

Improving local search using parameterized complexity

Dániel Marx

Budapest University of Technology and Economics

dmarx@cs.bme.hu

Joint work with

Andrei Krokhin

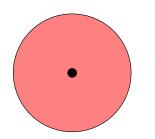
Cork Constraint Computing Center

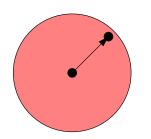
University College Cork, Ireland

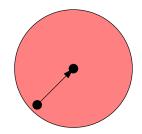
December 10, 2008

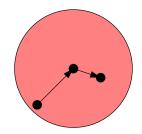
- 6 Local search algorithms
- 9 Parameterized complexity approach to local search
- Applying this approach for the problem of finding minimum weight solutions for Boolean CSP's.
- 6 Main result: classification theorem.

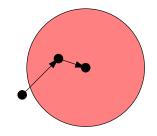
Improving local search using parameterized complexity – p.3/35

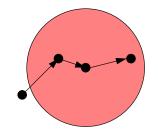


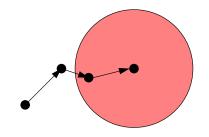


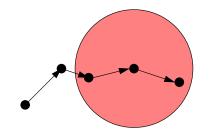


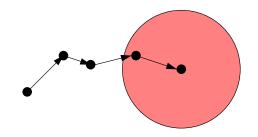




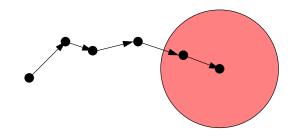




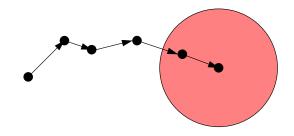








Local search: walk in the solution space by iteratively replacing the current solution with a better solution in the local neighborhood.



Problem: local search can stop at a local optimum (no better solution in the local neighborhood).

More sophisticated variants: simulated annealing, tabu search, etc.

Local neighborhood

The local neighborhood is defined in a problem-specific way:

- 6 For TSP, the neighbors are obtained by swapping 2 cities or replacing 2 edges.
- 6 For a problem with 0-1 variables, the neighbors are obtained by flipping a single variable.
- 6 For subgraph problems, the neighbors are obtained by adding/removing one edge.

Local neighborhood

The local neighborhood is defined in a problem-specific way:

- 6 For TSP, the neighbors are obtained by swapping 2 cities or replacing 2 edges.
- 6 For a problem with 0-1 variables, the neighbors are obtained by flipping a single variable.
- 6 For subgraph problems, the neighbors are obtained by adding/removing one edge.

More generally: reordering k cities, flipping k variables, etc.

Larger neighborhood (larger k):

- 6 algorithm is less likely to get stuck in a local optimum,
- 6 it is more difficult to check if there is a better solution in the neighborhood.

Is there an efficient way of finding a better solution in the k-neighborhood? We study the complexity of the following problem:

Input:	instance I , solution x , integer k
Decide:	Is there a solution x' with ${ m dist}(x,x')\leq k$ that is "better" than x ?

Is there an efficient way of finding a better solution in the k-neighborhood? We study the complexity of the following problem:

Input:	instance I , solution x , integer k
Decide:	Is there a solution x' with ${ m dist}(x,x')\leq k$ that is "better" than x ?

Remark 1: If the optimization problem is hard, then it is unlikely that this local search problem is polynomial-time solvable: otherwise we would be able to test if a solution is optimal.

Is there an efficient way of finding a better solution in the k-neighborhood? We study the complexity of the following problem:

Input:	instance I , solution x , integer k
Decide:	Is there a solution x' with ${ m dist}(x,x')\leq k$ that is "better" than x ?

Remark 1: If the optimization problem is hard, then it is unlikely that this local search problem is polynomial-time solvable: otherwise we would be able to test if a solution is optimal.

Remark 2: Size of the *k*-neighborhood is usually $n^{O(k)} \Rightarrow$ local search is polynomial-time solvable for every fixed *k*, but it is not practical for larger *k*.

Is there an efficient way of finding a better solution in the k-neighborhood? We study the complexity of the following problem:

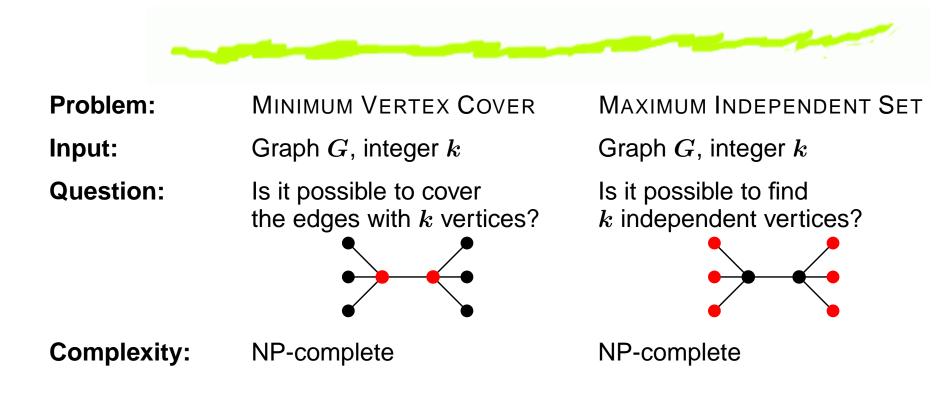
Input:	instance I , solution x , integer k
Decide:	Is there a solution x' with ${ m dist}(x,x')\leq k$ that is "better" than x ?

Remark 1: If the optimization problem is hard, then it is unlikely that this local search problem is polynomial-time solvable: otherwise we would be able to test if a solution is optimal.

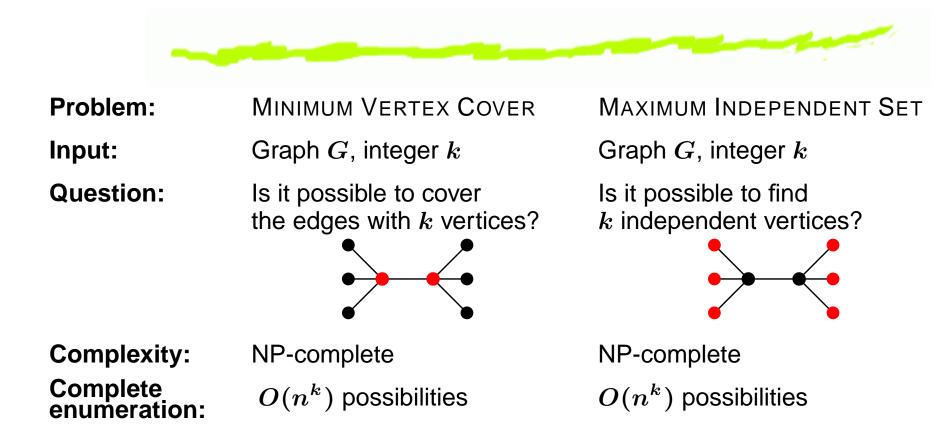
Remark 2: Size of the *k*-neighborhood is usually $n^{O(k)} \Rightarrow$ local search is polynomial-time solvable for every fixed *k*, but it is not practical for larger *k*.

Classical complexity theory does not tell us anything useful about the complexity of local search!

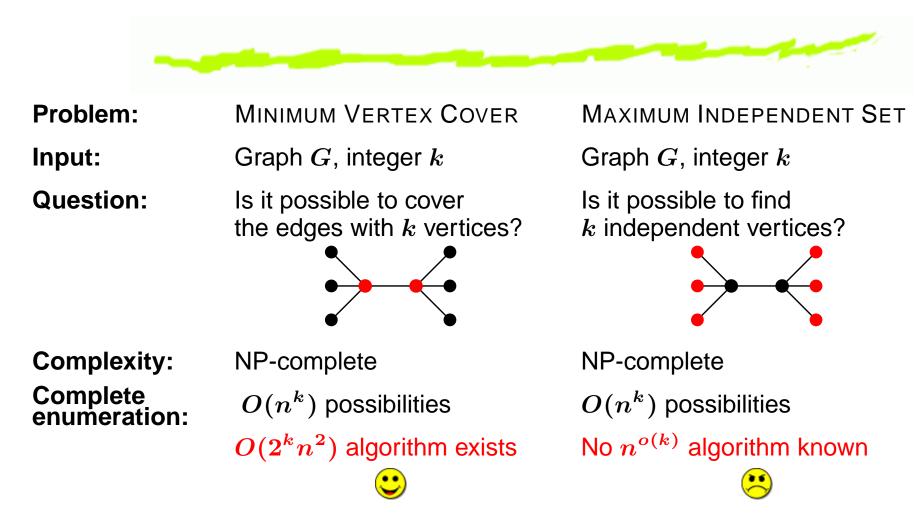
Parameterized complexity



Parameterized complexity



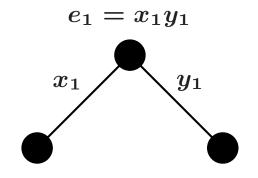
Parameterized complexity



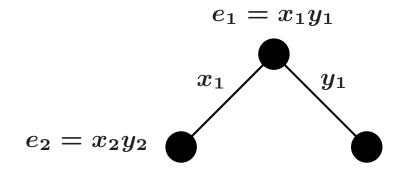
Algorithm for MINIMUM VERTEX COVER:

 $e_1 = x_1 y_1$

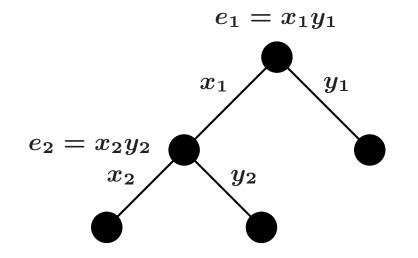
Algorithm for MINIMUM VERTEX COVER:



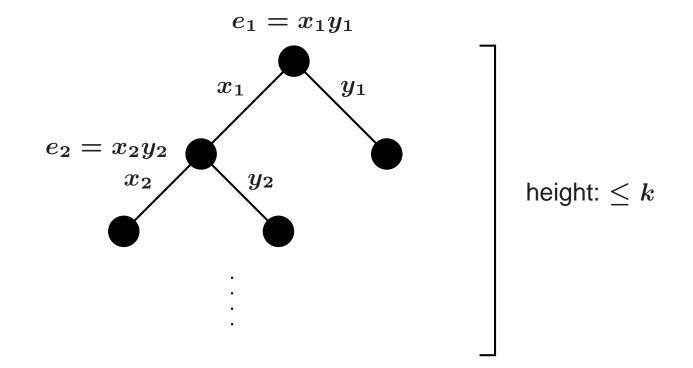
Algorithm for MINIMUM VERTEX COVER:



Algorithm for MINIMUM VERTEX COVER:



Algorithm for MINIMUM VERTEX COVER:



Height of the search tree is $\leq k \Rightarrow$ number of nodes is $O(2^k) \Rightarrow$ complete search requires $2^k \cdot$ poly steps.

Fixed-parameter tractability

Definition: a parameterized problem is fixed-parameter tractable (FPT) if there is an $f(k)n^c$ time algorithm for some constant c.

We have seen that MINIMUM VERTEX COVER is in FPT. Best known algorithm: $O(1.2832^k k + k|V|)$ [Niedermeier, Rossmanith, 2003]

Main goal of parameterized complexity: to find FPT problems.

Fixed-parameter tractability

Definition: a parameterized problem is fixed-parameter tractable (FPT) if there is an $f(k)n^c$ time algorithm for some constant c.

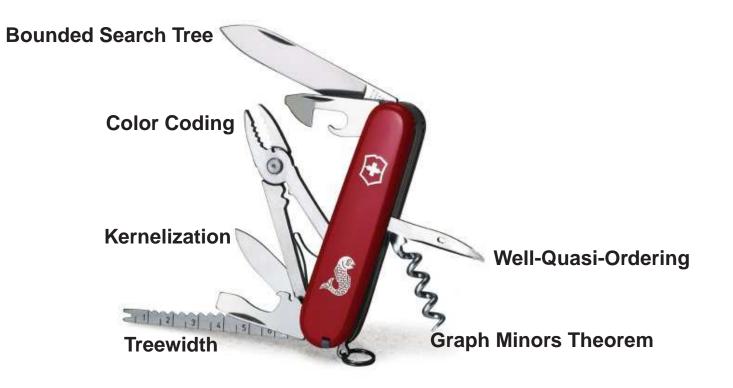
We have seen that MINIMUM VERTEX COVER is in FPT. Best known algorithm: $O(1.2832^k k + k|V|)$ [Niedermeier, Rossmanith, 2003]

Main goal of parameterized complexity: to find FPT problems. Examples of NP-hard problems that are FPT:

- 6 Finding a vertex cover of size k.
- 6 Finding a path of length k.
- 6 Finding k disjoint triangles.
- ⁶ Drawing the graph in the plane with k edge crossing.
- Finding disjoint paths that connect k pairs of points.
- 6 ...

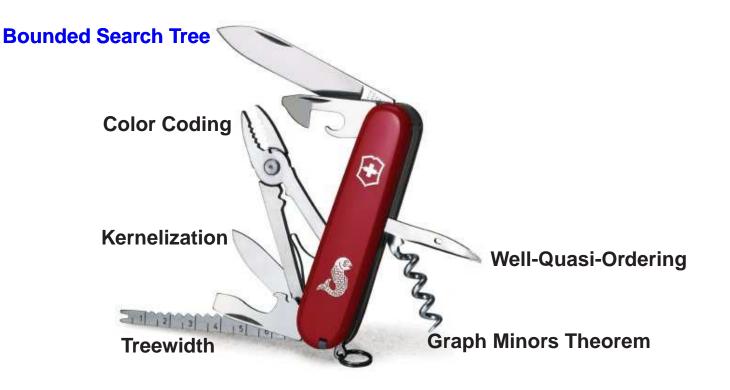
Fixed-parameter tractability (cont.)

- 9 Practical importance: efficient algorithms for small values of k.
- 9 Powerful toolbox for designing FPT algorithms:



Fixed-parameter tractability (cont.)

- ⁶ Practical importance: efficient algorithms for small values of k.
- 9 Powerful toolbox for designing FPT algorithms:



Parameterized intractability

We expect that MAXIMUM INDEPENDENT SET is not fixed-parameter tractable, no $n^{o(k)}$ algorithm is known.

W[1]-complete \approx "as hard as MAXIMUM INDEPENDENT SET"

Parameterized intractability

We expect that MAXIMUM INDEPENDENT SET is not fixed-parameter tractable, no $n^{o(k)}$ algorithm is known.

W[1]-complete \approx "as hard as MAXIMUM INDEPENDENT SET"

Parameterized reductions: L_1 is reducible to L_2 , if there is a function f that transforms (x, k) to (x', k') such that

- $(x,k)\in L_1$ if and only if $(x',k')\in L_2$,
- 6 f can be computed in $f(k)|x|^c$ time,
- k' depends only on k

If L_1 is reducible to L_2 , and L_2 is in FPT, then L_1 is in FPT as well. Most NP-completeness proofs are not good for parameterized reductions.

Parameterized Complexity: Summary

Two key concepts:

- 6 A parameterized problem is **fixed-parameter tractable** if it has an $f(k)n^c$ time algorithm.
- 6 To show that a problem L is hard, we have to give a parameterized reduction from a known W[1]-complete problem to L.

Parameterized Complexity: Summary

Two key concepts:

- 6 A parameterized problem is **fixed-parameter tractable** if it has an $f(k)n^c$ time algorithm.
- 6 To show that a problem L is hard, we have to give a parameterized reduction from a known W[1]-complete problem to L.

The question that we want to investigate:

Is k-local-search fixed-parameter tractable for a particular problem?

If yes, then local search algorithms can consider larger neighborhoods, improving their efficiency.

Important: *k* is the number of allowed changes and **not** the size of the solution. Relevant even if solution size is large.

Results on parameterized local search

Task: find a spanning tree maximizing the number of vertices having full degree.

Local search is FPT: given a solution, it can be checked in time $O(n^2 + nf(k))$ if it is possible to obtain a better solution by replacing at most *k* edges [Khuller, Bhatia, and Pless 2003].

Task: TSP with distances satisfying the triangle inequality.

Local search is hard: it is W[1]-hard to check if it is possible to obtain a shorter tour by replacing at most k arcs [M. 2008].

Results on parameterized local search (cont.)

Task: find a minimum dominating set/minimum r-center/minimum vertex cover in a planar graph.

Local search is FPT. [Fellows et al., 2008].

Results on parameterized local search (cont.)

5 Task: find a minimum dominating set/minimum r-center/minimum vertex cover in a planar graph.

Local search is FPT. [Fellows et al., 2008].

- **Task:** find a maximum stable assignment in the "Hospitals/Residents with Couples" problem (a variant of Stable Marriage).
 - Local search is W[1]-hard:
 There is no f(k) · n^{O(1)} algorithm for deciding whether an assignment can be improved by at most k changes.
 - ▲ Local search is FPT if the number ℓ of couples is also a parameter: There is an f(k, ℓ) · n^{O(1)} for deciding whether an assignment can be improved by at most k changes. [M. and Schlotter 2008].

Topic of this talk: investigating the parameterized complexity of local search for the problem of finding a minimum weight solution for a Boolean constraint satisfaction problem (CSP).

Boolean CSP: generalization of SAT. Input is a conjunction of constraints over a set of Boolean variables.

 $R_1(x_1,x_4,x_5) \wedge R_2(x_2,x_1) \wedge R_1(x_3,x_3,x_3) \wedge R_3(x_5,x_1,x_4,x_1)$

Constraints can be arbitrary Boolean relations.

Problem is too general!

If Γ is a set of Boolean relations, then a Γ -formula is a conjunction of relations in Γ :

 $R_1(x_1,x_4,x_5) \wedge R_2(x_2,x_1) \wedge R_1(x_3,x_3,x_3) \wedge R_3(x_5,x_1,x_4,x_1)$

Γ -SAT

- 6 Given: an Γ -formula arphi
- ⁶ Find: a variable assignment satisfying φ

If Γ is a set of Boolean relations, then a Γ -formula is a conjunction of relations in Γ :

 $R_1(x_1,x_4,x_5) \wedge R_2(x_2,x_1) \wedge R_1(x_3,x_3,x_3) \wedge R_3(x_5,x_1,x_4,x_1)$

Γ -SAT

- 6 Given: an $oldsymbol{\Gamma}$ -formula arphi
- $^{\odot}$ Find: a variable assignment satisfying arphi

$$\begin{split} &\Gamma = \{a \neq b\} \Rightarrow \Gamma \text{-SAT} = 2 \text{-coloring of a graph} \\ &\Gamma = \{a \lor b, \ a \lor \overline{b}, \ \overline{a} \lor \overline{b}\} \Rightarrow \Gamma \text{-SAT} = 2\text{SAT} \\ &\Gamma = \{a \lor b \lor c, a \lor b \lor \overline{c}, a \lor \overline{b} \lor \overline{c}, \overline{a} \lor \overline{b} \lor \overline{c}\} \Rightarrow \Gamma \text{-SAT} = 3\text{SAT} \end{split}$$

If Γ is a set of Boolean relations, then a Γ -formula is a conjunction of relations in Γ :

 $R_1(x_1,x_4,x_5) \wedge R_2(x_2,x_1) \wedge R_1(x_3,x_3,x_3) \wedge R_3(x_5,x_1,x_4,x_1)$

Γ -SAT

- 6 Given: an Γ -formula arphi
- $^{\circ}$ Find: a variable assignment satisfying arphi

$$\begin{split} &\Gamma = \{a \neq b\} \Rightarrow \Gamma \text{-SAT} = 2 \text{-coloring of a graph} \\ &\Gamma = \{a \lor b, \ a \lor \overline{b}, \ \overline{a} \lor \overline{b}\} \Rightarrow \Gamma \text{-SAT} = 2 \text{SAT} \\ &\Gamma = \{a \lor b \lor c, a \lor b \lor \overline{c}, a \lor \overline{b} \lor \overline{c}, \overline{a} \lor \overline{b} \lor \overline{c}\} \Rightarrow \Gamma \text{-SAT} = 3 \text{SAT} \end{split}$$

Question: Γ -SAT is polynomial time solvable for which Γ ? It is NP-complete for which Γ ?

Schaefer's Dichotomy Theorem (1978)

For every finite Γ , the Γ -SAT problem is polynomial time solvable if one of the following holds, and NP-complete otherwise:

- 6 Every relation is satisfied by the all 0 assignment
- 6 Every relation is satisfied by the all 1 assignment
- 6 Every relation can be expressed by a 2SAT formula
- 6 Every relation can be expressed by a Horn formula
- 6 Every relation can be expressed by an anti-Horn formula
- 6 Every relation is an affine subspace over GF(2)

Other dichotomy results

- Approximability of MAX-SAT, MIN-UNSAT [Khanna et al., 2001]
- 6 Approximability of MAX-ONES, MIN-ONES [Khanna et al., 2001]
- Generalization to 3 valued variables [Bulatov, 2002]
- 6 Inverse satisfiability [Kavvadias and Sideri, 1999]
- 6 Parameterized complexity of weight *k* solutions [M., 2005]
- 6 Counting solutions [Bulatov, 2008]
- 6 etc.

Minimizing weight

 Γ -MIN-ONES: find a solution of a Γ -SAT formula that minimizes the weight (= the number of 1's).

Theorem: [Khanna et al., 2001] For every finite Γ , the Γ -MIN-ONES problem is polynomial time solvable if one of the following holds, and NP-complete otherwise:

- 6 Every relation is satisfied by the all 0 assignment
- 6 Every relation can be expressed by a Horn formula
- 6 Every relation is width-2 affine (= can be expressed by constants, =, \neq).

Our goal: characterize those sets Γ where local search for Γ -MIN-ONES is fixed-parameter tractable.

Losing weight

 $\begin{array}{ll} \Gamma \text{-LOSE-WEIGHT} \\ \text{Input:} & \text{A } \Gamma \text{-formula } \varphi \text{, a solution } x \text{ for } \varphi \text{, and an integer } k. \\ \\ \text{Decide:} & \begin{array}{ll} \text{Is there a solution } x' \text{ of } \varphi \text{ with } \text{dist}(x, x') & \leq k \text{ and} \\ \\ \text{weight}(x') < \text{weight}(x)? \end{array}$

dist(x, x'): Hamming distance of x and x'. weight(x): number of 1's in x.

Losing weight

Γ-LOSE-WEIGHT Input: A **Γ**-formula φ , a solution x for φ , and an integer k.

Decide: Is there a solution x' of φ with dist $(x, x') \leq k$ and weight(x') < weight(x)?

dist(x, x'): Hamming distance of x and x'. weight(x): number of 1's in x.

Main result:

Theorem: For every finite set Γ , Γ -LOSE-WEIGHT is either fixed-parameter tractable or W[1]-hard.

+ a simple characterization of the FPT cases.

Horn constraints

Definition: A relation is **Horn** (or weakly negative) if it can be expressed as the conjunction of clauses with at most one positive literal in each clause.

 $(x_1 ee ar{x}_2) \land (x_3) \land (ar{x}_1 ee ar{x}_3 ee ar{x}_4) \land (ar{x}_2)$

A relation is Horn if and only if it is closed under componentwise AND.

Definition: Let R be an r-ary relation and $(a_1, \ldots, a_r) \in R$. A set $S \subseteq \{1, \ldots, r\}$ is a **flip set** of (a_1, \ldots, a_r) (with respect to R) if flipping the coordinates corresponding to S gives another tuple in R.

Example:

$$egin{aligned} R(x_1,x_2,x_3,x_4) & (0,0,1,0) & (1,0,1,0) & (0,1,1,1) & (1,0,0,0) & (0,1,1,0) & (1,0,1,1) & (1,0,1) & (1,0,1,1) & (1,0,1) & (1$$

Definition: Let R be an r-ary relation and $(a_1, \ldots, a_r) \in R$. A set $S \subseteq \{1, \ldots, r\}$ is a **flip set** of (a_1, \ldots, a_r) (with respect to R) if flipping the coordinates corresponding to S gives another tuple in R.

Example:

	Flip sets of
$R(x_1,x_2,x_3,x_4)$	(1, 0, 1, 0)
(0,0,1,0)	$\{1\}$
(1, 0, 1, 0)	
(0,1,1,1)	$\{1,2,4\}$
(1, 0, 0, 0)	$\{3\}$
(0, 1, 1, 0)	$\{1,2\}$
(1, 0, 1, 1)	$\{4\}$

Flip sets

Definition: Let R be an r-ary relation and $(a_1, \ldots, a_r) \in R$. A set $S \subseteq \{1, \ldots, r\}$ is a **flip set** of (a_1, \ldots, a_r) (with respect to R) if flipping the coordinates corresponding to S gives another tuple in R.

Example:

	Flip sets of	Flip sets of
$R(x_1,x_2,x_3,x_4)$	(1, 0, 1, 0)	(0, 1, 1, 1)
(0,0,1,0)	$\{1\}$	$\{2,3\}$
(1, 0, 1, 0)		$\{1,2,4\}$
(0,1,1,1)	$\{1,2,4\}$	
(1, 0, 0, 0)	$\{3\}$	$\{1,2,3,4\}$
(0, 1, 1, 0)	$\{1,2\}$	$\{4\}$
(1, 0, 1, 1)	$\{4\}$	$\{1,2\}$

Example:	Flip sets of
$R(x_1,x_2,x_3,x_4)$	(1, 0, 1, 0)
(0,0,1,0)	$\{1\}$
(1, 0, 1, 0)	
$\left(0,1,1,1 ight)$	$\{1,2,4\}$
(1, 0, 0, 0)	$\{3\}$
(0,1,1,0)	$\{1,2\}$
(1, 0, 1, 1)	$\{4\}$

Example:	Flip sets of	
$R(x_1,x_2,x_3,x_4)$	(1, 0, 1, 0)	
(0, 0, 1, 0)	$\{1\}$	
(1, 0, 1, 0)		$oldsymbol{R}$ is not
(0,1,1,1)	$\{1,2,4\}$	flip separable!
(1, 0, 0, 0)	$\{3\}$	
(0, 1, 1, 0)	$\{1,2\}$	
(1, 0, 1, 1)	$\{4\}$	

Definition: An *r*-ary relation *R* is **flip separable** if whenever $S_1 \subset S_2 \subseteq \{1, \ldots, r\}$ are flip sets of a tuple (x_1, \ldots, x_r) , then $S_2 \setminus S_1$ is also a flip set.

Example:

 $\mathsf{EVEN}(x_1, x_2, x_3, x_4) \ (0, 0, 0, 0) \ (1, 1, 0, 0) \ (1, 0, 1, 0) \ (1, 0, 0, 1) \ (0, 1, 1, 0) \ (0, 1, 0, 1) \ (0, 0, 1, 1) \ (1, 1, 1, 1)$

Example:	Flip sets of
$EVEN(x_1, x_2, x_3, x_4)$	(1, 1, 0, 0)
(0, 0, 0, 0)	$\{1,2\}$
(1, 1, 0, 0)	
(1, 0, 1, 0)	$\{2,3\}$
(1, 0, 0, 1)	$\{2,4\}$
(0, 1, 1, 0)	$\{1,3\}$
(0, 1, 0, 1)	$\{1,4\}$
(0, 0, 1, 1)	$\{1,2,3,4\}$
(1, 1, 1, 1)	$\{3,4\}$

Example:	Flip sets of	Flip sets of
$EVEN(x_1, x_2, x_3, x_4)$	(1, 1, 0, 0)	(1, 1, 1, 1)
(0,0,0,0)	$\{1,2\}$	$\{1,2,3,4\}$
(1, 1, 0, 0)		$\{3,4\}$
(1, 0, 1, 0)	$\{2,3\}$	$\{2,4\}$
(1, 0, 0, 1)	$\{2,4\}$	$\{2,3\}$
(0, 1, 1, 0)	$\{1,3\}$	$\{1,4\}$
(0, 1, 0, 1)	$\{1,4\}$	$\{1,3\}$
(0,0,1,1)	$\{1, 2, 3, 4\}$	$\{1,2\}$
(1, 1, 1, 1)	$\{3,4\}$	

Example:	Flip sets of	Flip sets of	
$EVEN(x_1, x_2, x_3, x_4)$	(1, 1, 0, 0)	(1, 1, 1, 1)	
(0,0,0,0)	$\{1,2\}$	$\{1, 2, 3, 4\}$	
(1, 1, 0, 0)		$\{3,4\}$	
(1, 0, 1, 0)	$\{2,3\}$	$\{2,4\}$	EVEN is
(1, 0, 0, 1)	$\{2,4\}$	$\{2,3\}$	flip separable!
(0, 1, 1, 0)	$\{1,3\}$	$\{1,4\}$	
(0,1,0,1)	$\{1,4\}$	$\{1,3\}$	
(0, 0, 1, 1)	$\{1, 2, 3, 4\}$	$\{1,2\}$	
(1, 1, 1, 1)	$\{3,4\}$		

Definition: An *r*-ary relation *R* is **flip separable** if whenever $S_1 \subset S_2 \subseteq \{1, \ldots, r\}$ are flip sets of a tuple (x_1, \ldots, x_r) , then $S_2 \setminus S_1$ is also a flip set.

Example:

 $egin{aligned} 1\text{-IN-4}(x_1,x_2,x_3,x_4) & & \ & (1,0,0,0) & & \ & (0,1,0,0) & & \ & (0,0,1,0) & & \ & (0,0,0,1) & & \ & (0,0,0,1) & & \ \end{aligned}$

Definition: An *r*-ary relation *R* is **flip separable** if whenever $S_1 \subset S_2 \subseteq \{1, \ldots, r\}$ are flip sets of a tuple (x_1, \ldots, x_r) , then $S_2 \setminus S_1$ is also a flip set.

Example:Flip sets of $1-IN-4(x_1, x_2, x_3, x_4)$ (1, 0, 0, 0)(1, 0, 0, 0)(1, 0, 0, 0)(0, 1, 0, 0) $\{1, 2\}$ (0, 0, 1, 0) $\{1, 3\}$ (0, 0, 0, 1) $\{1, 4\}$

Example:	Flip sets of	Flip sets of
$1\text{-}IN\text{-}4(x_1,x_2,x_3,x_4)$	(1,0,0,0)	(0, 1, 0, 0)
(1, 0, 0, 0)		$\{1,2\}$
(0, 1, 0, 0)	$\{1,2\}$	
(0, 0, 1, 0)	$\{1,3\}$	$\{2,3\}$
(0, 0, 0, 1)	$\{1,4\}$	$\{2,4\}$

Example:	Flip sets of	Flip sets of	
$1\text{-}IN\text{-}4(x_1,x_2,x_3,x_4)$	(1, 0, 0, 0)	(0, 1, 0, 0)	
(1, 0, 0, 0)		$\{1,2\}$	1-IN-4 is
(0, 1, 0, 0)	$\{1,2\}$		flip separable!
(0, 0, 1, 0)	$\{1,3\}$	$\{2,3\}$	
(0,0,0,1)	$\{1,4\}$	$\{2,4\}$	

Definition: An *r*-ary relation *R* is **flip separable** if whenever $S_1 \subset S_2 \subseteq \{1, \ldots, r\}$ are flip sets of a tuple (x_1, \ldots, x_r) , then $S_2 \setminus S_1$ is also a flip set.

Example:

 $egin{array}{c} x_1 ee x_2 \ (1,0) \ (0,1) \ (1,1) \end{array}$

Definition: An *r*-ary relation *R* is **flip separable** if whenever $S_1 \subset S_2 \subseteq \{1, \ldots, r\}$ are flip sets of a tuple (x_1, \ldots, x_r) , then $S_2 \setminus S_1$ is also a flip set.

 Example:
 Flip sets of

 $x_1 \lor x_2$ (1,0)

 (1,0) (1,2)

 (1,1) $\{2\}$

Definition: An *r*-ary relation *R* is **flip separable** if whenever $S_1 \subset S_2 \subseteq \{1, \ldots, r\}$ are flip sets of a tuple (x_1, \ldots, x_r) , then $S_2 \setminus S_1$ is also a flip set.

Example:Flip sets of $x_1 \lor x_2$ (1,0)(1,0) $x_1 \lor x_2$ is not(1,0)flip separable!(0,1) $\{1,2\}$ (1,1) $\{2\}$

Main result

Theorem: For every finite set Γ , Γ -LOSE-WEIGHT is fixed-parameter tractable if one of the following holds, and W[1]-hard otherwise:

- 6 Every relation can be expressed by a Horn formula.
- 6 Every relation is flip separable.

Some FPT cases:

- 6 EVEN and ODD constraints.
- 6 affine constraints.
- 9 p-IN-q constraints.

Some hard cases:

5 $x_1 \lor x_2$ (= MINIMUM VERTEX COVER)

6 3SAT

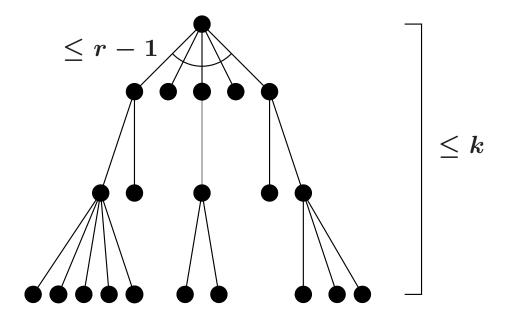
Task: given a formula with flip separable constraints and a satisfying assignment, decrease the weight by flipping at most k variables.

Bounded search tree algorithm:

- 6 Flip a variable with value 1 to 0 (at most n possible choices).
- If a clause is not satisfied, flip one of its variables that was not yet flipped (at most r 1 possible choices if maximum arity is r).
- 6 Repeat until
 - \land more than k variables are flipped \Rightarrow terminate this branch.
 - ▲ every clause is satisfied ⇒ check if the satisfying assignment has strictly smaller weight than the original assignment.

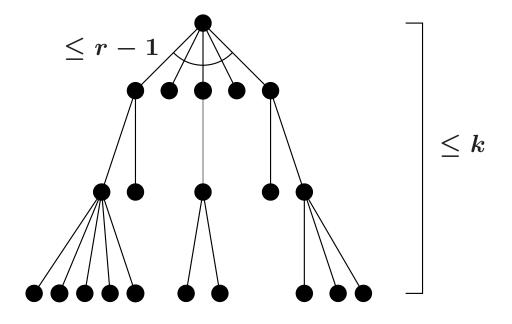
Algorithm

Running time: After the initial flip, the search tree has size at most $(r-1)^k$:



Algorithm

Running time: After the initial flip, the search tree has size at most $(r-1)^k$:

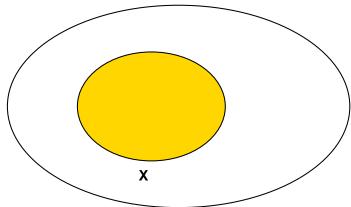


Running time is $f(k, r) \cdot n^c \Rightarrow f'(k) \cdot n^c$ for a fixed Γ .

Correctness: is it true that we always find a solution if it exits?

Correctness: is it true that we always find a solution if it exits?

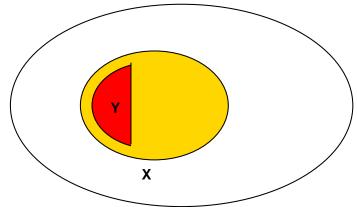
⁶ Let *X* be a solution that decreases the weight most ($|X| \le k$, flipping *X* gives a satisfying assignment).



Algorithm

Correctness: is it true that we always find a solution if it exits?

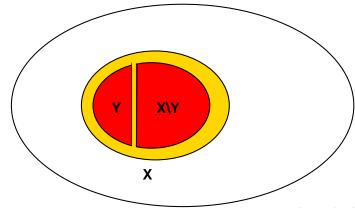
- ⁶ Let *X* be a solution that decreases the weight most ($|X| \le k$, flipping *X* gives a satisfying assignment).
- Solution There is a branch of the algorithm that flips only a subset $Y \subseteq X$.



Algorithm

Correctness: is it true that we always find a solution if it exits?

- ⁶ Let *X* be a solution that decreases the weight most ($|X| \le k$, flipping *X* gives a satisfying assignment).
- 6 There is a branch of the algorithm that flips only a subset $Y \subseteq X$.
- 6 Flipping $X \setminus Y$ is also a solution (constraints are flip separable).
- 6 If flipping Y does not decrease the weight, then flipping $X \setminus Y$ decreases the weight more than Y.



Hardness proof: if Γ contains a relation that is not Horn and a relation that is not flip separable, then local search is W[1]-hard.

Hardness proof: if Γ contains a relation that is not Horn and a relation that is not flip separable, then local search is W[1]-hard.

Step 1: Direct proof for $x \lor y$.

 \Rightarrow Given a vertex cover S and an integer k, it is W[1]-hard to decide if it is possible to decrease the vertex cover by adding/removing at most k vertices.

 \Rightarrow Given an independent set *S* and an integer *k*, it is W[1]-hard to decide if it is possible to increase the independent set cover by adding/removing at most *k* vertices.

Hardness proof: if Γ contains a relation that is not Horn and a relation that is not flip separable, then local search is W[1]-hard.

Step 1: Direct proof for $x \lor y$.

 \Rightarrow Given a vertex cover S and an integer k, it is W[1]-hard to decide if it is possible to decrease the vertex cover by adding/removing at most k vertices.

 \Rightarrow Given an independent set *S* and an integer *k*, it is W[1]-hard to decide if it is possible to increase the independent set cover by adding/removing at most *k* vertices.

Note: These results hold even for bipartite graphs.

Hardness proof: if Γ contains a relation that is not Horn and a relation that is not flip separable, then local search is W[1]-hard.

Step 2: Suppose that there is a relation $R \in \Gamma$ that is not Horn, i.e., it is not closed under componentwise AND.

Hardness proof: if Γ contains a relation that is not Horn and a relation that is not flip separable, then local search is W[1]-hard.

Step 2: Suppose that there is a relation $R \in \Gamma$ that is not Horn, i.e., it is not closed under componentwise AND.

 $egin{aligned} (1,0,0,1) \in R \ (0,1,0,1) \in R \ (0,0,0,1)
ot\in R \end{aligned}$

Hardness proof: if Γ contains a relation that is not Horn and a relation that is not flip separable, then local search is W[1]-hard.

Step 2: Suppose that there is a relation $R \in \Gamma$ that is not Horn, i.e., it is not closed under componentwise AND.

 $egin{aligned} (1,0,0,1) \in R \ (0,1,0,1) \in R \ (0,0,0,1)
ot\in R \end{aligned}$

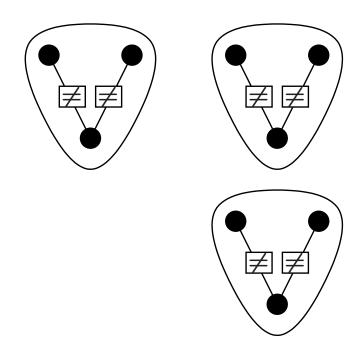
either

 $(1, 1, 0, 1) \in R$ $\Rightarrow R(x, y, 0, 1) \equiv x \lor y$, we can "almost express" relation $x \lor y$ (DONE). $(1, 1, 0, 1) \notin R$ $\Rightarrow R(x, y, 0, 1) \equiv x \neq y$, we can "almost express" relation \neq .

Hardness proof: if Γ contains a relation that is not Horn and a relation that is not flip separable, then local search is W[1]-hard.

Step 3: Suppose that there is a relation $R \in \Gamma$ that is not flip separable and we can use \neq .

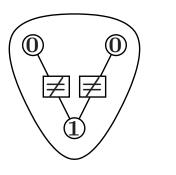
- 6 Reduction from $x \lor y$.
- Replace each variable with 3 variables
- 6 Two states for each triple.
- 6 Changing a triple changes the weight by 1.

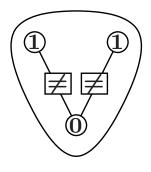


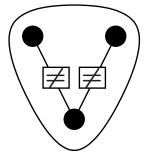
Hardness proof: if Γ contains a relation that is not Horn and a relation that is not flip separable, then local search is W[1]-hard.

Step 3: Suppose that there is a relation $R \in \Gamma$ that is not flip separable and we can use \neq .

- 6 Reduction from $x \lor y$.
- Replace each variable with 3 variables
- 6 Two states for each triple.
- 6 Changing a triple changes the weight by 1.



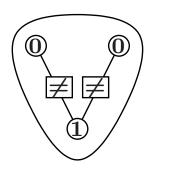


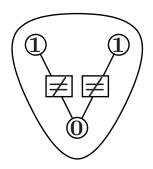


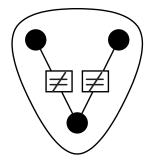
Hardness proof: if Γ contains a relation that is not Horn and a relation that is not flip separable, then local search is W[1]-hard.

Suppose there is a counterexample to the fact that $R \in \Gamma$ is flip separable:

 $egin{aligned} (0,1,0,1) \in R \ (1,0,0,1) \in R \ (1,0,1,0) \in R \ (0,1,1,0)
ot\in R \end{aligned}$





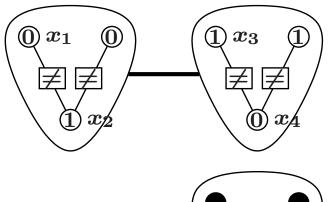


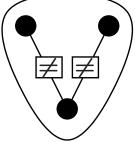
Hardness proof: if Γ contains a relation that is not Horn and a relation that is not flip separable, then local search is W[1]-hard.

Suppose there is a counterexample to the fact that $R \in \Gamma$ is flip separable:

 $egin{aligned} (0,1,0,1) \in R \ (1,0,0,1) \in R \ (1,0,1,0) \in R \ (0,1,1,0)
otin R \end{aligned}$

We represent the edge by constraint $R(x_1, x_2, x_4, x_3)$.





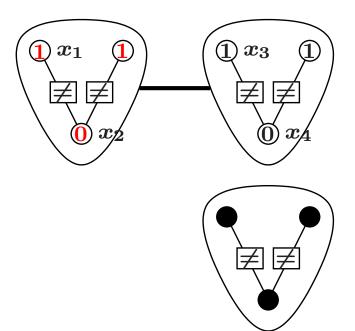
Hardness proof: if Γ contains a relation that is not Horn and a relation that is not flip separable, then local search is W[1]-hard.

Suppose there is a counterexample to the fact that $R \in \Gamma$ is flip separable:

 $egin{aligned} (0,1,0,1) \in R \ (1,0,0,1) \in R \ (1,0,1,0) \in R \ (0,1,1,0)
otin R \end{aligned}$

We represent the edge by constraint $R(x_1, x_2, x_4, x_3)$.

Flipping the first gadget is allowed...



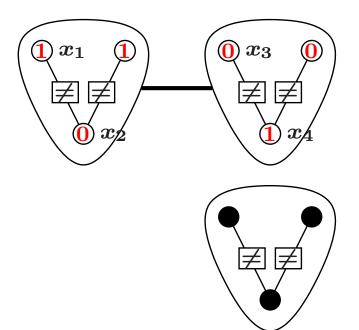
Hardness proof: if Γ contains a relation that is not Horn and a relation that is not flip separable, then local search is W[1]-hard.

Suppose there is a counterexample to the fact that $R \in \Gamma$ is flip separable:

 $egin{aligned} (0,1,0,1) \in R \ (1,0,0,1) \in R \ (1,0,1,0) \in R \ (0,1,1,0)
otin R \end{aligned}$

We represent the edge by constraint $R(x_1, x_2, x_4, x_3)$.

Flipping the first gadget is allowed... Flipping both gadgets is allowed...



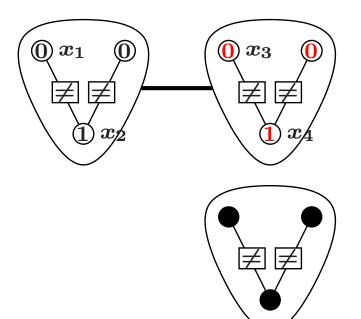
Hardness proof: if Γ contains a relation that is not Horn and a relation that is not flip separable, then local search is W[1]-hard.

Suppose there is a counterexample to the fact that $R \in \Gamma$ is flip separable:

 $egin{aligned} (0,1,0,1) \in R \ (1,0,0,1) \in R \ (1,0,1,0) \in R \ (0,1,1,0)
otin R \ \leftarrow \end{aligned}$

We represent the edge by constraint $R(x_1, x_2, x_4, x_3)$.

Flipping the first gadget is allowed... Flipping both gadgets is allowed... But second gadget cannot be flipped!



We have completed the complexity characterization of Γ -LOSE-WEIGHT:

Theorem: For every finite set Γ , Γ -LOSE-WEIGHT is fixed-parameter tractable if one of the following holds, and W[1]-hard otherwise:

- 6 Every relation can be expressed by a Horn formula.
- 6 Every relation is flip separable.

But something is strange...

We have seen that local search is W[1]-hard for MINIMUM VERTEX COVER, even if the graph is bipartite.

We have seen that local search is W[1]-hard for MINIMUM VERTEX COVER, even if the graph is bipartite.

 \Rightarrow But an optimum solution can be found in polynomial time!

We have seen that local search is W[1]-hard for MINIMUM VERTEX COVER, even if the graph is bipartite.

 \Rightarrow But an optimum solution can be found in polynomial time!

The relation $x \lor y \lor \overline{z}$ is not Horn and not flip separable (for the tuple (1, 0, 1), $\{2\}$ and $\{1, 2\}$ are flip sets but $\{1\}$ is not), thus local search is hard.

We have seen that local search is W[1]-hard for MINIMUM VERTEX COVER, even if the graph is bipartite.

 \Rightarrow But an optimum solution can be found in polynomial time!

The relation $x \lor y \lor \overline{z}$ is not Horn and not flip separable (for the tuple (1, 0, 1), $\{2\}$ and $\{1, 2\}$ are flip sets but $\{1\}$ is not), thus local search is hard.

 \Rightarrow But an optimum solution (all 0 assignment) can be found in polynomial time!

We have seen that local search is W[1]-hard for MINIMUM VERTEX COVER, even if the graph is bipartite.

 \Rightarrow But an optimum solution can be found in polynomial time!

The relation $x \lor y \lor \overline{z}$ is not Horn and not flip separable (for the tuple (1, 0, 1), $\{2\}$ and $\{1, 2\}$ are flip sets but $\{1\}$ is not), thus local search is hard.

 \Rightarrow But an optimum solution (all 0 assignment) can be found in polynomial time!

Counterintuitive results: finding a local improvement is hard, but finding the global optimum is easy.

We are answering the wrong question!

Strict vs. permissive

So far, we investigated **strict** local search algorithms:

Input:A Γ-formula φ , a solution x for φ , and an integer k.Task:If there is a solution x' of φ with dist $(x, x') \leq k$ and
weight(x') < weight(x), then find such an x'.

Strict vs. permissive

So far, we investigated **strict** local search algorithms:

Input:	A Γ -formula $arphi$, a solution x for $arphi$, and an integer k .
Task:	If there is a solution x' of φ with dist $(x, x') \leq k$ and weight $(x') < \text{weight}(x)$, then find such an x' .

But a **permissive** local search algorithm would be equally useful:

Input: A Γ -formula φ , a solution x for φ , and an integer k. If there is a solution x' of φ with dist $(x, x') \leq k$ Task: and weight(x') < weight(x), then find any x'' with weight(x'') < weight(x).

Our hardness result for strict local search does not rule out the possibility of a permissive algorithm.

Revised result

Theorem: For every finite set Γ , **strict** Γ -LOSE-WEIGHT is fixed-parameter tractable if one of the following holds, and W[1]-hard otherwise:

- 6 Every relation can be expressed by a Horn formula.
- 6 Every relation is flip separable.

Theorem: For every finite set Γ , **permissive** Γ -LOSE-WEIGHT is fixed-parameter tractable if one of the following holds, and W[1]-hard otherwise:

- 6 Every relation can be expressed by a Horn formula.
- 6 Every relation is flip separable.
- 6 Every relation is 0-valid.

- Is it possible to efficiently search the local neighborhood?
- 9 Parameterized complexity is the natural way to study.
- 6 Might apply to YOUR problem as well!
- Schaefer-style classification for decreasing the weight of a solution in Boolean CSP.
- 6 Main new definition: flip separable relations.
- 6 Distinction between strict and permissive local search.