Let T be a tangle in a hypergraph G, and let W C V (G) be free relative to T, with |W| < w. Leth = 1 be
an integer, and let T have order = (w + W'+ 4+ h. Then there exists W' C V(G) with W € W' and |W'| <
(w 4+ h)"t1 such that for every (C.D) € T of order < |W |+h with W C V (C), there exists (A’ B') € T with
W CV(A'NB), |[VIA'NBY\W'| <h, CZA"and E(B") C E(D).
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Spiders

Theorem: There is a function f(k, d) such that for every graph G and disjoint
sets A, B either

there are k edge-disjoint d-spiders, or
there is a set D of at most f(k, d) edges that intersects every d-spider.
Proof: Assuming that there are no k edge-disjoint d-spiders,

1. we construct a set D and

2. show that D intersects every d-spider.
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Spiders

Theorem: There is a function f(k, d) such that for every graph G and disjoint
sets A, B either

there are k edge-disjoint d-spiders, or

there is a set D of at most f(k, d) edges that intersects every d-spider.

Proof: Suppose that there are k' < k disjoint d-spiders with centers
U= {w, ..., vir }, but there are no k’ + 1 disjoint spiders.

Let D be the union of all the important (v;, B)-separators of size at most kd for
1<i<Kk.
— size of D is at most f(k, d) := k-4 . kd.

We claim that D intersects every d-spider.
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Spiders

Remember: D contains every important (v;, B)-separator of size < kd.
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Spiders

Remember: D contains every important (v;, B)-separator of size < kd.

Consider a spider S with center v. As there are no k' + 1 spiders with centers
UU v, thereis a (U U v, B)-separator C with |C| < (k" 4+ 1)d.
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Spiders

Remember: D contains every important (v;, B)-separator of size < kd.

Consider a spider S with center v. As there are no k' + 1 spiders with centers
UU v, thereis a (U U v, B)-separator C with |C| < (k" 4+ 1)d.
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Spiders

Remember: D contains every important (v;, B)-separator of size < kd.

Consider a spider S with center v. As there are no k' + 1 spiders with centers
UU v, thereis a (U U v, B)-separator C with |C| < (k" 4+ 1)d.
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Spiders

Remember: D contains every important (v;, B)-separator of size < kd.

Consider a spider S with center v. As there are no k' + 1 spiders with centers
UU v, thereis a (U U v, B)-separator C with |C| < (k" 4+ 1)d.

An edge of C is green if it is the first

edge in C of any of the paths of the k' (A ) ( B |
spiders " T~ P
— there are k'd green edges. Nl \:
= there are < d — 1 non-green edges. U s
Vi’ — — | @
LT
v| @
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Spiders

Remember: D contains every important (v;, B)-separator of size < kd.

Consider a spider S with center v. As there are no k' + 1 spiders with centers
UU v, thereis a (U U v, B)-separator C with |C| < (k" 4+ 1)d.

An edge of C is green if it is the first

edge in C of any of the paths of the k'’ A ) f B
_ ) C )
spiders ” o)
— there are k'd green edges.
— there are < d — 1 non-green edges. U
X Yy
Vi’ &
— Spider S contains a green edge xy e
— Spider S connects x and B. é/ L \|e
v @
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Spiders

Remember: D contains every important (v;, B)-separator of size < kd.

Consider a spider S with center v. As there are no k' + 1 spiders with centers

UU v, thereis a (U U v, B)-separator C with |C| < (k" 4+ 1)d.

An edge of C is green if it is the first

. . ) 4
edge in C of any of the paths of the k'’ A
spiders ” N ¢
— there are k'd green edges.
— there are < d — 1 non-green edges. U
X y
v | | @]
— Spider S contains a green edge xy
= Spider S connects x and B. o
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Spiders

Remember: D contains every important (v;, B)-separator of size < kd.

Consider a spider S with center v. As there are no k' + 1 spiders with centers
UU v, thereis a (U U v, B)-separator C with |C| < (k" 4+ 1)d.

Spider S connects x and B.
o(R)

-~

Let R be the set of vertices reachable
fromviinG\C: xe Rand RN B =)

0(R) is a (vi, B)-separator of size < kd
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Spiders

Remember: D contains every important (v;, B)-separator of size < kd.

Consider a spider S with center v. As there are no k' + 1 spiders with centers
UU v, thereis a (U U v, B)-separator C with |C| < (k" 4+ 1)d.

Spider S connects x and B.

o(R) o(R')
Let R be the set of vertices reachable
fromviinG\C: xe Rand RN B =) * 4 {B]
0(R) is a (vi, B)-separator of size < kd
R/

— D contains a separator §(R’) with
R CR.

x € R" = §(R’) separates x and B
— D D 6(R') intersects the spider S.
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MULTIWAY CUT

Definition: A multiway cut of a set of terminals T is a set $ of edges such
that each component of G \ S contains at most one vertex of T.

t o
MULTIWAY CUT * 1 \ \.
Input:  Graph G, set T of vertices, integer k t3 \\ \\ fo
Find: A multiway cut S of at most k edges. \\\\ ® N J
ty - ts
e ®

Polynomial for | T| = 2, but NP-hard for any fixed | T| > 3 [Dalhaus et al. 1994].

Trivial to solve in polynomial time for fixed k (in time n°).
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MULTIWAY CUT

Central notion of parameterized complexity:

Definition: A problem is fixed-parameter tractable (FPT) pa-
rameterized by k if it can be solved in time (k) - n°Y) for some
function f (k) depending only on k.

FPT means that the k can be removed from the exponent of n and the
combinatorial explosion can be restricted to k.

If f(k) is e.g., 1.2%, then this can be actually an efficient algorithm!

Theorem: MULTIWAY CUT can be solved in time 4% - n°®) je., itis
fixed-parameter tractable (FPT) parameterized by k.
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MULTIWAY CUT

Intuition: Consider at € T. A subset of the solution S is a
(t, T \ t)-separator.
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Intuition: Consider at € T. A subset of the solution S is a
(t, T \ t)-separator.
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There are many such separators.
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MULTIWAY CUT

Intuition: Consider at € T. A subset of the solution S is a
(t, T \ t)-separator.

o o
o
t N
o \\
o
o o

There are many such separators.

But a separator farther from t and closer to T \ t seems to be more useful.
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MuLTIwAY CuT and important separators

Pushing Lemma: Lett e T. The MULTIWAY CUT problem has a solution S
that contains an important (t, T \ t)-separator.
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MuLTIwAY CuT and important separators

Pushing Lemma: Lett e T. The MULTIWAY CUT problem has a solution S
that contains an important (t, T \ t)-separator.

Proof: Let R be the vertices reachable from t in G \ S for a solution S.
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MuLTIwAY CuT and important separators

Pushing Lemma: Lett e T. The MULTIWAY CUT problem has a solution S
that contains an important (t, T \ t)-separator.

Proof: Let R be the vertices reachable from t in G \ S for a solution S.

/

R/
If 5(R) is not important, then there is an important separator 6(R") with R C R’
and |6(R’)| < |6(R)|. Replace S with S’ := (S\ §(R)) US(R") = |S'| < |S]
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MuLTIwAY CuT and important separators

Pushing Lemma: Lett e T. The MULTIWAY CUT problem has a solution S
that contains an important (t, T \ t)-separator.

Proof: Let R be the vertices reachable from t in G \ S for a solution S.

— o o
N
t N o
® | TT---0TTT \U
)
74
7
R —1-1-® @
R/

If 5(R) is not important, then there is an important separator 6(R") with R C R’
and |6(R’)| < |6(R)|. Replace S with S’ := (S\ §(R)) US(R") = |S'| < |S]

S’ is a multiway cut: (1) There is no t-u pathin G \ S’ and (2) a u-v path in
G \ S’ implies a t-u path, a contradiction.
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MuLTIwAY CuT and important separators

Pushing Lemma: Lett e T. The MULTIWAY CUT problem has a solution S
that contains an important (t, T \ t)-separator.

Proof: Let R be the vertices reachable from t in G \ S for a solution S.
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N
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R/

If 5(R) is not important, then there is an important separator 6(R") with R C R’
and |6(R’)| < |6(R)|. Replace S with S’ := (S\ §(R)) US(R") = |S'| < |S]

S’ is a multiway cut: (1) There is no t-u pathin G \ S’ and (2) a u-v path in
G \ S’ implies a t-u path, a contradiction.
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Algorithm for MuLTIwWAY CUT

If every vertex of T is in a different component, then we are done.

Let t € T be a vertex with that is not separated from every T \ t.

Branch on a choice of an important (t, T \ t) separator S of size at most k.
SetG:=G\ Sand k .=k —|S|.

Go to step 1.

a A 0 DD PF

We branch into at most 4% directions at most k times.

(Better analysis gives 4% bound on the size of the search tree.)
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Directed graphs

Definition: &(R) is the set of edges leaving R.

Observation: Every inclusionwise-minimal directed (X, Y)-separator S can be
expressed as S = §(R) for some X C Rand RN'Y = 0.

—

Definition:  An (X, Y)-separator §(R) is important if there is no (X, Y)-
separator 6(R') with R ¢ R" and |5(R")| < |6(R)|.
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Directed graphs

Definition: &(R) is the set of edges leaving R.

Observation: Every inclusionwise-minimal directed (X, Y)-separator S can be
expressed as S = §(R) for some X C Rand RN'Y = 0.

—

Definition:  An (X, Y)-separator §(R) is important if there is no (X, Y)-
separator 6(R') with R ¢ R" and |5(R")| < |6(R)|.

i)
X 4 LY
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Directed graphs

Definition: &(R) is the set of edges leaving R.

Observation: Every inclusionwise-minimal directed (X, Y)-separator S can be
expressed as S = §(R) for some X C Rand RN'Y = 0.

—

Definition:  An (X, Y)-separator §(R) is important if there is no (X, Y)-
separator 6(R') with R ¢ R" and |5(R")| < |6(R)|.

The proof for the undirected case goes through for the directed case:

Theorem: There are at most 4° important directed (X, Y)-separators of size at
most k.
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Directed Multiway Cut

It is open [?] whether DIRECTED MULTIWAY CUT is FPT or not. The approach
for undirected graphs does not work: the pushing lemma is not true.

Pushing Lemma: [for undirected graphs] Lett € T. The MULTIWAY CUT
problem has a solution S that contains an important (t, T \ t)-separator.

Directed counterexample:

Unique solution with k = 1 edges, but it is not an important separator
(boundary of {s, a}, but the boundary of {s, a, b} is of the same size).
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It is open [?] whether DIRECTED MULTIWAY CUT is FPT or not. The approach
for undirected graphs does not work: the pushing lemma is not true.

Pushing Lemma: [for undirected graphs] Lett € T. The MULTIWAY CUT
problem has a solution S that contains an important (t, T \ t)-separator.

Directed counterexample:

Unique solution with k = 1 edges, but it is not an important separator
(boundary of {s, a}, but the boundary of {s, a, b} is of the same size).
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Directed Multiway Cut

It is open [?] whether DIRECTED MULTIWAY CUT is FPT or not. The approach
for undirected graphs does not work: the pushing lemma is not true.

Pushing Lemma: [for undirected graphs] Lett € T. The MULTIWAY CUT
problem has a solution S that contains an important (t, T \ t)-separator.

Directed counterexample:

G

Unique solution with k = 1 edges, but it is not an important separator
(boundary of {s, a}, but the boundary of {s, a, b} is of the same size).
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Directed Multiway Cut

It is open [?] whether DIRECTED MULTIWAY CUT is FPT or not. The approach
for undirected graphs does not work: the pushing lemma is not true.

Pushing Lemma: [for undirected graphs] Lett € T. The MULTIWAY CUT
problem has a solution S that contains an important (t, T \ t)-separator.

Problem in the undirected proof:

—_
S o o
< >
t N\ °
PR u
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>
R 7 v
— o o
|
R/

Replacing R by R’ cannot create a t — u path, but can create a u — t path.
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SKEW MULTICUT

Input:

Find:

SKEW MULTICUT
Graph G, pairs (s, t1), ..

A set S of k directed edges such that G\ S contains
no s; — t; path for any i < j.

., (se, te), integer k

Pushing Lemma:

S]_ .'I ||||||||||||||||||||||||| ' t]_
2,
'
ll} l,"
’ 1,
'''''
oooo
et 0,
'''''
llll
S .l ||||||| f;ll{); ||||||||||| ’.
2 7 A 1)
iiiii
lllll
4 ] L4
,,,,,,
. 'y .
. 4 .
L4 L2 4
. 1, P
. L4 1, .
‘Y e Ty,
. '’ "y
53 ||||||||||| fl)llll'; ||||||| t
"""" . 3
' .
0, .
lllll
,,,,,
0, .
’ .
1, ’
Yy, %
''''' .
4y
Sq |||||||||||||||||||||||||| tl

SKEwW MuLTcUT problem has a solution S that contains an
important (si, {t1, ..., t¢ })-Separator.

Theorem: [Chen et al. 2008] SKEW MULTICUT can be solved in time 4% . n°),
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DIRECTED FEEDBACK VERTEX SET

DIRECTED FEEDBACK VERTEX/EDGE SET
Input:  Directed graph G, integer k

A set S of k vertices/edges such that G \ S is
acyclic.

Find:

Note: Edge and vertex versions are equivalent, we will consider the edge
version here.

Theorem: [Chen et al. 2008] DIRECTED FEEDBACK EDGE SET is FPT
parameterized by k.

Solution uses the technique of |t el ative compressin introduced by [Reed et
at. 2004].
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The compression problem

DIRECTED FEEDBACK EDGE SET COMPRESSION
Directed graph G, integer k, a set of kK + 1 edges

Input: . :
such that G \ S’ is acyclic,

Find: A set S of k edges such that G \ S is acyclic.

Easier than the original problem, as the extra input S’ gives us useful structural
information about G.

Lemma: The compression problem is FPT parameterized by k.
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The compression problem

Lemma: The compression problem is FPT parameterized by k.
Proof: Let S’ = {fs{, ey tkr1SKk41 }-

\ /v I | /L
ARG

ty Sa t3 S3 tr S t1 S1

By guessing and removing S N S’, we can assume that S and S’ are
disjoint [2*** possibilities].

By guessing the order of {si, ..., sk+1} in the acyclic ordering of G \ S, we
can assume that s,11 < s¢ <--- < s in G\ S [(k + 1)! possibilities].
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The compression problem

Lemma: The compression problem is FPT parameterized by k.

—

Proof: Let S’ = {fs{, ey tkr1SKk41 }-

\ /v I | /L
ARG

ty Sa t3 S3 tr S t1 S1

Claim: Suppose that S' N S = 0.
G \ S is acyclic and has an ordering with sx11 < sk < -+ < 51

0

S covers every s; — t; path for every i <
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The compression problem

Lemma: The compression problem is FPT parameterized by k.
Proof: Let S’ = {Fs{, ey tkr1SKk41 }-

ta Sa t3 S3 tr S 1 S1

Claim: Suppose that S' N S = 0.
G \ S is acyclic and has an ordering with sx11 < sk < -+ < 51

0

S covers every s; — t; path for every i <
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The compression problem

Lemma: The compression problem is FPT parameterized by k.
Proof: Let S’ = {Fs{, ey tkr1SKk41 }-

ta Sa t3 S3 tr S 1 S1

Claim: Suppose that S' N S = 0.
G \ S is acyclic and has an ordering with sx11 < sk < -+ < 51

0

S covers every s; — t; path for every i <

= We can solve the compression problem by 2***.(k+1)! applications of SKEW
MULTICUT.
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lterative compression

We have given a f(k)n°® algorithm for the following problem:

DIRECTED FEEDBACK EDGE SET COMPRESSION
Directed graph G, integer k, a set of kK + 1 edges

Input: _ :
such that G \ S’ is acyclic,

Find:  Aset S of k edges such that G \ S is acyclic.

Nice, but how do we get a solution S’ of size k + 1?
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lterative compression

We have given a f(k)n°® algorithm for the following problem:

DIRECTED FEEDBACK EDGE SET COMPRESSION
Directed graph G, integer k, a set of kK + 1 edges

Input: _ :
such that G \ S’ is acyclic,

Find:  Aset S of k edges such that G \ S is acyclic.

Nice, but how do we get a solution S’ of size k + 1?

We get it for free!

useful trick: 1T @rative com pression (introduced by [Reed, Smith, Vetta 2004]
for BIPARTITE DELETION).
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lterative compression

Let e, ..., en be the edges of G and let G; be the subgraph containing only the
first / edges (and all vertices).

Foreveryi=1,...,m, we find a set S; of k edges such that G; \ S; is acyclic.
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lterative compression

Let e, ..., en be the edges of G and let G; be the subgraph containing only the
first / edges (and all vertices).

Foreveryi=1,...,m, we find a set S; of k edges such that G; \ S; is acyclic.

For i = k, we have the trivial solution S; = {ey, ..., ex}.

Suppose we have a solution S; for G;. Then S; U {ei;+1} is a solution of size
k + 1 in the graph G;:

Use the compression algorithm for G;1 with the solution S; U {ej41}.
If the there is no solution of size k for G;;1, then we can stop.

Otherwise the compression algorithm gives a solution ;1 of size k for
Git1.

We call the compression algorithm m times, everything else is polynomial.
— DIRECTED FEEDBACK EDGE SET is FPT.
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Conclusions

A simple (but essentially tight) bound on the number of important
separators.

Combinatorial result: Erdos-Pdosa property for spiders. Is the function
f(k, d) really exponential?
Algorithmic results: FPT algorithms for

MuLTIWAY CUT in undirected graphs,

SKEW MULTICUT in directed graphs, and

DIRECTED FEEDBACK VERTEX/EDGE SET.
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