
Improving local search using parameterized
complexity

Dániel Marx

Budapest University of Technology and Economics

dmarx@cs.bme.hu

Joint work with

Andrei Krokhin

Cork Constraint Computing Center

University College Cork, Ireland

December 10, 2008

Improving local search using parameterized complexity – p.1/35

Overview

Local search algorithms

Parameterized complexity approach to local search

Applying this approach for the problem of finding minimum weight solutions
for Boolean CSP’s.

Main result: classification theorem.

Improving local search using parameterized complexity – p.2/35

Local search

Local search: walk in the solution space by iteratively replacing the current
solution with a better solution in the local neighborhood.

Improving local search using parameterized complexity – p.3/35

Local search

Local search: walk in the solution space by iteratively replacing the current
solution with a better solution in the local neighborhood.

Improving local search using parameterized complexity – p.3/35

Local search

Local search: walk in the solution space by iteratively replacing the current
solution with a better solution in the local neighborhood.

Improving local search using parameterized complexity – p.3/35

Local search

Local search: walk in the solution space by iteratively replacing the current
solution with a better solution in the local neighborhood.

Improving local search using parameterized complexity – p.3/35

Local search

Local search: walk in the solution space by iteratively replacing the current
solution with a better solution in the local neighborhood.

Improving local search using parameterized complexity – p.3/35

Local search

Local search: walk in the solution space by iteratively replacing the current
solution with a better solution in the local neighborhood.

Improving local search using parameterized complexity – p.3/35

Local search

Local search: walk in the solution space by iteratively replacing the current
solution with a better solution in the local neighborhood.

Improving local search using parameterized complexity – p.3/35

Local search

Local search: walk in the solution space by iteratively replacing the current
solution with a better solution in the local neighborhood.

Improving local search using parameterized complexity – p.3/35

Local search

Local search: walk in the solution space by iteratively replacing the current
solution with a better solution in the local neighborhood.

Improving local search using parameterized complexity – p.3/35

Local search

Local search: walk in the solution space by iteratively replacing the current
solution with a better solution in the local neighborhood.

Improving local search using parameterized complexity – p.3/35

Local search

Local search: walk in the solution space by iteratively replacing the current
solution with a better solution in the local neighborhood.

Improving local search using parameterized complexity – p.3/35

Local search

Local search: walk in the solution space by iteratively replacing the current
solution with a better solution in the local neighborhood.

Improving local search using parameterized complexity – p.3/35

Local search

Local search: walk in the solution space by iteratively replacing the current
solution with a better solution in the local neighborhood.

Improving local search using parameterized complexity – p.3/35

Local search

Local search: walk in the solution space by iteratively replacing the current
solution with a better solution in the local neighborhood.

Problem: local search can stop at a local optimum (no better solution in the

local neighborhood).

More sophisticated variants: simulated annealing, tabu search, etc.

Improving local search using parameterized complexity – p.3/35

Local neighborhood

The local neighborhood is defined in a problem-specific way:

For TSP, the neighbors are obtained by swapping 2 cities or replacing 2
edges.

For a problem with 0-1 variables, the neighbors are obtained by flipping a

single variable.

For subgraph problems, the neighbors are obtained by adding/removing
one edge.

Improving local search using parameterized complexity – p.4/35

Local neighborhood

The local neighborhood is defined in a problem-specific way:

For TSP, the neighbors are obtained by swapping 2 cities or replacing 2
edges.

For a problem with 0-1 variables, the neighbors are obtained by flipping a

single variable.

For subgraph problems, the neighbors are obtained by adding/removing
one edge.

More generally: reordering k cities, flipping k variables, etc.

Larger neighborhood (larger k):

algorithm is less likely to get stuck in a local optimum,

it is more difficult to check if there is a better solution in the neighborhood.

Improving local search using parameterized complexity – p.4/35

Searching the neighborhood

Is there an efficient way of finding a better solution in the k-neighborhood?

We study the complexity of the following problem:

Input: instance I , solution x, integer k

Decide:
Is there a solution x′ with dist(x, x′) ≤ k that is

“better” than x?

Improving local search using parameterized complexity – p.5/35

Searching the neighborhood

Is there an efficient way of finding a better solution in the k-neighborhood?

We study the complexity of the following problem:

Input: instance I , solution x, integer k

Decide:
Is there a solution x′ with dist(x, x′) ≤ k that is

“better” than x?

Remark 1: If the optimization problem is hard, then it is unlikely that this local
search problem is polynomial-time solvable: otherwise we would be able to

test if a solution is optimal.

Improving local search using parameterized complexity – p.5/35

Searching the neighborhood

Is there an efficient way of finding a better solution in the k-neighborhood?

We study the complexity of the following problem:

Input: instance I , solution x, integer k

Decide:
Is there a solution x′ with dist(x, x′) ≤ k that is

“better” than x?

Remark 1: If the optimization problem is hard, then it is unlikely that this local
search problem is polynomial-time solvable: otherwise we would be able to

test if a solution is optimal.

Remark 2: Size of the k-neighborhood is usually nO(k) ⇒ local search is
polynomial-time solvable for every fixed k, but it is not practical for larger k.

Improving local search using parameterized complexity – p.5/35

Searching the neighborhood

Is there an efficient way of finding a better solution in the k-neighborhood?

We study the complexity of the following problem:

Input: instance I , solution x, integer k

Decide:
Is there a solution x′ with dist(x, x′) ≤ k that is

“better” than x?

Remark 1: If the optimization problem is hard, then it is unlikely that this local
search problem is polynomial-time solvable: otherwise we would be able to

test if a solution is optimal.

Remark 2: Size of the k-neighborhood is usually nO(k) ⇒ local search is
polynomial-time solvable for every fixed k, but it is not practical for larger k.

Classical complexity theory does not tell us anything usefu l about the

complexity of local search!
Improving local search using parameterized complexity – p.5/35

Parameterized complexity

Problem: MINIMUM VERTEX COVER MAXIMUM INDEPENDENT SET

Input: Graph G, integer k Graph G, integer k

Question: Is it possible to cover
the edges with k vertices?

Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete

Improving local search using parameterized complexity – p.6/35

Parameterized complexity

Problem: MINIMUM VERTEX COVER MAXIMUM INDEPENDENT SET

Input: Graph G, integer k Graph G, integer k

Question: Is it possible to cover
the edges with k vertices?

Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete
Complete O(nk) possibilities O(nk) possibilitiesenumeration:

Improving local search using parameterized complexity – p.6/35

Parameterized complexity

Problem: MINIMUM VERTEX COVER MAXIMUM INDEPENDENT SET

Input: Graph G, integer k Graph G, integer k

Question: Is it possible to cover
the edges with k vertices?

Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete
Complete O(nk) possibilities O(nk) possibilitiesenumeration:

O(2kn2) algorithm exists No no(k) algorithm known

Improving local search using parameterized complexity – p.6/35

Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:

e1 = x1y1

Improving local search using parameterized complexity – p.7/35

Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:

e1 = x1y1

x1 y1

Improving local search using parameterized complexity – p.7/35

Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:

e1 = x1y1

x1 y1

e2 = x2y2

Improving local search using parameterized complexity – p.7/35

Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:

e1 = x1y1

x1 y1

e2 = x2y2

x2 y2

Improving local search using parameterized complexity – p.7/35

Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:

e1 = x1y1

x1 y1

e2 = x2y2

x2 y2 height: ≤ k

Height of the search tree is ≤ k ⇒ number of nodes is O(2k) ⇒ complete

search requires 2k · poly steps.

Improving local search using parameterized complexity – p.7/35

Fixed-parameter tractability

Definition: a parameterized problem is fixed-parameter tractable (FPT) if

there is an f(k)nc time algorithm for some constant c.

We have seen that MINIMUM VERTEX COVER is in FPT. Best known algorithm:

O(1.2832kk + k|V |) [Niedermeier, Rossmanith, 2003]

Main goal of parameterized complexity: to find FPT problems.

Improving local search using parameterized complexity – p.8/35

Fixed-parameter tractability

Definition: a parameterized problem is fixed-parameter tractable (FPT) if

there is an f(k)nc time algorithm for some constant c.

We have seen that MINIMUM VERTEX COVER is in FPT. Best known algorithm:

O(1.2832kk + k|V |) [Niedermeier, Rossmanith, 2003]

Main goal of parameterized complexity: to find FPT problems.
Examples of NP-hard problems that are FPT:

Finding a vertex cover of size k.

Finding a path of length k.

Finding k disjoint triangles.

Drawing the graph in the plane with k edge crossing.

Finding disjoint paths that connect k pairs of points.

. . .
Improving local search using parameterized complexity – p.8/35

Fixed-parameter tractability (cont.)

Practical importance: efficient algorithms for small values of k.

Powerful toolbox for designing FPT algorithms:

Bounded Search Tree

Kernelization

Color Coding

Treewidth Graph Minors Theorem

Well-Quasi-Ordering

Improving local search using parameterized complexity – p.9/35

Fixed-parameter tractability (cont.)

Practical importance: efficient algorithms for small values of k.

Powerful toolbox for designing FPT algorithms:

Bounded Search Tree

Kernelization

Color Coding

Treewidth Graph Minors Theorem

Well-Quasi-Ordering

Bounded Search Tree

Improving local search using parameterized complexity – p.9/35

Parameterized intractability

We expect that MAXIMUM INDEPENDENT SET is not fixed-parameter tractable,

no no(k) algorithm is known.

W[1]-complete ≈ “as hard as MAXIMUM INDEPENDENT SET”

Improving local search using parameterized complexity – p.10/35

Parameterized intractability

We expect that MAXIMUM INDEPENDENT SET is not fixed-parameter tractable,

no no(k) algorithm is known.

W[1]-complete ≈ “as hard as MAXIMUM INDEPENDENT SET”

Parameterized reductions: L1 is reducible to L2, if there is a function f that
transforms (x, k) to (x′, k′) such that

(x, k) ∈ L1 if and only if (x′, k′) ∈ L2,

f can be computed in f(k)|x|c time,

k′ depends only on k

If L1 is reducible to L2, and L2 is in FPT, then L1 is in FPT as well.

Most NP-completeness proofs are not good for parameterized reductions.

Improving local search using parameterized complexity – p.10/35

Parameterized Complexity: Summary

Two key concepts:

A parameterized problem is fixed-parameter tractable if it has an f(k)nc

time algorithm.

To show that a problem L is hard, we have to give a parameterized
reduction from a known W[1]-complete problem to L.

Improving local search using parameterized complexity – p.11/35

Parameterized Complexity: Summary

Two key concepts:

A parameterized problem is fixed-parameter tractable if it has an f(k)nc

time algorithm.

To show that a problem L is hard, we have to give a parameterized
reduction from a known W[1]-complete problem to L.

The question that we want to investigate:

Is k-local-search fixed-parameter tractable for a particular problem?

If yes, then local search algorithms can consider larger neighborhoods,
improving their efficiency.

Important: k is the number of allowed changes and not the size of the solution.

Relevant even if solution size is large.

Improving local search using parameterized complexity – p.11/35

Results on parameterized local search

Task: find a spanning tree maximizing the number of vertices having full

degree.

Local search is FPT: given a solution, it can be checked in time

O(n2 + nf(k)) if it is possible to obtain a better solution by replacing at
most k edges [Khuller, Bhatia, and Pless 2003].

Task: TSP with distances satisfying the triangle inequality.

Local search is hard: it is W[1]-hard to check if it is possible to obtain a

shorter tour by replacing at most k arcs [M. 2008].

Improving local search using parameterized complexity – p.12/35

Results on parameterized local search (cont.)

Task: find a minimum dominating set/minimum r-center/minimum vertex

cover in a planar graph.

Local search is FPT. [Fellows et al., 2008].

Improving local search using parameterized complexity – p.13/35

Results on parameterized local search (cont.)

Task: find a minimum dominating set/minimum r-center/minimum vertex

cover in a planar graph.

Local search is FPT. [Fellows et al., 2008].

Task: find a maximum stable assignment in the “Hospitals/Residents with

Couples” problem (a variant of Stable Marriage).

Local search is W[1]-hard:

There is no f(k) · nO(1) algorithm for deciding whether an assignment
can be improved by at most k changes.

Local search is FPT if the number ℓ of couples is also a parameter:

There is an f(k, ℓ) · nO(1) for deciding whether an assignment can be
improved by at most k changes. [M. and Schlotter 2008].

Improving local search using parameterized complexity – p.13/35

Boolean CSP

Topic of this talk: investigating the parameterized complexity of local search

for the problem of finding a minimum weight solution for a Boolean constraint
satisfaction problem (CSP).

Boolean CSP: generalization of SAT. Input is a conjunction of constraints over
a set of Boolean variables.

R1(x1, x4, x5) ∧ R2(x2, x1) ∧ R1(x3, x3, x3) ∧ R3(x5, x1, x4, x1)

Constraints can be arbitrary Boolean relations.

Problem is too general!

Improving local search using parameterized complexity – p.14/35

Boolean CSP

If Γ is a set of Boolean relations, then a Γ-formula is a conjunction of relations

in Γ:

R1(x1, x4, x5) ∧ R2(x2, x1) ∧ R1(x3, x3, x3) ∧ R3(x5, x1, x4, x1)

Γ-SAT

Given: an Γ-formula ϕ

Find: a variable assignment satisfying ϕ

Improving local search using parameterized complexity – p.15/35

Boolean CSP

If Γ is a set of Boolean relations, then a Γ-formula is a conjunction of relations

in Γ:

R1(x1, x4, x5) ∧ R2(x2, x1) ∧ R1(x3, x3, x3) ∧ R3(x5, x1, x4, x1)

Γ-SAT

Given: an Γ-formula ϕ

Find: a variable assignment satisfying ϕ

Γ = {a 6= b} ⇒ Γ-SAT = 2-coloring of a graph
Γ = {a ∨ b, a ∨ b̄, ā ∨ b̄} ⇒ Γ-SAT = 2SAT

Γ = {a ∨ b ∨ c, a ∨ b ∨ c̄, a ∨ b̄ ∨ c̄, ā ∨ b̄ ∨ c̄} ⇒ Γ-SAT = 3SAT

Improving local search using parameterized complexity – p.15/35

Boolean CSP

If Γ is a set of Boolean relations, then a Γ-formula is a conjunction of relations

in Γ:

R1(x1, x4, x5) ∧ R2(x2, x1) ∧ R1(x3, x3, x3) ∧ R3(x5, x1, x4, x1)

Γ-SAT

Given: an Γ-formula ϕ

Find: a variable assignment satisfying ϕ

Γ = {a 6= b} ⇒ Γ-SAT = 2-coloring of a graph
Γ = {a ∨ b, a ∨ b̄, ā ∨ b̄} ⇒ Γ-SAT = 2SAT

Γ = {a ∨ b ∨ c, a ∨ b ∨ c̄, a ∨ b̄ ∨ c̄, ā ∨ b̄ ∨ c̄} ⇒ Γ-SAT = 3SAT

Question: Γ-SAT is polynomial time solvable for which Γ?

It is NP-complete for which Γ?

Improving local search using parameterized complexity – p.15/35

Schaefer’s Dichotomy Theorem (1978)

For every finite Γ, the Γ-SAT problem is polynomial time solvable if one of the

following holds, and NP-complete otherwise:

Every relation is satisfied by the all 0 assignment

Every relation is satisfied by the all 1 assignment

Every relation can be expressed by a 2SAT formula

Every relation can be expressed by a Horn formula

Every relation can be expressed by an anti-Horn formula

Every relation is an affine subspace over GF (2)

Improving local search using parameterized complexity – p.16/35

Other dichotomy results

Approximability of MAX-SAT, MIN-UNSAT [Khanna et al., 2001]

Approximability of MAX-ONES, MIN-ONES [Khanna et al., 2001]

Generalization to 3 valued variables [Bulatov, 2002]

Inverse satisfiability [Kavvadias and Sideri, 1999]

Parameterized complexity of weight k solutions [M., 2005]

Counting solutions [Bulatov, 2008]

etc.

Improving local search using parameterized complexity – p.17/35

Minimizing weight

Γ-MIN-ONES: find a solution of a Γ-SAT formula that minimizes the weight (=

the number of 1’s).

Theorem: [Khanna et al., 2001] For every finite Γ, the Γ-MIN-ONES problem

is polynomial time solvable if one of the following holds, and NP-complete
otherwise:

Every relation is satisfied by the all 0 assignment

Every relation can be expressed by a Horn formula

Every relation is width-2 affine (= can be expressed by constants, =, 6=).

Our goal: characterize those sets Γ where local search for Γ-MIN-ONES is

fixed-parameter tractable.

Improving local search using parameterized complexity – p.18/35

Losing weight

Γ-LOSE-WEIGHT
Input: A Γ-formula ϕ, a solution x for ϕ, and an integer k.

Decide:
Is there a solution x′ of ϕ with dist(x, x′) ≤ k and

weight(x′) < weight(x)?

dist(x, x′): Hamming distance of x and x′.
weight(x): number of 1’s in x.

Improving local search using parameterized complexity – p.19/35

Losing weight

Γ-LOSE-WEIGHT
Input: A Γ-formula ϕ, a solution x for ϕ, and an integer k.

Decide:
Is there a solution x′ of ϕ with dist(x, x′) ≤ k and

weight(x′) < weight(x)?

dist(x, x′): Hamming distance of x and x′.
weight(x): number of 1’s in x.

Main result:

Theorem: For every finite set Γ, Γ-LOSE-WEIGHT is either fixed-parameter

tractable or W[1]-hard.

+ a simple characterization of the FPT cases.

Improving local search using parameterized complexity – p.19/35

Horn constraints

Definition: A relation is Horn (or weakly negative) if it can be expressed as

the conjunction of clauses with at most one positive literal in each clause.

(x1 ∨ x̄2) ∧ (x3) ∧ (x̄1 ∨ x̄3 ∨ x̄4) ∧ (x̄2)

A relation is Horn if and only if it is closed under componentwise AND.

Improving local search using parameterized complexity – p.20/35

Flip sets

Definition: Let R be an r-ary relation and (a1, . . . , ar) ∈ R. A set

S ⊆ {1, . . . , r} is a flip set of (a1, . . . , ar) (with respect to R) if flipping the
coordinates corresponding to S gives another tuple in R.

Example:

R(x1, x2, x3, x4)

(0, 0, 1, 0)

(1, 0, 1, 0)

(0, 1, 1, 1)

(1, 0, 0, 0)

(0, 1, 1, 0)

(1, 0, 1, 1)

Improving local search using parameterized complexity – p.21/35

Flip sets

Definition: Let R be an r-ary relation and (a1, . . . , ar) ∈ R. A set

S ⊆ {1, . . . , r} is a flip set of (a1, . . . , ar) (with respect to R) if flipping the
coordinates corresponding to S gives another tuple in R.

Example:

Flip sets of

R(x1, x2, x3, x4) (1, 0, 1, 0)

(0, 0, 1, 0) {1}

(1, 0, 1, 0)

(0, 1, 1, 1) {1, 2, 4}

(1, 0, 0, 0) {3}

(0, 1, 1, 0) {1, 2}

(1, 0, 1, 1) {4}

Improving local search using parameterized complexity – p.21/35

Flip sets

Definition: Let R be an r-ary relation and (a1, . . . , ar) ∈ R. A set

S ⊆ {1, . . . , r} is a flip set of (a1, . . . , ar) (with respect to R) if flipping the
coordinates corresponding to S gives another tuple in R.

Example:

Flip sets of Flip sets of

R(x1, x2, x3, x4) (1, 0, 1, 0) (0, 1, 1, 1)

(0, 0, 1, 0) {1} {2, 3}

(1, 0, 1, 0) {1, 2, 4}

(0, 1, 1, 1) {1, 2, 4}

(1, 0, 0, 0) {3} {1, 2, 3, 4}

(0, 1, 1, 0) {1, 2} {4}

(1, 0, 1, 1) {4} {1, 2}

Improving local search using parameterized complexity – p.21/35

Flip separable

Definition: An r-ary relation R is flip separable if whenever

S1 ⊂ S2 ⊆ {1, . . . , r} are flip sets of a tuple (x1, . . . , xr), then S2 \ S1 is
also a flip set.

Example: Flip sets of

R(x1, x2, x3, x4) (1, 0, 1, 0)

(0, 0, 1, 0) {1}

(1, 0, 1, 0)

(0, 1, 1, 1) {1, 2, 4}

(1, 0, 0, 0) {3}

(0, 1, 1, 0) {1, 2}

(1, 0, 1, 1) {4}

Improving local search using parameterized complexity – p.22/35

Flip separable

Definition: An r-ary relation R is flip separable if whenever

S1 ⊂ S2 ⊆ {1, . . . , r} are flip sets of a tuple (x1, . . . , xr), then S2 \ S1 is
also a flip set.

Example: Flip sets of

R(x1, x2, x3, x4) (1, 0, 1, 0)

(0, 0, 1, 0) {1}

(1, 0, 1, 0)

(0, 1, 1, 1) {1, 2, 4}

(1, 0, 0, 0) {3}

(0, 1, 1, 0) {1, 2}

(1, 0, 1, 1) {4}

R is not

flip separable!

Improving local search using parameterized complexity – p.22/35

Flip separable

Definition: An r-ary relation R is flip separable if whenever

S1 ⊂ S2 ⊆ {1, . . . , r} are flip sets of a tuple (x1, . . . , xr), then S2 \ S1 is
also a flip set.

Example:

EVEN(x1, x2, x3, x4)

(0, 0, 0, 0)

(1, 1, 0, 0)

(1, 0, 1, 0)

(1, 0, 0, 1)

(0, 1, 1, 0)

(0, 1, 0, 1)

(0, 0, 1, 1)

(1, 1, 1, 1)
Improving local search using parameterized complexity – p.22/35

Flip separable

Definition: An r-ary relation R is flip separable if whenever

S1 ⊂ S2 ⊆ {1, . . . , r} are flip sets of a tuple (x1, . . . , xr), then S2 \ S1 is
also a flip set.

Example: Flip sets of

EVEN(x1, x2, x3, x4) (1, 1, 0, 0)

(0, 0, 0, 0) {1, 2}

(1, 1, 0, 0)

(1, 0, 1, 0) {2, 3}

(1, 0, 0, 1) {2, 4}

(0, 1, 1, 0) {1, 3}

(0, 1, 0, 1) {1, 4}

(0, 0, 1, 1) {1, 2, 3, 4}

(1, 1, 1, 1) {3, 4}
Improving local search using parameterized complexity – p.22/35

Flip separable

Definition: An r-ary relation R is flip separable if whenever

S1 ⊂ S2 ⊆ {1, . . . , r} are flip sets of a tuple (x1, . . . , xr), then S2 \ S1 is
also a flip set.

Example: Flip sets of Flip sets of

EVEN(x1, x2, x3, x4) (1, 1, 0, 0) (1, 1, 1, 1)

(0, 0, 0, 0) {1, 2} {1, 2, 3, 4}

(1, 1, 0, 0) {3, 4}

(1, 0, 1, 0) {2, 3} {2, 4}

(1, 0, 0, 1) {2, 4} {2, 3}

(0, 1, 1, 0) {1, 3} {1, 4}

(0, 1, 0, 1) {1, 4} {1, 3}

(0, 0, 1, 1) {1, 2, 3, 4} {1, 2}

(1, 1, 1, 1) {3, 4}
Improving local search using parameterized complexity – p.22/35

Flip separable

Definition: An r-ary relation R is flip separable if whenever

S1 ⊂ S2 ⊆ {1, . . . , r} are flip sets of a tuple (x1, . . . , xr), then S2 \ S1 is
also a flip set.

Example: Flip sets of Flip sets of

EVEN(x1, x2, x3, x4) (1, 1, 0, 0) (1, 1, 1, 1)

(0, 0, 0, 0) {1, 2} {1, 2, 3, 4}

(1, 1, 0, 0) {3, 4}

(1, 0, 1, 0) {2, 3} {2, 4}

(1, 0, 0, 1) {2, 4} {2, 3}

(0, 1, 1, 0) {1, 3} {1, 4}

(0, 1, 0, 1) {1, 4} {1, 3}

(0, 0, 1, 1) {1, 2, 3, 4} {1, 2}

(1, 1, 1, 1) {3, 4}

EVEN is

flip separable!

Improving local search using parameterized complexity – p.22/35

Flip separable

Definition: An r-ary relation R is flip separable if whenever

S1 ⊂ S2 ⊆ {1, . . . , r} are flip sets of a tuple (x1, . . . , xr), then S2 \ S1 is
also a flip set.

Example:

1-IN-4(x1, x2, x3, x4)

(1, 0, 0, 0)

(0, 1, 0, 0)

(0, 0, 1, 0)

(0, 0, 0, 1)

Improving local search using parameterized complexity – p.22/35

Flip separable

Definition: An r-ary relation R is flip separable if whenever

S1 ⊂ S2 ⊆ {1, . . . , r} are flip sets of a tuple (x1, . . . , xr), then S2 \ S1 is
also a flip set.

Example: Flip sets of

1-IN-4(x1, x2, x3, x4) (1, 0, 0, 0)

(1, 0, 0, 0)

(0, 1, 0, 0) {1, 2}

(0, 0, 1, 0) {1, 3}

(0, 0, 0, 1) {1, 4}

Improving local search using parameterized complexity – p.22/35

Flip separable

Definition: An r-ary relation R is flip separable if whenever

S1 ⊂ S2 ⊆ {1, . . . , r} are flip sets of a tuple (x1, . . . , xr), then S2 \ S1 is
also a flip set.

Example: Flip sets of Flip sets of

1-IN-4(x1, x2, x3, x4) (1, 0, 0, 0) (0, 1, 0, 0)

(1, 0, 0, 0) {1, 2}

(0, 1, 0, 0) {1, 2}

(0, 0, 1, 0) {1, 3} {2, 3}

(0, 0, 0, 1) {1, 4} {2, 4}

Improving local search using parameterized complexity – p.22/35

Flip separable

Definition: An r-ary relation R is flip separable if whenever

S1 ⊂ S2 ⊆ {1, . . . , r} are flip sets of a tuple (x1, . . . , xr), then S2 \ S1 is
also a flip set.

Example: Flip sets of Flip sets of

1-IN-4(x1, x2, x3, x4) (1, 0, 0, 0) (0, 1, 0, 0)

(1, 0, 0, 0) {1, 2}

(0, 1, 0, 0) {1, 2}

(0, 0, 1, 0) {1, 3} {2, 3}

(0, 0, 0, 1) {1, 4} {2, 4}

1-IN-4 is

flip separable!

Improving local search using parameterized complexity – p.22/35

Flip separable

Definition: An r-ary relation R is flip separable if whenever

S1 ⊂ S2 ⊆ {1, . . . , r} are flip sets of a tuple (x1, . . . , xr), then S2 \ S1 is
also a flip set.

Example:

x1 ∨ x2

(1, 0)

(0, 1)

(1, 1)

Improving local search using parameterized complexity – p.22/35

Flip separable

Definition: An r-ary relation R is flip separable if whenever

S1 ⊂ S2 ⊆ {1, . . . , r} are flip sets of a tuple (x1, . . . , xr), then S2 \ S1 is
also a flip set.

Example: Flip sets of

x1 ∨ x2 (1, 0)

(1, 0)

(0, 1) {1, 2}

(1, 1) {2}

Improving local search using parameterized complexity – p.22/35

Flip separable

Definition: An r-ary relation R is flip separable if whenever

S1 ⊂ S2 ⊆ {1, . . . , r} are flip sets of a tuple (x1, . . . , xr), then S2 \ S1 is
also a flip set.

Example: Flip sets of

x1 ∨ x2 (1, 0)

(1, 0)

(0, 1) {1, 2}

(1, 1) {2}

x1 ∨ x2 is not

flip separable!

Improving local search using parameterized complexity – p.22/35

Main result

Theorem: For every finite set Γ, Γ-LOSE-WEIGHT is fixed-parameter

tractable if one of the following holds, and W[1]-hard otherwise:

Every relation can be expressed by a Horn formula.

Every relation is flip separable.

Some FPT cases:

EVEN and ODD constraints.

affine constraints.

p-IN-q constraints.

Some hard cases:

x1 ∨ x2 (= MINIMUM VERTEX

COVER)

3SAT

Improving local search using parameterized complexity – p.23/35

Algorithm

Task: given a formula with flip separable constraints and a satisfying

assignment, decrease the weight by flipping at most k variables.

Bounded search tree algorithm:

Flip a variable with value 1 to 0 (at most n possible choices).

If a clause is not satisfied, flip one of its variables that was not yet flipped

(at most r − 1 possible choices if maximum arity is r).

Repeat until

more than k variables are flipped ⇒ terminate this branch.

every clause is satisfied ⇒ check if the satisfying assignment has
strictly smaller weight than the original assignment.

Improving local search using parameterized complexity – p.24/35

Algorithm

Running time: After the initial flip, the search tree has size at most (r − 1)k :

≤ k

≤ r − 1

Improving local search using parameterized complexity – p.25/35

Algorithm

Running time: After the initial flip, the search tree has size at most (r − 1)k :

≤ k

≤ r − 1

Running time is f(k, r) · nc ⇒ f ′(k) · nc for a fixed Γ.

Improving local search using parameterized complexity – p.25/35

Algorithm

Correctness: is it true that we always find a solution if it exits?

Improving local search using parameterized complexity – p.26/35

Algorithm

Correctness: is it true that we always find a solution if it exits?

Let X be a solution that decreases the weight most (|X | ≤ k, flipping X

gives a satisfying assignment).

X

Improving local search using parameterized complexity – p.26/35

Algorithm

Correctness: is it true that we always find a solution if it exits?

Let X be a solution that decreases the weight most (|X | ≤ k, flipping X

gives a satisfying assignment).

There is a branch of the algorithm that flips only a subset Y ⊆ X .

X

Y

Improving local search using parameterized complexity – p.26/35

Algorithm

Correctness: is it true that we always find a solution if it exits?

Let X be a solution that decreases the weight most (|X | ≤ k, flipping X

gives a satisfying assignment).

There is a branch of the algorithm that flips only a subset Y ⊆ X .

Flipping X \ Y is also a solution (constraints are flip separable).

If flipping Y does not decrease the weight, then flipping X \ Y decreases

the weight more than Y .

X

X\YY

Improving local search using parameterized complexity – p.26/35

Hardness proof

Hardness proof: if Γ contains a relation that is not Horn and a relation that is

not flip separable, then local search is W[1]-hard.

Improving local search using parameterized complexity – p.27/35

Hardness proof

Hardness proof: if Γ contains a relation that is not Horn and a relation that is

not flip separable, then local search is W[1]-hard.

Step 1: Direct proof for x ∨ y.

⇒ Given a vertex cover S and an integer k, it is W[1]-hard to decide if it is

possible to decrease the vertex cover by adding/removing at most k vertices.

⇒ Given an independent set S and an integer k, it is W[1]-hard to decide if it
is possible to increase the independent set cover by adding/removing at most

k vertices.

Improving local search using parameterized complexity – p.27/35

Hardness proof

Hardness proof: if Γ contains a relation that is not Horn and a relation that is

not flip separable, then local search is W[1]-hard.

Step 1: Direct proof for x ∨ y.

⇒ Given a vertex cover S and an integer k, it is W[1]-hard to decide if it is

possible to decrease the vertex cover by adding/removing at most k vertices.

⇒ Given an independent set S and an integer k, it is W[1]-hard to decide if it
is possible to increase the independent set cover by adding/removing at most

k vertices.

Note: These results hold even for bipartite graphs.

Improving local search using parameterized complexity – p.27/35

Hardness proof

Hardness proof: if Γ contains a relation that is not Horn and a relation that is

not flip separable, then local search is W[1]-hard.

Step 2: Suppose that there is a relation R ∈ Γ that is not Horn, i.e., it is not

closed under componentwise AND.

Improving local search using parameterized complexity – p.28/35

Hardness proof

Hardness proof: if Γ contains a relation that is not Horn and a relation that is

not flip separable, then local search is W[1]-hard.

Step 2: Suppose that there is a relation R ∈ Γ that is not Horn, i.e., it is not

closed under componentwise AND.

(1, 0, 0, 1) ∈ R

(0, 1, 0, 1) ∈ R

(0, 0, 0, 1) 6∈ R

Improving local search using parameterized complexity – p.28/35

Hardness proof

Hardness proof: if Γ contains a relation that is not Horn and a relation that is

not flip separable, then local search is W[1]-hard.

Step 2: Suppose that there is a relation R ∈ Γ that is not Horn, i.e., it is not

closed under componentwise AND.

(1, 0, 0, 1) ∈ R

(0, 1, 0, 1) ∈ R

(0, 0, 0, 1) 6∈ R

either

(1, 1, 0, 1) ∈ R

⇒ R(x, y, 0, 1) ≡ x ∨ y, we can “almost express” relation x ∨ y (DONE).

(1, 1, 0, 1) 6∈ R

⇒ R(x, y, 0, 1) ≡ x 6= y, we can “almost express” relation 6=.

Improving local search using parameterized complexity – p.28/35

Hardness proof

Hardness proof: if Γ contains a relation that is not Horn and a relation that is

not flip separable, then local search is W[1]-hard.

Step 3: Suppose that there is a relation R ∈ Γ that is not flip separable and

we can use 6=.

Reduction from x ∨ y.

Replace each variable with 3
variables

Two states for each triple.

Changing a triple changes the

weight by 1.
6= 6=

6= 6=6=6=

Improving local search using parameterized complexity – p.29/35

Hardness proof

Hardness proof: if Γ contains a relation that is not Horn and a relation that is

not flip separable, then local search is W[1]-hard.

Step 3: Suppose that there is a relation R ∈ Γ that is not flip separable and

we can use 6=.

Reduction from x ∨ y.

Replace each variable with 3
variables

Two states for each triple.

Changing a triple changes the

weight by 1.

6=6=6= 6=

6= 6=

0

00 11

1

Improving local search using parameterized complexity – p.29/35

Hardness proof

Hardness proof: if Γ contains a relation that is not Horn and a relation that is

not flip separable, then local search is W[1]-hard.

Suppose there is a counterexample to the fact that R ∈ Γ is flip separable:

(0, 1, 0, 1) ∈ R

(1, 0, 0, 1) ∈ R

(1, 0, 1, 0) ∈ R

(0, 1, 1, 0) 6∈ R

6=6=6= 6=

6= 6=

0

00 11

1

Improving local search using parameterized complexity – p.30/35

Hardness proof

Hardness proof: if Γ contains a relation that is not Horn and a relation that is

not flip separable, then local search is W[1]-hard.

Suppose there is a counterexample to the fact that R ∈ Γ is flip separable:

(0, 1, 0, 1) ∈ R

(1, 0, 0, 1) ∈ R

(1, 0, 1, 0) ∈ R

(0, 1, 1, 0) 6∈ R

We represent the edge by constraint
R(x1, x2, x4, x3). 6=6=

6=6= 6= 6=

x2

x3x1

x4

0 0

0

1

1

1

Improving local search using parameterized complexity – p.30/35

Hardness proof

Hardness proof: if Γ contains a relation that is not Horn and a relation that is

not flip separable, then local search is W[1]-hard.

Suppose there is a counterexample to the fact that R ∈ Γ is flip separable:

(0, 1, 0, 1) ∈ R

(1, 0, 0, 1) ∈ R ⇐

(1, 0, 1, 0) ∈ R

(0, 1, 1, 0) 6∈ R

We represent the edge by constraint
R(x1, x2, x4, x3).

Flipping the first gadget is allowed. . .

6=6=6= 6=

6= 6=

x3

x2 x4

x1 1 1

00

1 1

Improving local search using parameterized complexity – p.30/35

Hardness proof

Hardness proof: if Γ contains a relation that is not Horn and a relation that is

not flip separable, then local search is W[1]-hard.

Suppose there is a counterexample to the fact that R ∈ Γ is flip separable:

(0, 1, 0, 1) ∈ R

(1, 0, 0, 1) ∈ R

(1, 0, 1, 0) ∈ R ⇐

(0, 1, 1, 0) 6∈ R

We represent the edge by constraint
R(x1, x2, x4, x3).

Flipping the first gadget is allowed. . .

Flipping both gadgets is allowed. . .

6=6=6= 6=

6= 6=

x3

x2 x4

x1 11

10

00

Improving local search using parameterized complexity – p.30/35

Hardness proof

Hardness proof: if Γ contains a relation that is not Horn and a relation that is

not flip separable, then local search is W[1]-hard.

Suppose there is a counterexample to the fact that R ∈ Γ is flip separable:

(0, 1, 0, 1) ∈ R

(1, 0, 0, 1) ∈ R

(1, 0, 1, 0) ∈ R

(0, 1, 1, 0) 6∈ R ⇐

We represent the edge by constraint
R(x1, x2, x4, x3).

Flipping the first gadget is allowed. . .

Flipping both gadgets is allowed. . .

But second gadget cannot be flipped!

6=6=6= 6=

6= 6=

x3

x2 x4

x1 00

11

0 0

Improving local search using parameterized complexity – p.30/35

Main result

We have completed the complexity characterization of Γ-LOSE-WEIGHT:

Theorem: For every finite set Γ, Γ-LOSE-WEIGHT is fixed-parameter
tractable if one of the following holds, and W[1]-hard otherwise:

Every relation can be expressed by a Horn formula.

Every relation is flip separable.

But something is strange. . .

Improving local search using parameterized complexity – p.31/35

Something strange

We have seen that local search is W[1]-hard for MINIMUM VERTEX COVER,

even if the graph is bipartite.

Improving local search using parameterized complexity – p.32/35

Something strange

We have seen that local search is W[1]-hard for MINIMUM VERTEX COVER,

even if the graph is bipartite.

⇒ But an optimum solution can be found in polynomial time!

Improving local search using parameterized complexity – p.32/35

Something strange

We have seen that local search is W[1]-hard for MINIMUM VERTEX COVER,

even if the graph is bipartite.

⇒ But an optimum solution can be found in polynomial time!

The relation x ∨ y ∨ z̄ is not Horn and not flip separable (for the tuple (1, 0, 1),

{2} and {1, 2} are flip sets but {1} is not), thus local search is hard.

Improving local search using parameterized complexity – p.32/35

Something strange

We have seen that local search is W[1]-hard for MINIMUM VERTEX COVER,

even if the graph is bipartite.

⇒ But an optimum solution can be found in polynomial time!

The relation x ∨ y ∨ z̄ is not Horn and not flip separable (for the tuple (1, 0, 1),

{2} and {1, 2} are flip sets but {1} is not), thus local search is hard.

⇒ But an optimum solution (all 0 assignment) can be found in polynomial
time!

Improving local search using parameterized complexity – p.32/35

Something strange

We have seen that local search is W[1]-hard for MINIMUM VERTEX COVER,

even if the graph is bipartite.

⇒ But an optimum solution can be found in polynomial time!

The relation x ∨ y ∨ z̄ is not Horn and not flip separable (for the tuple (1, 0, 1),

{2} and {1, 2} are flip sets but {1} is not), thus local search is hard.

⇒ But an optimum solution (all 0 assignment) can be found in polynomial
time!

Counterintuitive results: finding a local improvement is ha rd, but finding
the global optimum is easy.

We are answering the wrong question!

Improving local search using parameterized complexity – p.32/35

Strict vs. permissive

So far, we investigated strict local search algorithms:

Input: A Γ-formula ϕ, a solution x for ϕ, and an integer k.

Task:
If there is a solution x′ of ϕ with dist(x, x′) ≤ k and
weight(x′) < weight(x), then find such an x′.

Improving local search using parameterized complexity – p.33/35

Strict vs. permissive

So far, we investigated strict local search algorithms:

Input: A Γ-formula ϕ, a solution x for ϕ, and an integer k.

Task:
If there is a solution x′ of ϕ with dist(x, x′) ≤ k and
weight(x′) < weight(x), then find such an x′.

But a permissive local search algorithm would be equally useful:

Input: A Γ-formula ϕ, a solution x for ϕ, and an integer k.

Task:
If there is a solution x′ of ϕ with dist(x, x′) ≤ k

and weight(x′) < weight(x), then find any x′′ with

weight(x′′) < weight(x).

Our hardness result for strict local search does not rule out the possibility of a

permissive algorithm.

Improving local search using parameterized complexity – p.33/35

Revised result

Theorem: For every finite set Γ, strict Γ-LOSE-WEIGHT is fixed-parameter

tractable if one of the following holds, and W[1]-hard otherwise:

Every relation can be expressed by a Horn formula.

Every relation is flip separable.

Theorem: For every finite set Γ, permissive Γ-LOSE-WEIGHT is

fixed-parameter tractable if one of the following holds, and W[1]-hard
otherwise:

Every relation can be expressed by a Horn formula.

Every relation is flip separable.

Every relation is 0-valid.

Improving local search using parameterized complexity – p.34/35

Conclusions

Is it possible to efficiently search the local neighborhood?

Parameterized complexity is the natural way to study.

Might apply to YOUR problem as well!

Schaefer-style classification for decreasing the weight of a solution in
Boolean CSP.

Main new definition: flip separable relations.

Distinction between strict and permissive local search.

Improving local search using parameterized complexity – p.35/35

	Overview
	Local search
	Local neighborhood
	Searching the neighborhood
	Parameterized complexity
	Bounded search tree method
	Fixed-parameter tractability
	Fixed-parameter tractability (cont.)
	Parameterized intractability
	Parameterized Complexity: Summary
	Results on parameterized local search
	Results on parameterized local search (cont.)
	Boolean CSP
	Boolean CSP
	Schaefer's Dichotomy Theorem (1978)
	Other dichotomy results
	Minimizing weight
	Losing weight
	Horn constraints
	Flip sets
	Flip separable
	Main result
	Algorithm
	Algorithm
	Algorithm
	Hardness proof
	Hardness proof
	Hardness proof
	Hardness proof
	Main result
	Something strange
	Strict vs. permissive
	Revised result
	Conclusions

