
Rooted grid minors

Daniel Marx
Computer and Automation Research Institute,

Hungarian Academy of Sciences (MTA SZTAKI)

Paul Seymour1

Princeton University, Princeton, NJ 08544

Paul Wollan2

Department of Computer Science,
University of Rome, “La Sapienza”, Rome, Italy.

February 17, 2013; revised May 25, 2014

1Supported by ONR grant N00014-10-1-0680 and NSF grant DMS-0901075.
2Partially supported by the European Research Council under the European Unions Seventh Framework

Programme (FP7/2007-2013)/ERC Grant Agreement no. 279558.



Abstract

Intuitively, a tangle of large order in a graph is a highly-connected part of the graph, and it is known
that if a graph has a tangle of large order then it has a large grid minor. Here we show that for any
k, if G has a tangle of large order and Z is a set of vertices of cardinality k that cannot be separated
from the tangle by any separation of order less than k, then G has a large grid minor containing Z,
in which the members of Z all belong to the outside of the grid.



1 Introduction

A separation of order k in a graph G is a pair (A,B) of subgraphs of G such that A ∪ B = G,
E(A ∩ B) = ∅, and |V (A ∩ B)| = k. A tangle in G of order θ ≥ 1 is a set T of separations of G, all
of order less than θ, such that

• for every separation (A,B) of order less than θ, T contains one of (A,B), (B,A)

• if (Ai, Bi) ∈ T for i = 1, 2, 3, then A1 ∪ A2 ∪ A3 6= G

• if (A,B) ∈ T then V (A) 6= V (G).

Let G,H be graphs. A pseudomodel of H in G is a map η with domain V (H) ∪ E(H), where

• for every v ∈ V (H), η(v) is a non-null subgraph of G, all pairwise vertex-disjoint

• for every edge e of H, η(e) is an edge of G, all distinct

• if e ∈ E(H) and v ∈ V (H) then e /∈ E(η(v))

• for every edge e = uv of H, if u 6= v then η(e) has one end in V (η(u)) and the other in V (η(v));
and if u = v, then η(e) is an edge of G with all ends in V (η(v)).

If in addition we have

• η(v) is connected for each v ∈ V (H)

then we call η a model of H in G. Thus, G contains H as a minor if and only if there is a model of
H in G. If η is a pseudomodel of H in G, and F ⊆ V (H), we denote

⋃
(V (η(v)) : v ∈ F )

by η(F ); and if F is a subgraph of H, η(F ) denotes the subgraph of G formed by the union of all
the subgraphs η(v) for v ∈ V (F ) and all the edges η(e) for e ∈ E(F ).

For g ≥ 1, the g × g-grid has vertex set {vi,j : 1 ≤ i, j ≤ g}, and vertices vi,j, vi′,j′ are adjacent if
|i′ − i|+ |j′ − j| = 1. We denote this graph by Gg. For 1 ≤ i ≤ g, we call {vi,1, vi,2, . . . , vi,g} a row of
the grid, and define the columns of the grid similarly.

The following was proved in [2, 3]:

1.1 For all g ≥ 1 there exists K ≥ 1 with the following property. Let T be a tangle of order at least
K in a graph G. Then there is a model η of Gg in G, such that for each (A,B) ∈ T , if η(R) ⊆ V (A)
for some row R of the grid, then (A,B) has order at least g.

Our objective here is an analogous result, for graphs with some vertices distinguished, the fol-
lowing:

1.2 For all k, g with 1 ≤ k ≤ g there exists K ≥ 1 with the following property. Let T be a tangle of
order at least K in a graph G, and let Z ⊆ V (G) with |Z| = k. Suppose that there is no separation
(A,B) ∈ T of order less than k with Z ⊆ V (A). Then there is a model η of Gg in G, such that
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• for 1 ≤ i ≤ k, V (η(vi,1)) contains a member of Z

• for each (A,B) ∈ T , if η(R) ⊆ V (A) for some row R of the grid, then (A,B) has order at least
g.

A form of this result is implicit in a paper of Bruce Reed (statement 5.5 of [1]), but what we
need is not explicitly proved there, so it seems necessary to do it again. It has as an immediate
corollary the following (the proof of which is clear):

1.3 Let H be a planar graph, drawn in the plane, and let v1, . . . , vk be distinct vertices of H, each
incident with the infinite region. Then there exists K with the following property. Let T be a tangle
of order at least K in a graph G, and let Z ⊆ V (G) with |Z| = k such that there is no separation
(A,B) ∈ T of order less than k with Z ⊆ V (A). Then there is a model η of H in G such that for
1 ≤ i ≤ k, η(vi) contains a vertex of Z.

We remark that this is best possible, in the sense that the hypotheses that H is planar and
v1, . . . , vk are all incident with a common region are both necessary for the conclusion to hold. To
see this, let G be an arbitrarily large grid, let T be the corresponding tangle, and let Z be some set
of k vertices of G all incident with the infinite region of G. If there is a model η as in 1.3 then H is
planar and v1, . . . , vk all belong to the same region of H.

2 The main proof

To prove 1.2, it is convenient to prove something a little stronger, which we explain next. Let H be
a subgraph of G. We define βG(H) to be the set of vertices of H incident with an edge of G that
does not belong to E(H), and call βG(H) the boundary of H in G. If f ∈ E(G), G/f denotes the
graph obtained from G by contracting f .

Let G be a graph and Z ⊆ V (G) with |Z| = k. Let η be a model of Gg in G. We say η is
Z-augmentable in G if there is a model η′ of Gg in G, and we can label the vertices of Gg as usual,
such that

• for 1 ≤ i ≤ g and 2 ≤ j ≤ g, η′(vi,j) = η(vi,j)

• for 1 ≤ i ≤ g, η′(vi,1) = η(vi,1) if i > k, and η′(vi,1) ⊇ η(vi,1) if i ≤ k

• for 1 ≤ i ≤ k, V (η′(vi,1)) contains a member of Z

• for each e ∈ E(Gg), η′(e) = η(e).

In this case we call η′ a Z-augmentation of η in G.

2.1 Let g, k be integers with g ≥ k ≥ 1, and let n be an integer such that n > (k + 1)(g + 2k). Let
G be a graph, and let Z ⊆ V (G) with |Z| = k. Let J be a subgraph of Gn, with boundary β, including
at least one row of Gn. Let η be a pseudomodel of J in G. Suppose that

(i) for each v ∈ V (J), either η(v) is connected and v /∈ β, or every component of η(v) contains a
vertex of Z
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(ii) there is no separation (A,B) of G of order less than k such that Z ⊆ V (A) and there is a row
R of Gn with R ⊆ V (J) and η(R) ⊆ V (B).

Then there is a subgraph H of J , isomorphic to Gg, such that Z∩V (η(H)) is null, and the restriction
of η to H is Z-augmentable.

Proof. To aid the reader’s intuition, we point out first that since η(v) meets Z for each v ∈ β, and
|Z| = k, it follows that |β| ≤ k; and since J includes a row of Gn and its boundary has cardinality
at most k, it follows that J consists of “almost all” of Gn. We will say this more precisely later. We
proceed by induction on |V (G)| + |E(G)|.

(1) We may assume that there is no separation (A,B) of G of order k with B 6= G such that
Z ⊆ V (A) and there is a row R of Gn with R ⊆ V (J) and η(R) ⊆ V (B).

For suppose that (A,B) is such a separation. Let J ′ be the subgraph of J with vertex set those
v ∈ V (J) with η(v) ∩ B non-null, and with edge set all edges e of J such that η(u) ∩ A is null for
some end u of e. (Note that if e = uv ∈ E(J) and η(u) ∩ A is null, then both ends of η(e) belong
to V (B), and so η(u) ∩ B, η(v) ∩ B are both nonempty; and hence J ′ is well-defined.) Let β′ be the
boundary of J ′ in Gn. By the assumption that η(R) ⊆ V (B), it follows that V (J ′) includes at least
one row of Gn. Let Z ′ = V (A ∩ B). Then |Z ′| = k. For each v ∈ V (J ′), let η′(v) = η(v) ∩ B (note
that η(v)∩B is non-null from the definition of V (J ′)), and for each e ∈ E(J ′), let η′(e) = η(e) (note
that η(e) ∈ E(B) from the definition of E(J ′).) Thus η′ is a pseudomodel of J ′ in B.

We claim that there is no separation (A′, B′) of A, of order less than k, with Z ⊆ V (A) and
Z ′ ⊆ V (B). For suppose that there is such a separation (A′, B′). Then (A′, B′ ∪ B) is a separation
of G of the same order (and hence of order less than k), with Z ⊆ V (A′); and moreover, the row R
satisfies R ⊆ V (J) and η(R) ⊆ V (B) ⊆ V (B′ ∪ B), contrary to hypothesis (ii) of the theorem. This
proves there is no such separation (A′, B′). Since |Z| = |Z ′| = k, there are k paths of A, pairwise
vertex-disjoint, each with one end in Z and the other in Z ′, and each with no other vertex in Z ′ (and
therefore with no vertex in B except its end in Z ′). Let us name these paths Pz′ (z′ ∈ Z ′), where
z′ ∈ Z ′ is the unique vertex of Pz′ in V (B).

We claim that there is no separation (A′, B′) of B of order less than k such that Z ′ ⊆ V (A′) and
there is a row R of Gn with R ⊆ V (J ′) and η(R) ⊆ V (B′). For suppose there is such a separation
(A′, B′). Then (A ∪ A′, B′) is a separation of G. Moreover, (A ∪ A′) ∩ B′ = A′ ∩ B′, since

A ∩ B′ ⊆ A ∩ B = Z ′ ⊆ A′.

But this contradicts hypothesis (ii) of the theorem.
Now let v ∈ V (J ′). We will show that either η′(v) is connected and v /∈ β′, or every component

of η′(v) contains a vertex of Z ′. We may assume that some component C ′ of η′(v) is disjoint from Z ′.
Let C be the component of η(v) containing C ′. If C 6= C ′, then some vertex u ∈ V (C ′) is adjacent
in C to some vertex v ∈ V (C) \ V (C ′), and consequently v /∈ V (B); but then u ∈ V (A ∩ B) = Z ′, a
contradiction. So C = C ′. If some vertex of C is in Z, then that vertex belongs to V (A) and hence
to Z ′, a contradiction. Thus no vertex of C is in Z. It follows from hypothesis (i) of the theorem
that η(v) is connected and v /∈ β. In particular, since

C ′ ⊆ η′(v) ⊆ η(v) = C = C ′
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it follows that η′(v) is connected. It remains to check that v /∈ β′. Thus, suppose v ∈ β′, and so v is
incident in Gn with some edge f = uv of Gn where f /∈ E(J ′). Since v /∈ β, it follows that f ∈ E(J)
and u ∈ V (J). Since f /∈ E(J ′), both of η(u), η(v) have non-null intersection with A. But then
V (η(v)) meets Z ′, a contradiction. This proves that for every v ∈ V (J ′), either η′(v) is connected
and v /∈ β′, or every component of η′(v) contains a vertex of Z ′.

Consequently, we may apply the inductive hypothesis with G,Z, J, η, β replaced by B,Z ′, J ′, η′, β′.
We deduce that there is a subgraph H of J ′, isomorphic to Gg, such that Z ′ ∩ V (η′(H)) is null, and
the restriction of η′ to H is Z ′-augmentable in B. Let v ∈ V (H). Since Z ′ ∩ V (η′(v)) = ∅, it follows
that η′(v) = η(v). We deduce that the restriction of η to H is Z ′-augmentable in B. Consequently
there is a model η1 of H in B, satisfying the four statements in the definition of “Z-augmentable”
(with G,Z, η, η′ replaced by B,Z ′, η′, η1). In particular for each vertex v of H, if v is the first ver-
tex of one of the first k rows of H then η(v) contains a unique vertex of Z ′, and for all other v,
V (η1(v)) ∩ Z ′ = ∅. For each v ∈ V (H), define η2(v) as follows: if V (η1(v)) ∩ Z ′ = {z′} for some
z′ ∈ Z ′, let η2(v) = η1(v) ∪ Pz′ , and if V (η1(v)) ∩ Z ′ = ∅ let η2(v) = eta1(v). It follows that η2 is a
Z-augmentation of η1 and hence of η in G, and so the theorem holds. This proves (1).

(2) We may assume that for every f ∈ E(G), there exists e ∈ E(J) such that f = η(e). Con-
sequently for each v ∈ V (J), either η(v) has only one vertex, or V (η(v)) ⊆ Z.

Let f ∈ E(G), and suppose there is no such e. Suppose first that there is no u ∈ V (J) with
f ∈ E(η(u)). It follows that η is a pseudomodel of J in G \ f . By (1), hypothesis (ii) of the theorem
holds for G \ f, Z, J, η, β; and the other hypothesis holds trivially. Thus from the inductive hypoth-
esis, the theorem holds for G \ f, Z, J, η, β and hence for G,Z, J, η, β. We may therefore assume
that there exists u ∈ V (J) with f ∈ E(η(u)). If f is a loop or both ends of f belong to Z, define
η′(u) = η(u) \ f , and η′(v) = η(v) for every other vertex v of J ; then η′ is a pseudomodel of J in
G \ f , and again the result follows from the inductive hypothesis. Thus we may assume that f is
not a loop and some end of f does not belong to Z. Let f = ab say, and let c be the vertex of
G/f formed by identifying a, b under contraction. Define η′(u) = η(u)/f , and η′(v) = η(v) for every
other vertex v of J ; then η′ is a pseudomodel of J in G/f . Let Z ′ be the set of vertices z′ of G/f
such that either z′ ∈ Z and z′ 6= a, b, or z′ = c and one of a, b ∈ Z. Then |Z ′| = |Z| = k since
not both a, b ∈ Z. Suppose that there is a separation (A′, B′) of G/f of order less than k such that
Z ′ ⊆ V (A′) and there is a row R of Gn with R ⊆ V (J) and η′(R) ⊆ V (B). If c /∈ V (A′) let A = A′,
and if c ∈ A′ let A be the subgraph of G with f ∈ E(A) such that A/f = A′; and define B similarly.
Then (A,B) is a separation of G, of order at most one more than the order of (A′, B′), and hence
at most k. Since Z ′ ⊆ V (A′) and |Z ′| = k, it follows that Z ′ 6⊆ V (B′), and so V (B′) 6= V (G′); and
therefore V (B) 6= V (G). But Z ⊆ V (A), and by (1) this is impossible. It follows that there is no
such (A′, B′); and so the result follows from the inductive hypothesis. This proves the first assertion
of (2), and the second follows.

Now let us label the vertices of Gn as usual. Let Z ′ be the set of all vertices v of Gn such that
Z ∩ V (η(v)) 6= ∅. Since |Z| = k it follows that |Z ′| ≤ k, and β ⊆ Z ′ from hypothesis (i).

(3) There is a subgraph H0 of J , isomorphic to Gg+2k, such that every row of Gn that intersects
V (H0) is a subset of V (J) \ Z ′.

4



From the choice of n, there are k + 1 subgraphs of Gn, each isomorphic to Gg+2k, such that no
row of Gn meets more than one of them. Consequently there is a subgraph H0 of Gn, isomorphic to
Gg+2k, such that no row of Gn meets both V (H0) and Z ′. Let H ′ be the subgraph of Gn induced on
the union of the rows of Gn that meet V (H0). We claim that every vertex of H ′ belongs to J . For
suppose not; then none of them belong to J , since H ′ is connected and none of its vertices belong
to β ⊆ Z ′. Since there is a row R of Gn with R ⊆ V (J), it follows that every column of Gn meets
both V (J) and V (H ′), and therefore meets β and hence Z ′. But |Z ′| ≤ k < n, a contradiction. This
proves (3).

Since V (H0)∩Z ′ = ∅, (2) implies that |V (η(v))| = 1 for each v ∈ V (H0). Choose i0, j0 such that

V (H0) = {vi,j : i − i0, j − j0 ∈ {−k, . . . , k + g − 1}}

Let H be the subgraph of H0 induced on the vertex set

{vi,j : i − i0, j − j0 ∈ {0, 1, . . . , g − 1}}.

and let
L = {vi,j0 : i − i0 ∈ {0, 1, . . . , k − 1}}.

Thus H is isomorphic to Gg, and L is the set of first vertices of the first k rows of H. Let
G∗ = G \ η(V (H) \ L). We may assume (for a contradiction) that

(4) There is a separation (A,B) of G∗ of order less than k, such that Z ⊆ V (A) and η(L) ⊆ V (B).

For if not, then since |η(L)| = k, by Menger’s theorem there are k vertex-disjoint paths Pv (v ∈ L)
of G∗ between η(L) and Z, where for each v ∈ L, the unique vertex of η(v) belongs to Pv . For each
v ∈ V (H), let η′(v) = η(v) if v /∈ L, and η′(v) = η(v) ∪ Pv if v ∈ L. Let η(e) = η(e) for each edge e
of H. Then η′ is a Z-augmentation of H, and the theorem holds. This proves (4).

Let X = V (A ∩ B), and let

A′ = {v ∈ V (J) : η(v) ∩ V (A) 6= ∅}

B′ = {v ∈ V (J) : η(v) ∩ V (B) 6= ∅}

X ′ = {v ∈ V (J) : η(v) ∩ X 6= ∅}.

(5) The following hold:

• If v ∈ A′, then every component of η(v) contains a vertex of V (A).

• If v ∈ B′ \ A′, then η(v) is connected.

• A′ ∩ B′ = X ′.

• If a′ ∈ A′ \ B′ and b′ ∈ B′ \ A′ then a′, b′ are not adjacent in J .

• If C is a connected subgraph of Gn disjoint from X ′∪(V (H)\L) and with non-empty intersection
with B′ then C is a subgraph of J and V (C) ⊆ B′ \ A′.
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For the first bullet, let v ∈ A′; the assertion is true if η(v) is connected, and otherwise every
component of η(v) contains a vertex of Z ⊆ V (A) as required. For the second bullet, let v ∈ B′ \A′;
then Z ∩ η(v) = ∅, and so η(v) is connected. For the third bullet, clearly X ′ ⊆ A′ ∩ B′. For the
converse, let v ∈ A′ ∩ B′, and choose b ∈ V (B) ∩ η(v). By the first bullet, the component of η(v)
containing b has a vertex in V (A), and therefore a vertex in X, since every path between V (A), V (B)
in G∗ contains a vertex of X; and therefore v ∈ X ′.

For the fourth bullet, suppose that a′ ∈ A′ \ B′ and b′ ∈ B′ \ A′ are adjacent in J , joined by an
edge f ′. Let η(f ′) = f say; then f has an end in η(a′) and an end in η(b′). Let C be the component
of η(a′) containing an end of f . By the first two bullets, the subgraph formed by the union of C,
η(b′), and f is connected, and since it meets both V (A) and V (B), it also meets X, and so one of
a′, b′ ∈ X ′, contrary to the third bullet.

Finally, for the fifth bullet, let C be a connected subgraph of Gn disjoint from X ′ ∪ (V (H) \ L)
and with non-empty intersection with B′. If the claim does not hold, then since V (C) ∩A′ ∩B′ = ∅
(by the third bullet), there are adjacent vertices a′, b′ of C with b′ ∈ B′ \ A′ and

a′ ∈ (A′ \ B′) ∪ (V (J) \ (A′ ∪ B′)) ∪ (V (Gn) \ V (J)).

But

• a′ /∈ A′ \ B′ by the fourth bullet;

• a′ /∈ V (J) \ (A′ ∪B′), since V (J) \ (A′ ∪B′) = V (H) \L and C is disjoint from V (H) \L; and

• a′ /∈ V (Gn) \ V (J), since b′ /∈ A′ ⊇ Z ′ ⊇ β.

This is a contradiction, and so completes the proof of (5).

For i0 ≤ i ≤ i0 + k − 1, let Ri be the ith row of Gn, that is, the set

{vi,j : 1 ≤ j ≤ n},

and let Qi be the subgraph of Gn induced on

{vi,j : 1 ≤ j ≤ j0}.

Thus each Qi is a connected subgraph of Gn containing a vertex of L but disjoint from V (H) \ L.
Since |X ′| < k, there exists r with i0 ≤ r ≤ i0 + k − 1 such that Rr ∩ X ′ = ∅, and in particular
V (Qr) ∩ X ′ = ∅. Since L ⊆ B′, it follows from the fifth bullet of (5) that Qr ⊆ B′, that is, vr,j ∈ B′

for 1 ≤ j ≤ j0.
For 1 ≤ s ≤ k, let Ss be the set of all vi,j where (i, j) belongs to

{(i, j0 − k + s − 1) : i0 − k + s − 1 ≤ i ≤ i0 + k + g − s}

∪{(i0 − k + s − 1, j) : j0 − k + s − 1 ≤ j ≤ j0 + k + g − s}

∪{(i, j0 + k + g − s) : i0 − k + s − 1 ≤ i ≤ i0 + k + g − s}

∪{(i0 + k + g − s, j) : j0 − k + s − 1 ≤ j ≤ j0 + k + g − s}.

Thus, for 1 ≤ s ≤ k, Ss is the vertex set of a cycle of H0 “surrounding” H; and the sets S1, . . . , Sk

are pairwise disjoint and each is disjoint from V (H). Since |X ′| < k, there exists s with 1 ≤ s ≤ k
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such that Ss ∩X ′ = ∅. Since vr,j0−k+s−1 ∈ B′∩Ss it follows from the fifth bullet of (5) that Ss ⊆ B′.

(6) There is a path of G between Z and η(vr,j0) disjoint from X.

Suppose first that Rr ∩ Z ′ 6= ∅, and let P be a minimal subpath of Gn between Z ′ and vr,j0 with
V (P ) ⊆ Rr. It follows that no vertex of P except possibly one end belongs to β, since β ⊆ Z ′; and
so P is a path of J , and η(v) is defined for every vertex v of P , and therefore the desired path can
be chosen in G|η(P ). We may therefore assume that Rr ∩Z ′ = ∅, and so Rr ⊆ V (J). By hypothesis,
there is no separation (C,D) of G of order less than k such that Z ⊆ V (C) and V (D) includes η(Rr).
In particular, since |X| < k, there is a path T of G \ X between Z and η(Rr). But then the union
of T and G|η(Rr) includes the required path. This proves (6).

Let Y ′ be the union of Ss+1, . . . , Sk and V (H); that is, the set of vertices of Gn “surrounded” by
Ss. By (6), there is a minimal path Q of G \ X between Z and η(Y ′); let its ends be z ∈ Z and
y ∈ η(Y ′). It follows that no vertex of Q \ y is in η(V (H) \ L), and hence Q \ y is a path of G∗.
Choose y′ ∈ Y ′ with y ∈ V (η(y′)). Let x be the neighbour of y in Q, and let x ∈ η(x′). From (2),
the edge xy of G equals η(f ′) for some edge f ′ of J incident with x′, y′, and since x′ /∈ Y ′, it follows
that x′ ∈ Ss. Consequently Q \ y is a path of G∗ between Z and η(Ss) disjoint from X, which is
impossible since (A,B) is a separation of G∗, and η(Ss) ⊆ B. Thus there is no (A,B) as in (4). This
proves 2.1.

Finally, let us deduce 1.2, which we restate:

2.2 For all k, g with 1 ≤ k ≤ g there exists K ≥ 1 with the following property. Let T be a tangle of
order at least K in a graph G, and let Z ⊆ V (G) with |Z| = k. Suppose that there is no separation
(A,B) ∈ T of order less than k with Z ⊆ V (A). Then there is a model η of Gg in G, such that

• for 1 ≤ i ≤ k, V (η(vi,1)) contains a member of Z

• for each (A,B) ∈ T , if η(R) ⊆ V (A) for some row R of the grid, then (A,B) has order at
least g.

Proof. Let n be as in 2.1. Choose K to satisfy 1.1 (with g replaced by n.) We claim that this
choice of K satisfies 2.2. For let T be a tangle of order at least K in a graph G, and let Z ⊆ V (G)
with |Z| = k. Suppose that there is no separation (A,B) ∈ T of order less than k with Z ⊆ V (A).
By 1.1 there is a model η of Gn in G, such that for each (A,B) ∈ T , if η(R) ⊆ V (A) for some row R
of Gn, then (A,B) has order at least n.

(1) There is no separation (A,B) of G of order less than k such that Z ⊆ V (A) and there is a
row R of Gn with R ⊆ V (J) and η(R) ⊆ V (B).

For suppose that (A,B) is such a separation. Since k ≤ n ≤ K, it follows that one of (A,B), (B,A) ∈
T . But there is no separation (A,B) ∈ T of order less than k with Z ⊆ V (A), so (A,B) /∈ T ; and
for each (C,D) ∈ T , if η(R) ⊆ V (C) for some row R of Gn, then (C,D) has order at least n, so
(B,A) /∈ T , a contradiction. This proves (1).
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From (1) and 2.1, taking J = Gn, we deduce that there is a subgraph H of Gn, isomorphic to Gg,
such that the restriction of η to H is Z-augmentable.

(2) For each (A,B) ∈ T , if η(R) ⊆ V (A) for some row R of Gg, then (A,B) has order at least
g.

For since η(R) ⊆ V (A), and J is a subgraph of Gn, it follows that there are at least g columns
C of Gn such that C ∩ V (A) 6= ∅. If each of them contains a vertex of A ∩ B then |A ∩ B| ≥ g as
required, and otherwise some column C of Gn is included in V (A). But then every row of Gn contains
a vertex in V (A); if they all meet A∩B then |A∩B| ≥ n ≥ g as required, and otherwise some row of
Gn is included in V (A). But then from the choice of η, (A,B) has order at least n ≥ g. This proves
(2).

This proves 2.2.
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