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Overview

Local search algorithms

Parameterized complexity approach to local search

Applying this approach for the problem of finding minimum weight solutions
for Boolean CSP’s.

Main result: classification theorem.
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Local search

Local search: walk in the solution space by iteratively replacing the current
solution with a better solution in the local neighborhood.
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Local search

Local search: walk in the solution space by iteratively replacing the current
solution with a better solution in the local neighborhood.

Problem: local search can stop at a local optimum (no better solution in the

local neighborhood).

More sophisticated variants: simulated annealing, tabu search, etc.
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Local neighborhood

The local neighborhood is defined in a problem-specific way:

For TSP, the neighbors are obtained by swapping 2 cities or replacing 2
edges.

For a problem with 0-1 variables, the neighbors are obtained by flipping a

single variable.

For subgraph problems, the neighbors are obtained by adding/removing
one edge.
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Local neighborhood

The local neighborhood is defined in a problem-specific way:

For TSP, the neighbors are obtained by swapping 2 cities or replacing 2
edges.

For a problem with 0-1 variables, the neighbors are obtained by flipping a

single variable.

For subgraph problems, the neighbors are obtained by adding/removing
one edge.

More generally: reordering k cities, flipping k variables, etc.

Larger neighborhood (larger k):

algorithm is less likely to get stuck in a local optimum,

it is more difficult to check if there is a better solution in the neighborhood.
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Searching the neighborhood

Is there an efficient way of finding a better solution in the k-neighborhood?

We study the complexity of the following problem:

Input: instance I , solution x, integer k

Decide:
Is there a solution x′ with dist(x, x′) ≤ k that is

“better” than x?
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Searching the neighborhood

Is there an efficient way of finding a better solution in the k-neighborhood?

We study the complexity of the following problem:

Input: instance I , solution x, integer k

Decide:
Is there a solution x′ with dist(x, x′) ≤ k that is

“better” than x?

Remark 1: If the optimization problem is hard, then it is unlikely that this local
search problem is polynomial-time solvable: otherwise we would be able to

test if a solution is optimal.
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Is there an efficient way of finding a better solution in the k-neighborhood?

We study the complexity of the following problem:

Input: instance I , solution x, integer k

Decide:
Is there a solution x′ with dist(x, x′) ≤ k that is

“better” than x?

Remark 1: If the optimization problem is hard, then it is unlikely that this local
search problem is polynomial-time solvable: otherwise we would be able to

test if a solution is optimal.

Remark 2: Size of the k-neighborhood is usually nO(k) ⇒ local search is
polynomial-time solvable for every fixed k, but it is not practical for larger k.
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Searching the neighborhood

Is there an efficient way of finding a better solution in the k-neighborhood?

We study the complexity of the following problem:

Input: instance I , solution x, integer k

Decide:
Is there a solution x′ with dist(x, x′) ≤ k that is

“better” than x?

Remark 1: If the optimization problem is hard, then it is unlikely that this local
search problem is polynomial-time solvable: otherwise we would be able to

test if a solution is optimal.

Remark 2: Size of the k-neighborhood is usually nO(k) ⇒ local search is
polynomial-time solvable for every fixed k, but it is not practical for larger k.

Classical complexity theory does not tell us anything usefu l about the

complexity of local search!
Improving local search using parameterized complexity – p.5/35



Parameterized complexity

Problem: MINIMUM VERTEX COVER MAXIMUM INDEPENDENT SET

Input: Graph G, integer k Graph G, integer k

Question: Is it possible to cover
the edges with k vertices?

Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete
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Problem: MINIMUM VERTEX COVER MAXIMUM INDEPENDENT SET

Input: Graph G, integer k Graph G, integer k

Question: Is it possible to cover
the edges with k vertices?

Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete
Complete O(nk) possibilities O(nk) possibilitiesenumeration:
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Parameterized complexity

Problem: MINIMUM VERTEX COVER MAXIMUM INDEPENDENT SET

Input: Graph G, integer k Graph G, integer k

Question: Is it possible to cover
the edges with k vertices?

Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete
Complete O(nk) possibilities O(nk) possibilitiesenumeration:

O(2kn2) algorithm exists No no(k) algorithm known
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Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:

e1 = x1y1
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Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:

e1 = x1y1

x1 y1
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Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:

e1 = x1y1

x1 y1

e2 = x2y2
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Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:

e1 = x1y1

x1 y1

e2 = x2y2

x2 y2
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Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:

e1 = x1y1

x1 y1

e2 = x2y2

x2 y2 height: ≤ k

Height of the search tree is ≤ k ⇒ number of nodes is O(2k) ⇒ complete

search requires 2k · poly steps.
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Fixed-parameter tractability

Definition: a parameterized problem is fixed-parameter tractable (FPT) if

there is an f(k)nc time algorithm for some constant c.

We have seen that MINIMUM VERTEX COVER is in FPT. Best known algorithm:

O(1.2832kk + k|V |) [Niedermeier, Rossmanith, 2003]

Main goal of parameterized complexity: to find FPT problems.
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Fixed-parameter tractability

Definition: a parameterized problem is fixed-parameter tractable (FPT) if

there is an f(k)nc time algorithm for some constant c.

We have seen that MINIMUM VERTEX COVER is in FPT. Best known algorithm:

O(1.2832kk + k|V |) [Niedermeier, Rossmanith, 2003]

Main goal of parameterized complexity: to find FPT problems.
Examples of NP-hard problems that are FPT:

Finding a vertex cover of size k.

Finding a path of length k.

Finding k disjoint triangles.

Drawing the graph in the plane with k edge crossing.

Finding disjoint paths that connect k pairs of points.

. . .
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Fixed-parameter tractability (cont.)

Practical importance: efficient algorithms for small values of k.

Powerful toolbox for designing FPT algorithms:

Bounded Search Tree

Kernelization

Color Coding

Treewidth Graph Minors Theorem

Well-Quasi-Ordering
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Fixed-parameter tractability (cont.)

Practical importance: efficient algorithms for small values of k.

Powerful toolbox for designing FPT algorithms:

Bounded Search Tree

Kernelization

Color Coding

Treewidth Graph Minors Theorem

Well-Quasi-Ordering

Bounded Search Tree
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Parameterized intractability

We expect that MAXIMUM INDEPENDENT SET is not fixed-parameter tractable,

no no(k) algorithm is known.

W[1]-complete ≈ “as hard as MAXIMUM INDEPENDENT SET”
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Parameterized intractability

We expect that MAXIMUM INDEPENDENT SET is not fixed-parameter tractable,

no no(k) algorithm is known.

W[1]-complete ≈ “as hard as MAXIMUM INDEPENDENT SET”

Parameterized reductions: L1 is reducible to L2, if there is a function f that
transforms (x, k) to (x′, k′) such that

(x, k) ∈ L1 if and only if (x′, k′) ∈ L2,

f can be computed in f(k)|x|c time,

k′ depends only on k

If L1 is reducible to L2, and L2 is in FPT, then L1 is in FPT as well.

Most NP-completeness proofs are not good for parameterized reductions.
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Parameterized Complexity: Summary

Two key concepts:

A parameterized problem is fixed-parameter tractable if it has an f(k)nc

time algorithm.

To show that a problem L is hard, we have to give a parameterized
reduction from a known W[1]-complete problem to L.
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Parameterized Complexity: Summary

Two key concepts:

A parameterized problem is fixed-parameter tractable if it has an f(k)nc

time algorithm.

To show that a problem L is hard, we have to give a parameterized
reduction from a known W[1]-complete problem to L.

The question that we want to investigate:

Is k-local-search fixed-parameter tractable for a particular problem?

If yes, then local search algorithms can consider larger neighborhoods,
improving their efficiency.

Important: k is the number of allowed changes and not the size of the solution.

Relevant even if solution size is large.

Improving local search using parameterized complexity – p.11/35



Results on parameterized local search

Task: find a spanning tree maximizing the number of vertices having full

degree.

Local search is FPT: given a solution, it can be checked in time

O(n2 + nf(k)) if it is possible to obtain a better solution by replacing at
most k edges [Khuller, Bhatia, and Pless 2003].

Task: TSP with distances satisfying the triangle inequality.

Local search is hard: it is W[1]-hard to check if it is possible to obtain a

shorter tour by replacing at most k arcs [M. 2008].
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Results on parameterized local search (cont.)

Task: find a minimum dominating set/minimum r-center/minimum vertex

cover in a planar graph.

Local search is FPT. [Fellows et al., 2008].
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Results on parameterized local search (cont.)

Task: find a minimum dominating set/minimum r-center/minimum vertex

cover in a planar graph.

Local search is FPT. [Fellows et al., 2008].

Task: find a maximum stable assignment in the “Hospitals/Residents with

Couples” problem (a variant of Stable Marriage).

Local search is W[1]-hard:

There is no f(k) · nO(1) algorithm for deciding whether an assignment
can be improved by at most k changes.

Local search is FPT if the number ℓ of couples is also a parameter:

There is an f(k, ℓ) · nO(1) for deciding whether an assignment can be
improved by at most k changes. [M. and Schlotter 2008].
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Boolean CSP

Topic of this talk: investigating the parameterized complexity of local search

for the problem of finding a minimum weight solution for a Boolean constraint
satisfaction problem (CSP).

Boolean CSP: generalization of SAT. Input is a conjunction of constraints over
a set of Boolean variables.

R1(x1, x4, x5) ∧ R2(x2, x1) ∧ R1(x3, x3, x3) ∧ R3(x5, x1, x4, x1)

Constraints can be arbitrary Boolean relations.

Problem is too general!
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Boolean CSP

If Γ is a set of Boolean relations, then a Γ-formula is a conjunction of relations

in Γ:

R1(x1, x4, x5) ∧ R2(x2, x1) ∧ R1(x3, x3, x3) ∧ R3(x5, x1, x4, x1)

Γ-SAT

Given: an Γ-formula ϕ

Find: a variable assignment satisfying ϕ
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Boolean CSP

If Γ is a set of Boolean relations, then a Γ-formula is a conjunction of relations

in Γ:

R1(x1, x4, x5) ∧ R2(x2, x1) ∧ R1(x3, x3, x3) ∧ R3(x5, x1, x4, x1)

Γ-SAT

Given: an Γ-formula ϕ

Find: a variable assignment satisfying ϕ

Γ = {a 6= b} ⇒ Γ-SAT = 2-coloring of a graph
Γ = {a ∨ b, a ∨ b̄, ā ∨ b̄} ⇒ Γ-SAT = 2SAT

Γ = {a ∨ b ∨ c, a ∨ b ∨ c̄, a ∨ b̄ ∨ c̄, ā ∨ b̄ ∨ c̄} ⇒ Γ-SAT = 3SAT
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Boolean CSP

If Γ is a set of Boolean relations, then a Γ-formula is a conjunction of relations

in Γ:

R1(x1, x4, x5) ∧ R2(x2, x1) ∧ R1(x3, x3, x3) ∧ R3(x5, x1, x4, x1)

Γ-SAT

Given: an Γ-formula ϕ

Find: a variable assignment satisfying ϕ

Γ = {a 6= b} ⇒ Γ-SAT = 2-coloring of a graph
Γ = {a ∨ b, a ∨ b̄, ā ∨ b̄} ⇒ Γ-SAT = 2SAT

Γ = {a ∨ b ∨ c, a ∨ b ∨ c̄, a ∨ b̄ ∨ c̄, ā ∨ b̄ ∨ c̄} ⇒ Γ-SAT = 3SAT

Question: Γ-SAT is polynomial time solvable for which Γ?

It is NP-complete for which Γ?
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Schaefer’s Dichotomy Theorem (1978)

For every finite Γ, the Γ-SAT problem is polynomial time solvable if one of the

following holds, and NP-complete otherwise:

Every relation is satisfied by the all 0 assignment

Every relation is satisfied by the all 1 assignment

Every relation can be expressed by a 2SAT formula

Every relation can be expressed by a Horn formula

Every relation can be expressed by an anti-Horn formula

Every relation is an affine subspace over GF (2)
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Other dichotomy results

Approximability of MAX-SAT, MIN-UNSAT [Khanna et al., 2001]

Approximability of MAX-ONES, MIN-ONES [Khanna et al., 2001]

Generalization to 3 valued variables [Bulatov, 2002]

Inverse satisfiability [Kavvadias and Sideri, 1999]

Parameterized complexity of weight k solutions [M., 2005]

Counting solutions [Bulatov, 2008]

etc.
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Minimizing weight

Γ-MIN-ONES: find a solution of a Γ-SAT formula that minimizes the weight (=

the number of 1’s).

Theorem: [Khanna et al., 2001] For every finite Γ, the Γ-MIN-ONES problem

is polynomial time solvable if one of the following holds, and NP-complete
otherwise:

Every relation is satisfied by the all 0 assignment

Every relation can be expressed by a Horn formula

Every relation is width-2 affine (= can be expressed by constants, =, 6=).

Our goal: characterize those sets Γ where local search for Γ-MIN-ONES is

fixed-parameter tractable.

Improving local search using parameterized complexity – p.18/35



Losing weight

Γ-LOSE-WEIGHT
Input: A Γ-formula ϕ, a solution x for ϕ, and an integer k.

Decide:
Is there a solution x′ of ϕ with dist(x, x′) ≤ k and

weight(x′) < weight(x)?

dist(x, x′): Hamming distance of x and x′.
weight(x): number of 1’s in x.
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Losing weight

Γ-LOSE-WEIGHT
Input: A Γ-formula ϕ, a solution x for ϕ, and an integer k.

Decide:
Is there a solution x′ of ϕ with dist(x, x′) ≤ k and

weight(x′) < weight(x)?

dist(x, x′): Hamming distance of x and x′.
weight(x): number of 1’s in x.

Main result:

Theorem: For every finite set Γ, Γ-LOSE-WEIGHT is either fixed-parameter

tractable or W[1]-hard.

+ a simple characterization of the FPT cases.
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Horn constraints

Definition: A relation is Horn (or weakly negative) if it can be expressed as

the conjunction of clauses with at most one positive literal in each clause.

(x1 ∨ x̄2) ∧ (x3) ∧ (x̄1 ∨ x̄3 ∨ x̄4) ∧ (x̄2)

A relation is Horn if and only if it is closed under componentwise AND.
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Flip sets

Definition: Let R be an r-ary relation and (a1, . . . , ar) ∈ R. A set

S ⊆ {1, . . . , r} is a flip set of (a1, . . . , ar) (with respect to R) if flipping the
coordinates corresponding to S gives another tuple in R.

Example:

R(x1, x2, x3, x4)

(0, 0, 1, 0)

(1, 0, 1, 0)

(0, 1, 1, 1)

(1, 0, 0, 0)

(0, 1, 1, 0)

(1, 0, 1, 1)
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Flip sets

Definition: Let R be an r-ary relation and (a1, . . . , ar) ∈ R. A set

S ⊆ {1, . . . , r} is a flip set of (a1, . . . , ar) (with respect to R) if flipping the
coordinates corresponding to S gives another tuple in R.

Example:

Flip sets of

R(x1, x2, x3, x4) (1, 0, 1, 0)

(0, 0, 1, 0) {1}

(1, 0, 1, 0)

(0, 1, 1, 1) {1, 2, 4}

(1, 0, 0, 0) {3}

(0, 1, 1, 0) {1, 2}

(1, 0, 1, 1) {4}
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Flip sets

Definition: Let R be an r-ary relation and (a1, . . . , ar) ∈ R. A set

S ⊆ {1, . . . , r} is a flip set of (a1, . . . , ar) (with respect to R) if flipping the
coordinates corresponding to S gives another tuple in R.

Example:

Flip sets of Flip sets of

R(x1, x2, x3, x4) (1, 0, 1, 0) (0, 1, 1, 1)

(0, 0, 1, 0) {1} {2, 3}

(1, 0, 1, 0) {1, 2, 4}

(0, 1, 1, 1) {1, 2, 4}

(1, 0, 0, 0) {3} {1, 2, 3, 4}

(0, 1, 1, 0) {1, 2} {4}

(1, 0, 1, 1) {4} {1, 2}
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Flip separable

Definition: An r-ary relation R is flip separable if whenever

S1 ⊂ S2 ⊆ {1, . . . , r} are flip sets of a tuple (x1, . . . , xr), then S2 \ S1 is
also a flip set.

Example: Flip sets of

R(x1, x2, x3, x4) (1, 0, 1, 0)

(0, 0, 1, 0) {1}

(1, 0, 1, 0)

(0, 1, 1, 1) {1, 2, 4}

(1, 0, 0, 0) {3}

(0, 1, 1, 0) {1, 2}

(1, 0, 1, 1) {4}
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Flip separable

Definition: An r-ary relation R is flip separable if whenever

S1 ⊂ S2 ⊆ {1, . . . , r} are flip sets of a tuple (x1, . . . , xr), then S2 \ S1 is
also a flip set.

Example: Flip sets of

R(x1, x2, x3, x4) (1, 0, 1, 0)

(0, 0, 1, 0) {1}

(1, 0, 1, 0)

(0, 1, 1, 1) {1, 2, 4}

(1, 0, 0, 0) {3}

(0, 1, 1, 0) {1, 2}

(1, 0, 1, 1) {4}

R is not

flip separable!
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Flip separable

Definition: An r-ary relation R is flip separable if whenever

S1 ⊂ S2 ⊆ {1, . . . , r} are flip sets of a tuple (x1, . . . , xr), then S2 \ S1 is
also a flip set.

Example:

EVEN(x1, x2, x3, x4)

(0, 0, 0, 0)

(1, 1, 0, 0)

(1, 0, 1, 0)

(1, 0, 0, 1)

(0, 1, 1, 0)

(0, 1, 0, 1)

(0, 0, 1, 1)

(1, 1, 1, 1)
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Flip separable

Definition: An r-ary relation R is flip separable if whenever

S1 ⊂ S2 ⊆ {1, . . . , r} are flip sets of a tuple (x1, . . . , xr), then S2 \ S1 is
also a flip set.

Example: Flip sets of

EVEN(x1, x2, x3, x4) (1, 1, 0, 0)

(0, 0, 0, 0) {1, 2}

(1, 1, 0, 0)

(1, 0, 1, 0) {2, 3}

(1, 0, 0, 1) {2, 4}

(0, 1, 1, 0) {1, 3}

(0, 1, 0, 1) {1, 4}

(0, 0, 1, 1) {1, 2, 3, 4}

(1, 1, 1, 1) {3, 4}
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Flip separable

Definition: An r-ary relation R is flip separable if whenever

S1 ⊂ S2 ⊆ {1, . . . , r} are flip sets of a tuple (x1, . . . , xr), then S2 \ S1 is
also a flip set.

Example: Flip sets of Flip sets of

EVEN(x1, x2, x3, x4) (1, 1, 0, 0) (1, 1, 1, 1)

(0, 0, 0, 0) {1, 2} {1, 2, 3, 4}

(1, 1, 0, 0) {3, 4}

(1, 0, 1, 0) {2, 3} {2, 4}

(1, 0, 0, 1) {2, 4} {2, 3}

(0, 1, 1, 0) {1, 3} {1, 4}

(0, 1, 0, 1) {1, 4} {1, 3}

(0, 0, 1, 1) {1, 2, 3, 4} {1, 2}

(1, 1, 1, 1) {3, 4}
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Flip separable

Definition: An r-ary relation R is flip separable if whenever

S1 ⊂ S2 ⊆ {1, . . . , r} are flip sets of a tuple (x1, . . . , xr), then S2 \ S1 is
also a flip set.

Example: Flip sets of Flip sets of

EVEN(x1, x2, x3, x4) (1, 1, 0, 0) (1, 1, 1, 1)

(0, 0, 0, 0) {1, 2} {1, 2, 3, 4}

(1, 1, 0, 0) {3, 4}

(1, 0, 1, 0) {2, 3} {2, 4}

(1, 0, 0, 1) {2, 4} {2, 3}

(0, 1, 1, 0) {1, 3} {1, 4}

(0, 1, 0, 1) {1, 4} {1, 3}

(0, 0, 1, 1) {1, 2, 3, 4} {1, 2}

(1, 1, 1, 1) {3, 4}

EVEN is

flip separable!
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Flip separable

Definition: An r-ary relation R is flip separable if whenever

S1 ⊂ S2 ⊆ {1, . . . , r} are flip sets of a tuple (x1, . . . , xr), then S2 \ S1 is
also a flip set.

Example:

1-IN-4(x1, x2, x3, x4)

(1, 0, 0, 0)

(0, 1, 0, 0)

(0, 0, 1, 0)

(0, 0, 0, 1)
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Flip separable

Definition: An r-ary relation R is flip separable if whenever

S1 ⊂ S2 ⊆ {1, . . . , r} are flip sets of a tuple (x1, . . . , xr), then S2 \ S1 is
also a flip set.

Example: Flip sets of

1-IN-4(x1, x2, x3, x4) (1, 0, 0, 0)

(1, 0, 0, 0)

(0, 1, 0, 0) {1, 2}

(0, 0, 1, 0) {1, 3}

(0, 0, 0, 1) {1, 4}
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Flip separable

Definition: An r-ary relation R is flip separable if whenever

S1 ⊂ S2 ⊆ {1, . . . , r} are flip sets of a tuple (x1, . . . , xr), then S2 \ S1 is
also a flip set.

Example: Flip sets of Flip sets of

1-IN-4(x1, x2, x3, x4) (1, 0, 0, 0) (0, 1, 0, 0)

(1, 0, 0, 0) {1, 2}

(0, 1, 0, 0) {1, 2}

(0, 0, 1, 0) {1, 3} {2, 3}

(0, 0, 0, 1) {1, 4} {2, 4}
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Flip separable

Definition: An r-ary relation R is flip separable if whenever

S1 ⊂ S2 ⊆ {1, . . . , r} are flip sets of a tuple (x1, . . . , xr), then S2 \ S1 is
also a flip set.

Example: Flip sets of Flip sets of

1-IN-4(x1, x2, x3, x4) (1, 0, 0, 0) (0, 1, 0, 0)

(1, 0, 0, 0) {1, 2}

(0, 1, 0, 0) {1, 2}

(0, 0, 1, 0) {1, 3} {2, 3}

(0, 0, 0, 1) {1, 4} {2, 4}

1-IN-4 is

flip separable!
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Flip separable

Definition: An r-ary relation R is flip separable if whenever

S1 ⊂ S2 ⊆ {1, . . . , r} are flip sets of a tuple (x1, . . . , xr), then S2 \ S1 is
also a flip set.

Example:

x1 ∨ x2

(1, 0)

(0, 1)

(1, 1)
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Flip separable

Definition: An r-ary relation R is flip separable if whenever

S1 ⊂ S2 ⊆ {1, . . . , r} are flip sets of a tuple (x1, . . . , xr), then S2 \ S1 is
also a flip set.

Example: Flip sets of

x1 ∨ x2 (1, 0)

(1, 0)

(0, 1) {1, 2}

(1, 1) {2}
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Flip separable

Definition: An r-ary relation R is flip separable if whenever

S1 ⊂ S2 ⊆ {1, . . . , r} are flip sets of a tuple (x1, . . . , xr), then S2 \ S1 is
also a flip set.

Example: Flip sets of

x1 ∨ x2 (1, 0)

(1, 0)

(0, 1) {1, 2}

(1, 1) {2}

x1 ∨ x2 is not

flip separable!
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Main result

Theorem: For every finite set Γ, Γ-LOSE-WEIGHT is fixed-parameter

tractable if one of the following holds, and W[1]-hard otherwise:

Every relation can be expressed by a Horn formula.

Every relation is flip separable.

Some FPT cases:

EVEN and ODD constraints.

affine constraints.

p-IN-q constraints.

Some hard cases:

x1 ∨ x2 (= MINIMUM VERTEX

COVER)

3SAT
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Algorithm

Task: given a formula with flip separable constraints and a satisfying

assignment, decrease the weight by flipping at most k variables.

Bounded search tree algorithm:

Flip a variable with value 1 to 0 (at most n possible choices).

If a clause is not satisfied, flip one of its variables that was not yet flipped

(at most r − 1 possible choices if maximum arity is r).

Repeat until

more than k variables are flipped ⇒ terminate this branch.

every clause is satisfied ⇒ check if the satisfying assignment has
strictly smaller weight than the original assignment.
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Algorithm

Running time: After the initial flip, the search tree has size at most (r − 1)k :

≤ k

≤ r − 1
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Algorithm

Running time: After the initial flip, the search tree has size at most (r − 1)k :

≤ k

≤ r − 1

Running time is f(k, r) · nc ⇒ f ′(k) · nc for a fixed Γ.
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Algorithm

Correctness: is it true that we always find a solution if it exits?
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Algorithm

Correctness: is it true that we always find a solution if it exits?

Let X be a solution that decreases the weight most (|X | ≤ k, flipping X

gives a satisfying assignment).

X
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Algorithm

Correctness: is it true that we always find a solution if it exits?

Let X be a solution that decreases the weight most (|X | ≤ k, flipping X

gives a satisfying assignment).

There is a branch of the algorithm that flips only a subset Y ⊆ X .

X

Y
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Algorithm

Correctness: is it true that we always find a solution if it exits?

Let X be a solution that decreases the weight most (|X | ≤ k, flipping X

gives a satisfying assignment).

There is a branch of the algorithm that flips only a subset Y ⊆ X .

Flipping X \ Y is also a solution (constraints are flip separable).

If flipping Y does not decrease the weight, then flipping X \ Y decreases

the weight more than Y .

X

X\YY
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Hardness proof

Hardness proof: if Γ contains a relation that is not Horn and a relation that is

not flip separable, then local search is W[1]-hard.
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Hardness proof

Hardness proof: if Γ contains a relation that is not Horn and a relation that is

not flip separable, then local search is W[1]-hard.

Step 1: Direct proof for x ∨ y.

⇒ Given a vertex cover S and an integer k, it is W[1]-hard to decide if it is

possible to decrease the vertex cover by adding/removing at most k vertices.

⇒ Given an independent set S and an integer k, it is W[1]-hard to decide if it
is possible to increase the independent set cover by adding/removing at most

k vertices.
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Hardness proof

Hardness proof: if Γ contains a relation that is not Horn and a relation that is

not flip separable, then local search is W[1]-hard.

Step 1: Direct proof for x ∨ y.

⇒ Given a vertex cover S and an integer k, it is W[1]-hard to decide if it is

possible to decrease the vertex cover by adding/removing at most k vertices.

⇒ Given an independent set S and an integer k, it is W[1]-hard to decide if it
is possible to increase the independent set cover by adding/removing at most

k vertices.

Note: These results hold even for bipartite graphs.
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Hardness proof

Hardness proof: if Γ contains a relation that is not Horn and a relation that is

not flip separable, then local search is W[1]-hard.

Step 2: Suppose that there is a relation R ∈ Γ that is not Horn, i.e., it is not

closed under componentwise AND.
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Hardness proof

Hardness proof: if Γ contains a relation that is not Horn and a relation that is

not flip separable, then local search is W[1]-hard.

Step 2: Suppose that there is a relation R ∈ Γ that is not Horn, i.e., it is not

closed under componentwise AND.

(1, 0, 0, 1) ∈ R

(0, 1, 0, 1) ∈ R

(0, 0, 0, 1) 6∈ R
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Hardness proof

Hardness proof: if Γ contains a relation that is not Horn and a relation that is

not flip separable, then local search is W[1]-hard.

Step 2: Suppose that there is a relation R ∈ Γ that is not Horn, i.e., it is not

closed under componentwise AND.

(1, 0, 0, 1) ∈ R

(0, 1, 0, 1) ∈ R

(0, 0, 0, 1) 6∈ R

either

(1, 1, 0, 1) ∈ R

⇒ R(x, y, 0, 1) ≡ x ∨ y, we can “almost express” relation x ∨ y (DONE).

(1, 1, 0, 1) 6∈ R

⇒ R(x, y, 0, 1) ≡ x 6= y, we can “almost express” relation 6=.
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Hardness proof

Hardness proof: if Γ contains a relation that is not Horn and a relation that is

not flip separable, then local search is W[1]-hard.

Step 3: Suppose that there is a relation R ∈ Γ that is not flip separable and

we can use 6=.

Reduction from x ∨ y.

Replace each variable with 3
variables

Two states for each triple.

Changing a triple changes the

weight by 1.
6= 6=

6= 6=6=6=
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Hardness proof

Hardness proof: if Γ contains a relation that is not Horn and a relation that is

not flip separable, then local search is W[1]-hard.

Step 3: Suppose that there is a relation R ∈ Γ that is not flip separable and

we can use 6=.

Reduction from x ∨ y.

Replace each variable with 3
variables

Two states for each triple.

Changing a triple changes the

weight by 1.

6=6=6= 6=

6= 6=

0

00 11

1
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Hardness proof

Hardness proof: if Γ contains a relation that is not Horn and a relation that is

not flip separable, then local search is W[1]-hard.

Suppose there is a counterexample to the fact that R ∈ Γ is flip separable:

(0, 1, 0, 1) ∈ R

(1, 0, 0, 1) ∈ R

(1, 0, 1, 0) ∈ R

(0, 1, 1, 0) 6∈ R

6=6=6= 6=

6= 6=

0

00 11

1
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Hardness proof

Hardness proof: if Γ contains a relation that is not Horn and a relation that is

not flip separable, then local search is W[1]-hard.

Suppose there is a counterexample to the fact that R ∈ Γ is flip separable:

(0, 1, 0, 1) ∈ R

(1, 0, 0, 1) ∈ R

(1, 0, 1, 0) ∈ R

(0, 1, 1, 0) 6∈ R

We represent the edge by constraint
R(x1, x2, x4, x3). 6=6=

6=6= 6= 6=

x2

x3x1

x4

0 0

0

1

1

1
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Hardness proof

Hardness proof: if Γ contains a relation that is not Horn and a relation that is

not flip separable, then local search is W[1]-hard.

Suppose there is a counterexample to the fact that R ∈ Γ is flip separable:

(0, 1, 0, 1) ∈ R

(1, 0, 0, 1) ∈ R ⇐

(1, 0, 1, 0) ∈ R

(0, 1, 1, 0) 6∈ R

We represent the edge by constraint
R(x1, x2, x4, x3).

Flipping the first gadget is allowed. . .

6=6=6= 6=

6= 6=

x3

x2 x4

x1 1 1

00

1 1
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Hardness proof

Hardness proof: if Γ contains a relation that is not Horn and a relation that is

not flip separable, then local search is W[1]-hard.

Suppose there is a counterexample to the fact that R ∈ Γ is flip separable:

(0, 1, 0, 1) ∈ R

(1, 0, 0, 1) ∈ R

(1, 0, 1, 0) ∈ R ⇐

(0, 1, 1, 0) 6∈ R

We represent the edge by constraint
R(x1, x2, x4, x3).

Flipping the first gadget is allowed. . .

Flipping both gadgets is allowed. . .

6=6=6= 6=

6= 6=

x3

x2 x4

x1 11

10

00
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Hardness proof

Hardness proof: if Γ contains a relation that is not Horn and a relation that is

not flip separable, then local search is W[1]-hard.

Suppose there is a counterexample to the fact that R ∈ Γ is flip separable:

(0, 1, 0, 1) ∈ R

(1, 0, 0, 1) ∈ R

(1, 0, 1, 0) ∈ R

(0, 1, 1, 0) 6∈ R ⇐

We represent the edge by constraint
R(x1, x2, x4, x3).

Flipping the first gadget is allowed. . .

Flipping both gadgets is allowed. . .

But second gadget cannot be flipped!

6=6=6= 6=

6= 6=

x3

x2 x4

x1 00

11

0 0
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Main result

We have completed the complexity characterization of Γ-LOSE-WEIGHT:

Theorem: For every finite set Γ, Γ-LOSE-WEIGHT is fixed-parameter
tractable if one of the following holds, and W[1]-hard otherwise:

Every relation can be expressed by a Horn formula.

Every relation is flip separable.

But something is strange. . .
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Something strange

We have seen that local search is W[1]-hard for MINIMUM VERTEX COVER,

even if the graph is bipartite.
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Something strange

We have seen that local search is W[1]-hard for MINIMUM VERTEX COVER,

even if the graph is bipartite.

⇒ But an optimum solution can be found in polynomial time!
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Something strange

We have seen that local search is W[1]-hard for MINIMUM VERTEX COVER,

even if the graph is bipartite.

⇒ But an optimum solution can be found in polynomial time!

The relation x ∨ y ∨ z̄ is not Horn and not flip separable (for the tuple (1, 0, 1),

{2} and {1, 2} are flip sets but {1} is not), thus local search is hard.
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Something strange

We have seen that local search is W[1]-hard for MINIMUM VERTEX COVER,

even if the graph is bipartite.

⇒ But an optimum solution can be found in polynomial time!

The relation x ∨ y ∨ z̄ is not Horn and not flip separable (for the tuple (1, 0, 1),

{2} and {1, 2} are flip sets but {1} is not), thus local search is hard.

⇒ But an optimum solution (all 0 assignment) can be found in polynomial
time!
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Something strange

We have seen that local search is W[1]-hard for MINIMUM VERTEX COVER,

even if the graph is bipartite.

⇒ But an optimum solution can be found in polynomial time!

The relation x ∨ y ∨ z̄ is not Horn and not flip separable (for the tuple (1, 0, 1),

{2} and {1, 2} are flip sets but {1} is not), thus local search is hard.

⇒ But an optimum solution (all 0 assignment) can be found in polynomial
time!

Counterintuitive results: finding a local improvement is ha rd, but finding
the global optimum is easy.

We are answering the wrong question!
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Strict vs. permissive

So far, we investigated strict local search algorithms:

Input: A Γ-formula ϕ, a solution x for ϕ, and an integer k.

Task:
If there is a solution x′ of ϕ with dist(x, x′) ≤ k and
weight(x′) < weight(x), then find such an x′.
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Strict vs. permissive

So far, we investigated strict local search algorithms:

Input: A Γ-formula ϕ, a solution x for ϕ, and an integer k.

Task:
If there is a solution x′ of ϕ with dist(x, x′) ≤ k and
weight(x′) < weight(x), then find such an x′.

But a permissive local search algorithm would be equally useful:

Input: A Γ-formula ϕ, a solution x for ϕ, and an integer k.

Task:
If there is a solution x′ of ϕ with dist(x, x′) ≤ k

and weight(x′) < weight(x), then find any x′′ with

weight(x′′) < weight(x).

Our hardness result for strict local search does not rule out the possibility of a

permissive algorithm.
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Revised result

Theorem: For every finite set Γ, strict Γ-LOSE-WEIGHT is fixed-parameter

tractable if one of the following holds, and W[1]-hard otherwise:

Every relation can be expressed by a Horn formula.

Every relation is flip separable.

Theorem: For every finite set Γ, permissive Γ-LOSE-WEIGHT is

fixed-parameter tractable if one of the following holds, and W[1]-hard
otherwise:

Every relation can be expressed by a Horn formula.

Every relation is flip separable.

Every relation is 0-valid.
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Conclusions

Is it possible to efficiently search the local neighborhood?

Parameterized complexity is the natural way to study.

Might apply to YOUR problem as well!

Schaefer-style classification for decreasing the weight of a solution in
Boolean CSP.

Main new definition: flip separable relations.

Distinction between strict and permissive local search.
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