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Abstract. We investigate the parameterized complexity of Maximum

Independent Set and Dominating Set restricted to certain geometric
graphs. We show that Dominating Set is W[1]-hard for the intersection
graphs of unit squares, unit disks, and line segments. For Maximum

Independent Set, we show that the problem is W[1]-complete for unit
segments, but fixed-parameter tractable if the segments are axis-parallel.

1 Introduction

For a set V of geometric objects, the intersection graph of V is a graph with
vertex set V where two vertices are connected if and only if the corresponding
two objects have non-empty intersection. Intersection graphs of disks, rectangles,
line segments, and other objects arise in applications such as facility location [5],
frequency assignment [3], and map labeling [1].

In this paper we investigate the parameterized complexity of Maximum In-

dependent Set and Dominating Set restricted to certain geometric graphs.
Both of these problems are W[1]-hard on general graphs, but fixed-parameter
tractable when restricted to planar graphs. Geometric intersection graphs are
in some sense intermediate between these two classes: they still have lot of ge-
ometric structure that might be used in algorithms, but we lose some of the
simplicity of planar graphs. Therefore, it is an interesting question to investigate
the complexity of these problems on different types of geometric graphs.

This line of research was pursued in [4], where Maximum Independent Set

was proved to be W[1]-complete for unit disk and unit square graphs. Here we
extend the results by considering the intersection graphs of line segments and
the Dominating Set problem.

In Section 2, we introduce a general framework that can be used to prove
W[1]-hardness for geometric problems. We give a semi-formal definition of what
properties the gadgets of the reduction have to satisfy; in later sections the only
thing we have to do for each W[1]-hardness proof is to define the problem-specific
gadgets and verify the required properties.

In Section 3, we show that Dominating Set is W[1]-hard for unit disk
graphs and unit square graphs. In general, Dominating Set is W[2]-complete,



but it turns out that Dominating Set is in W[1] (hence W[1]-complete) for unit
square graphs. As far as we know, this is the first example when Dominating

Set restricted to some class of graphs is not W[2]-complete, but not fixed-
parameter tractable either. Section 4 shows that Dominating Set is W[1]-
complete also for the intersection graphs of axis-parallel line segments.

Section 5 considers the Maximum Independent Set problem for the in-
tersection graphs of line segments. If the segments are axis-parallel (or more
generally, if they belong to at most d different directions), then the problem
is fixed-parameter tractable. However, if there is no restriction on the number
of different directions, then the problem becomes W[1]-complete, even if every
segment has the same length.

2 General Framework

All the W[1]-hardness proofs in the paper follow the same general framework. In
this section we present a general reduction technique that can be used to prove
hardness of a geometric or planar problem. The reduction creates an instance
that consists of some number of gadgets, and connections between gadgets. The
exact details of the gadgets and the connections are problem specific, and will
be given in later sections separately for each problem. However, we show here
that if for a particular problem there is a gadget satisfying certain properties,
then the problem is W[1]-hard.

The W[1]-hardness proof is by parameterized reduction from Maximum

Clique. Given a graph G and an integer k, it has to be decided if G has a
clique of size k. For convenience, we assume that G has n vertices and n edges.
The set of vertices and the set of edges are identified with the set {1, 2, . . . , n}.

The constructed instance contains k2 copies of the gadget, arranged in k
rows and k columns. The gadget in row i and column j will be denoted by Gi,j .
Adjacent gadgets in the same row are connected by a horizontal connection and
adjacent gadgets in the same column are connected by a vertical connection.

Let ι : {1, . . . , n2} → {1, . . . , n} × {1, . . . , n} be an arbitrary one-to-one
mapping, and let ι(s) = (ι1(s), ι2(s)) for every s. For technical reasons, in this
paper we always use the mapping defined by s = (ι1(s)−1)n+ ι2(s). The crucial
property of the gadget is that in every optimum solution it represents an integer
number between 1 ≤ s ≤ n2, which can be also interpreted as the pair ι(s).
The role of the horizontal connections is to ensure that if the values of the two
gadgets are s and s′, then ι1(s) = ι1(s

′), i.e., they agree in the first component.
Therefore, in an optimum solution the same value vi will be represented by
the first component of every gadget in row i. Similarly, the vertical connections
ensure that if s and s′ are the values of two adjacent gadgets in a column, then
ι2(s) = ι2(s

′). Thus the second component has the same value v′j in column j.
Now we encode the graph G into the instance by restricting certain gadgets.

Restricting a gadget to the subset S ⊆ {1, 2, . . . , n2} means that the gadget is
modified such that it can represent values only from S. For every 1 ≤ i ≤ k,
we restrict the gadget Gi,i to the set {s : ι1(s) = ι2(s)}. This ensures that the



first component in row i is the same as the second component in column i, i.e.,
vi = v′i for every 1 ≤ i ≤ k. To encode the structure of the graph, we restrict Gi,j

(for every i 6= j) to the set {s : ι1(s) and ι2(s) are adjacent vertices}. It is clear
that if every gadget has a value that respects these restrictions, then v1, v2, . . . ,
vk are all distinct and they form a clique of size k: if vi and vj are not adjacent,
then the value (vi, vj) = (vi, v

′

j) does not respect the restriction on gadget Gi,j .
On the other hand, if v1, v2, . . . , vk is a clique of size k, then we can assign
value ι−1((vi, vj)) to gadget Gi,j . This assignment respects the restrictions on
the gadgets and the connections.

In summary, the gadgets have to satisfy the following requirements:

Definition 1 (Matrix Gadget). A gadget satisfies the following properties:

1. (The gadget) In every solution of the constructed instance, each gadget

represents a number between 1 and n2.

2. (Restriction) The gadget can be restricted to a set ∅ 6= S ⊆ {1, . . . , n2}
such that in every solution the gadget represents a number in S.

3. (Horizontal connection) If two gadgets are connected by a horizontal con-

nection, then the values they represent agree in the first component.

4. (Vertical connection) If two gadgets are connected by a vertical connec-

tion, then the values they represent agree in the second component.

5. (Constructing a solution) If it is possible to assign values to the gadgets

such that this assignment respects the restrictions and respects the connec-

tions, then the constructed instance has a solution.

The first four requirements ensure that if the instance described above has a
solution, then G has a clique of size k. The other direction of the reduction
follows from the last requirement: if v1, . . . , vk is a clique of size k, then giving
the value (vi, vj) to gadget Gi,j respects the restrictions and the connections,
thus there is a solution.

3 Dominating Set for Squares and Disks

The first problem we consider is Dominating Set: given a graph G, the task
is to find a set S of k vertices such that each vertex of the graph is either in S
or is a neighbor of a member of S. In this section we prove hardness results for
the problem in the case of unit disk graphs and unit square graphs.

Theorem 1. Dominating Set is W[1]-hard for axis-parallel unit squares.

Proof. The proof uses the framework of Section 2. Let ε < 1/3n2. In this proof it
does not matter if the squares are open or closed. In the constructed instance of
Dominating Set the lower left corner of each square is of the form (i+αε, j+βε),
where i and j are integers, and −n ≤ α, β ≤ n. If two squares have the same i,
j values, then they belong to the same block; the blocks form a partition of the
squares. If the lower left corner of a square S is (i + αε, j +βε) then α (resp., β)
is the horizontal (resp., vertical) offset of S, and we set offset(S) = (α, β).
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Fig. 1. The gadget used in the proof of Theorem 1.

The gadget. The gadget used in the reduction is shown in Figure 1. It
consists of 16 blocks X1, . . . , X8, Y1, . . . , Y8. Each block Xi contains n2 squares
Xi,1, . . . , Xi,n2 , while each block Yi contains n2 + 1 squares Yi,0, . . . , Yi,n2 . The
offsets of the squares are defined as follows:

offset(X1,j) = (j,−ι2(j)) offset(Y1,j) = (j + 0.5, j + 0.5)

offset(X2,j) = (j, ι2(j)) offset(Y2,j) = (j + 0.5,−n)

offset(X3,j) = (−ι1(j),−j) offset(Y3,j) = (j + 0.5,−j − 0.5)

offset(X4,j) = (ι1(j),−j) offset(Y4,j) = (−n,−j − 0.5)

offset(X5,j) = (−j, ι2(j)) offset(Y5,j) = (−j − 0.5,−j − 0.5)

offset(X6,j) = (−j,−ι2(j)) offset(Y6,j) = (−j − 0.5, n)

offset(X7,j) = (ι1(j), j) offset(Y7,j) = (−j − 0.5, j + 0.5)

offset(X8,j) = (−ι1(j), j) offset(Y8,j) = (n, j + 0.5)

Observe that two squares can intersect only if they belong to the same or
adjacent blocks. For example, the squares in block X2 have positive vertical
offsets and the squares in X3 have negative vertical offset, hence they do not
intersect. The crucial property of the construction is that two squares Xi,j1 ,
Xi+1,j2 dominate every square of Yi+1 if and only if j1 ≥ j2. This follows from
the fact that Xi,j1 dominates exactly Yi+1,0, . . . , Yi+1,j1−1 from block Yi+1 and
Xi+1,j2 dominates exactly Yi+1,j2 , . . . , Yi+1,n2 from block Yi+1.

Lemma 1. Assume that a gadget is part of an instance such that none of the

blocks Yi are intersected by squares outside the gadget. If there is a dominating

set D of the instance that contains exactly 8 squares from the gadget, then there

is a dominating set D′ with |D′| ≤ |D|, and there is an integer 1 ≤ j ≤ n2 such

that D′ contains exactly the squares X1,j, . . . , X8,j from the gadget.

Proof. If D contains no square from any Xi, then it has to contain at least one
square from each Yi. Remove these squares, and add the squares X1,1, . . . , X8,1

to D instead. This does not increase the size of D, and every square of the gadget
will be dominated. Furthermore, as a square from Yi cannot dominate anything
outside the gadget, the modified set is also a dominating set, and we are done.

We show that D′ can be chosen such that it contains exactly one square from
each Xi, and consequently, it contains no squares from the blocks Yi. Observe
that the squares in Yi cannot be all dominated by squares only from Xi−1 or by
squares only from Xi (the indices of the blocks are modulo 8). This implies that
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Fig. 2. The horizontal (a) and vertical (b) connections used in the proof of Theorem 1.

if D contains no square from Yi, then D contains at least one square from Xi+1

and at least one square from Xi−1. Assume that D ∩ Xi = ∅ for some i, but
D ∩ (X1 ∪ · · · ∪X8) is maximal. Since D contains a square from some Xi, there
are integers a, b such that D ∩ Xa 6= ∅, D ∩ Xb 6= ∅, and D ∩ Xi = ∅ for every
a < i < b. Therefore, D ∩ Yi 6= ∅ for every a < i ≤ b. Let Xa,j be a member of
Xa ∩D. Set D′ := (D \ (Ya+1∪· · ·∪Yb)∪Xa+1,j ∪· · ·∪Xb,j . Clearly, |D′| ≤ |D|,
and D is also a dominating set: the squares in Yi are dominated by Xi−1,j and
Xi,j for every a < i ≤ b. This contradicts the maximality of D∩ (X1 ∪ · · · ∪X8).

Assume that D contains squares X1,j1 , . . . , X8,j8 , this means that D contains
no other square from the gadget. As we have observed above, the squares in Yi

are dominated only if ji−1 ≥ ji. This gives the chain of inequalities j1 ≥ j2 ≥
· · · ≥ j8 ≥ j1, thus all these values are the same integer j. Thus D contains
exactly the squares X1,j , . . . , X8,j from the gadget. ut

The constructed instance contains k2 copies of the gadget, and it will be true
that gadgets are connected to the rest of the instance only via the Xi blocks.
The new parameter (the size of the dominating set to be found) is k′ = 8k2. At
least 8 squares are required to dominate the Yi blocks of a gadget, thus every
solution has to contain exactly 8 squares from each gadget. In this case, Lemma 1
defines a number j for each gadget, which will be called the value of the gadget.
Therefore, Property 1 of Definition 1 is satisfied.

Restriction. Let S ⊆ {1, 2, . . . , n2} be an arbitrary set. We restrict the
gadget by removing every square Xi,j for 1 ≤ i ≤ 8 and j 6∈ S. It can be checked
that Lemma 1 remains true for gadgets modified this way. Obviously, if X1,j is
removed, then the gadget cannot represent value j, thus the value represented
by the gadget will be a member of S.

Horizontal connections. The horizontal connections required by Prop-
erty 3 are shown in Figure 2a. We add a block A that is adjacent to block X3

of the first gadget and block X8 of the second, and we add a block B adjacent
to X4 of the first gadget and X7 of the second. Blocks A and B contain n + 1



squares each: square Aj has offset (−j − 0.5,−n2 − 1) and square Bj has offset
(j + 0.5, n2 + 1) (0 ≤ j ≤ n). These blocks do not intersect the Yi blocks.

Assume that a dominating set does not contain any of the squares from A
and B, it contains exactly the squares X1,j , . . . , X8,j from the first gadget, and
it contains exactly the squares X1,j′ , . . . , X8,j′ from the second gadget. We claim
that ι1(j) = ι1(j

′). If ι1(j) > ι1(j
′), then X3,j of the first gadget dominates the

squares Aι1(j), . . . , An2 and X8,j of the second gadget dominates squares A0,
. . . , Aι1(j′)−1, thus Aι1(j′) is not dominated. If ι1(j) < ι1(j

′), then no square
dominates Bι1(j) of block B. Thus ι1(j) = ι1(j

′), and the values of the two
gadgets agree in the first component.

Vertical connections. Vertical connections are defined analogously (see
Figure 2b). Square Cj of block C has offsets (n2 + 1,−ι2(j)) and square Dj has
offsets (−n2 − 1, ι2(j)) (0 ≤ j ≤ n).

Constructing a solution. It is straightforward to see that if every gadget
has a correct value, then a dominating set of size 8k2 can be found: if the value
of a gadget is j, then select the 8 squares X1,j , . . . , X8,j from the gadget. ut

The same reduction shows hardness for unit disks: it can be shown that if
each square in the constructed instance is replaced by a disk and ε is sufficiently
small, then the intersection structure does not change. Details omitted.

Theorem 2. Maximum independent set is W[1]-hard for the intersection graphs

of unit disks in the plane. ut

For general graphs Dominating Set set is W[2]-complete, therefore Theo-
rem 1 leaves open the question whether the problem is W[1]-complete or W[2]-
complete when restricted to these graph classes. For unit squares (and more
generally, for axis-parallel rectangles) we show that dominating set is in W[1].
This is the first example when a restriction of dominating set is easier than the
general problem, but it is not fixed-parameter tractable.

Theorem 3. Dominating Set is in W[1] for the intersection graphs of axis-

parallel rectangles.

Proof. We prove membership in W[1] by reducing Dominating Set to Short

Turing Machine Computation. We construct a Turing machine (with un-
bounded nondeterminism) that accepts the empty string in k′ steps if and only
if there is a dominating set of size k. Henceforth L(S) (resp., R(S)) denotes
the x-coordinate of the left (resp., right) edge of open rectangle S, and T (S)
(resp., B(S)) denotes the y-coordinate of the top (resp., bottom) edge.

The tape alphabet of the Turing machine consists of one symbol for each
rectangle in the instance plus two special symbols 0 and 1. In the fist k steps the
machine nondeterministically writes k symbols x1, . . . , xk on the tape, which is a
guess at a size k dominating set. Next 4k2 symbols h1,1, . . . , hk,k, h′

1,1, . . . , h′

k,k,
v1,1, . . . , vk,k, v′1,1, . . . , v′k,k are written, each of these symbols is either 0 or 1.
The intended meaning of hi,j is the following: it is 1 if and only if R(xi) ≤ L(xj).
Similarly, we will interpret h′

i,j = 1 as R(xi) ≤ R(xj). The symbols vi,j and v′i,j
have similar meaning, but with B and T instead of L and R.



The rest of the computation is deterministic. First we check the consistency
of the symbols hi,j with the symbols xi, xj . For each 1 ≤ i, j ≤ k, we make a
full scan of the tape, and store in the internal state of the machine the symbols
hi,j , xi, xj . If these symbols are not consistent (e.g., R(xi) > L(xj) but hi,j = 1)
then the machine rejects. The length of the tape is k + 4k2, and we repeat the
check for k2 pairs i, j, thus the checks take a constant number of steps.

For technical reasons we add four dummy rectangles DL, DR, DT , DB. The
rectangle DL is to the left of the other rectangles, i.e., R(DL) ≤ L(S) for every
other rectangle S. Similarly, the rectangles DR, DT , DB are to the right, top,
bottom of the other rectangles, respectively. Instead of testing whether the k
rectangles x1, . . . , xk form a dominating set, we will test whether x1, . . . , xk,
DL, DR, DT , DB are dominating. Clearly, the answer is the same.

We say that the k + 4 selected rectangles contain an invalid window if there
are four selected rectangles SL, SR, ST , SB with the following properties.

– R(SL) ≤ L(SR) and T (SB) ≤ B(ST ). Let A be the rectangle with left edge
R(SL), right edge L(SR), bottom edge T (SB), top edge B(ST ).

– There is no selected rectangle that intersects A.
– There is a rectangle S that is completely contained in A.

If the selected rectangles contain an invalid window, then they are not dominat-
ing since rectangle S is not dominated. On the other hand, if there is a rectangle
S which is not dominated, then the selected squares contain an invalid window:
by extending S into the four directions until we reach the edge of some selected
rectangles, we obtain the window A. The four rectangles that stopped us from
further extending A can be used as SL, SR, ST , SB.

In the rest of the computation, the Turing machine checks whether the se-
lected rectangles contain an invalid window. For each quadruple iL, iR, iT , iB
it has to be checked whether the rectangles xiL

, xiR
, xiT

, xiB
form an invalid

window. Using the symbols hi,j etc. on the tape, it can be tested in a constant
number of steps whether a selected rectangle intersects the window determined
by these four rectangles. If not, then the machine reads into its internal state the
four values xiL

, xiR
, xiT

, xiB
, and rejects if there is a rectangle in the window

determined by these squares. There are (k + 4)4 possible quadruples and each
check can be done in a constant number of steps; therefore, the whole computa-
tion takes a constant number k′ of steps. ut

4 Dominating Set for Line Segments

In this section we use the framework of Section 2 to prove that Dominating

Set is W[1]-complete also for axis-parallel line segments.

Theorem 4. Dominating Set is W[1]-complete for axis-parallel line segments.

Proof. Membership in W[1] follows from Theorem 3. Therefore, only W[1]-
hardness has to be proven here. In the constructed instance of Dominating
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Fig. 3. The gadget used in the proof of Theorem 4.

Set, there are k2 gadgets, and the new parameter is k′ = 12k2. Every domi-
nating set has to contain at least 12 segments from each gadget, hence every
solution contains exactly 12 segments from each gadget.

The gadget. The gadget satisfying the requirements of Definition 1 is shown
in Figure 3. Unless stated otherwise, the segments are open in this proof. The
line segments in the gadget can be dominated only by at least 12 segments, since
a segment can dominate at most one of a′, b′, . . . , `′. Furthermore, we claim that
there are exactly n2 dominating sets of size 12: they are of the form as, bs, . . . , `s

for 1 ≤ s ≤ n2. First, it is easy to see that a size 12 dominating set has to contain
exactly one segment from a1, . . . , an2 , exactly one segment from b1, . . . , bn2 ,
etc. For example, if none of a1, . . . , an2 is selected, then we have to select both
a′ and a′′, which makes the size of the dominating set greater than 12. Assume
that asa

, bsb
, . . . , `s`

is a dominating set. Segment asa
dominates b1, b2, . . . ,

bsa−1 (see Fig. 3) and csc
dominates bsc+1, . . . , bn2 . Therefore, if sc > sa then

neither bsa
nor bsc

are dominated. At most one of these two segments can be
selected, thus there would be a segment that is neither selected nor dominated.
We can conclude that sc ≤ sa. Moreover, it is also true that if sc = sa, then
neither asa

nor csc
dominates bsa

= bsc
, hence sb = sa = sc follows. By a similar

argument, se ≤ sc with equality only if sc = sd = se. Continuing further we
obtain sa ≥ sc ≥ se ≥ sg ≥ si ≥ sk ≥ sa, thus there are equalities throughout,
implying sa = sb = sc = · · · = s`, as required. This means that the gadget
represents a value between 1 and n2 in every solution.
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Fig. 4. Connecting two gadgets in the same row (a) or column (b).

Restriction. Restricting a gadget to set S is implemented by removing the
segments as, bs, . . . , `s from the gadget for every s 6∈ S.

Horizontal connections. Figure 4a shows how to connect two adjacent
gadgets by a horizontal connection. We add 2n new segments x1, . . . , xn, y1,
. . . , yn. The right end point of hi (resp., ji) in the first gadget is modified to be
its intersection with xι1(i) (resp., yι1(i)), and this end point is set to be a closed
end point. The left end point of di and bi are similarly modified, but these end
points are set to be open. Assume that there is a dominating set that contains
12 segments from each of the gadgets and contains none of the segments x1, . . . ,
xn, y1, . . . , yn. Furthermore, assume that the pair i = (ι1(i), ι2(i)) is the value
of the first gadget and the i′ = (ι1(i

′), ι2(i
′)) is the value of the second gadget.

In particular, this means that hi, ji are selected in the first gadget, and bi′ , di′

are selected in the second. Now if ι1(i) < ι1(i
′), then xι1(i′) is not dominated,

and if ι1(i) > ι1(i
′), then yι1(i′) is not dominated, thus ι1(i) = ι1(i

′) follows.
Vertical connections. Done analogously, see Figure 4b. ut

5 Maximum Independent Set for Line Segments

In this section we turn our attention to the Maximum Independent Set prob-
lem. The problem is fixed-parameter tractable for axis-parallel line segments, or
more generally, if the lines have only a fixed number of different directions:

Theorem 5. Maximum Independent Set for the intersection graphs of line

segments in the plane can be solved in 2O(k2d2 log d)n log n time if the lines are

allowed to have at most d different directions.

Proof. Let L1, L2, . . . , Ld be the partition of the line segments according to their
directions. The segments in Li lie on ni parallel lines `i,1, . . . , `i,ni

. If ni ≥ k, then
we can select k parallel segments from Li that are on different lines, hence we



have an independent set of size k. Thus it can be assumed that ni < k for every i.
Therefore, the n1+n2+· · ·+nd lines have at most

(

d
2

)

(k−1)2 intersection points,
which will be called the special points. Apart from the special points, every point
in the plane is covered by segments of at most one direction only. In a solution a
special point is either not covered, or covered by a segment in one of L1, L2, . . . ,

Ld. We try all d(d

2)(k−1)2 possibilities: each special point is assigned to one of the d
directions. After deleting the segments that cross a special point from the wrong
direction, we get d independent problems: segments with different directions
do not cross each other. Furthermore, problem Li consists of ni independent
problems: the parallel lines do not intersect. Therefore, the solution for this case
can be obtained by selecting from each line as many independent segments as
possible. It is well-known that this can be done in O(n log n) time. ut

A similar result was independently obtained by Kára and Kratochv́ıl (see [2]
elsewhere in this volume). Their algorithm is somewhat faster and works even if
only the intersection graph is given (not the segments themselves).

However, the problem is W[1]-hard with arbitrary directions:

Theorem 6. Maximum Independent Set is W[1]-complete for intersection

graphs of unit line segments.

Proof. The proof uses the framework of Section 2. The new parameter k′ :=
4k2 + 2k(k − 1) is 4 times the number of gadgets plus 2 times the number
of connections. It is not possible to select more than 4 (resp., 2) independent
segments from a gadget (resp., connection), hence every solution has to contain
exactly that many segments from every gadget and connection.

The gadget. Henceforth we assume that the line segments are open. Each
gadget consists of 4n2 line segments. For the gadget centered at point (x, y) the
segments a1, b1, c1, d1 are arranged as shown in Figure 5. Set θ = 1/2n6. For
2 ≤ i ≤ n2, the lines ai, bi, ci, di are obtained by rotating counterclockwise the
four lines in Figure 5 around (x, y) by (i − 1)θ radians. As discussed above, the
parameter of the Maximum Independent Set problem is set in such a way
that every solution contains 4 independent segments of the gadget. We say that
the gadget represents value i in a solution if these four segments are ai, bi, ci, di.
The following lemma shows that every gadget represents a value in a solution:

Lemma 2. At most 4 segments can be selected from each gadget. If S is an

independent set of size 4 in a gadget, then S = {ai, bi, ci, di} for some 1 ≤ i ≤ n2.

Proof. Since ai and ai′ intersect each other, at most one segment can be selected
from {ai : 1 ≤ i ≤ n2}. Similarly, we can select at most one segment from the
bi’s, ci’s, and di’s, hence an independent set cannot have size more than 4.

Assume now that aia
, bib

, cic
, did

is an independent set in the gadget. First
we show that ia ≤ ib. It is sufficient to show that every aj with j > 1 intersects
b1, since aia

and bib
has the same relation as aia−ib+1 and b1. The upper end

point of aj has y-coordinate greater than y + 0.5, while the y-coordinate of the
other end point is smaller than y, thus it is easy to see that it intersects b1.
Similar arguments show that ia ≤ ib ≤ ic ≤ id ≤ ia, hence ia = ib = ic = id ut



c1
(x, y)

(x + 0.5, y + 0.5)

(x + 0.25, y + 0.25)(x − 0.25, y + 0.25)

(x − 0.5, y + 0.5)

(x − 0.5, y − 0.5)

(x − 0.25, y − 0.5) (x + 0.25, y − 0.5)

(x + 0.5, y − 0.5)

b1

a1

d1

Fig. 5. The four segments of the gadget.

Restriction. To restrict the gadget to a set S, we remove ai, bi, ci, di from
the gadget for every i 6∈ S.

Horizontal connections. If two gadgets are connected by a horizontal con-
nection, then their distance is 1+δ (where the constant δ > 0 is to be determined
later), i.e., they are centered at (x0, y0) and (x′

0, y
′

0) = (x0 +1+ δ, y0). Let Ai be
the intersection of the line y = y0 + 0.1 and segment ai of the first gadget. Let
Ci be the intersection of the same line and segment ci of the second gadget. We
want to add n segments in such a way that segment ej (1 ≤ j ≤ n) intersects
only segments a1, . . . , a(j−1)n of the first gadget and segments cjn+1, . . . , cn2

of the second gadget. This can be achieved if (open) segment ej (1 ≤ j ≤ n)
connects A(j−1)n+1 and Cjn. The segments ej have different lengths, but it is
possible to modify the x-coordinates of the end points and set δ such that every
ej has unit length (details omitted).

The ej ’s ensure that if ai, bi, ci, di are selected from the first gadget, ai′ , bi′ ,
ci′ , di′ are selected from the second gadget, and a segment ej is also selected, then
ι1(i) ≥ ι1(i

′). Recall that i = (ι1(i) − 1)n + ι2(i) and i′ = (ι1(i
′) − 1)n + ι2(i

′).
As ej intersects a1, . . . , a(j−1)n, it follows that ι1(i) ≥ j, otherwise ej would
intersect ai. Segment ej intersects segments cjn+1, . . . , cn2 of the second gadget,
hence i′ ≤ (j − 1)n + n and ι1(i

′) ≤ j ≤ ι1(i) follows.
In a similar way, we add segments f1, . . . , fn, whose job is to ensure that

ι1(i
′) ≥ ι1(i). We want to define the segments in such a way that fj intersects

ajn+1, . . . , an2 of the first gadget and c1, . . . , c(j−1)n of the second gadget. This
can be done analogously to the definition of the segments ej , but this time we
intersect the ai’s and ci’s with the line y = y0 − 0.1. It can be shown, that if
ai of the first gadget, ci′ of the second gadget, and segment fj are independent,
then ι1(i

′) ≥ ι1(i). Therefore, the horizontal connection effectively forces that
ι1(i) = ι2(i

′) if i and i′ are the values represented by the two adjacent gadgets.
Vertical connections. The vertical connection consists of two sets of seg-

ments g1, . . . , gn and h1, . . . , hn, where every gi intersects every gi′ , and every
hj intersects every hj′ . These segments are defined in such a way that

– gj1 intersects bi of the lower gadget if and only if ι2(i) > j1,
– gj1 intersects di′ of the upper gadget if and only if ι2(i

′) < j1,



– hj2 intersects bi of the lower gadget if and only if ι2(i) < j2,
– hj2 intersects di′ of the upper gadget if and only if ι2(i

′) > j2.

It is easy to see that these segments do what is required from a vertical connec-
tion: if bi of the first gadget, di′ of the second gadget, and gj1 , hj2 are independent
segments, then ι2(i) = ι2(i

′) = j1 = j2. The only question is how to construct
the segments such that they have the intersection structure defined above.

We modify the gadget centered at (x0, y0) as follows. Set γ = 1/n3. For each
segment bi, consider the line `i containing this segment, and shift bi along ` such
that the x-coordinate of the right end point of bi becomes x0 +0.5+ ι2(i)γ−γ/2.
The bi’s are “almost horizontal,” thus it can be verified (details omitted) that

– the y-coordinate of the right end point of bi is between y0+0.5 and y0+0.5+γ,
– the x-coordinate of the left end point of bi is between x0−0.5+ ι2(i)γ−0.6γ

and x0 − 0.5 + ι2(i)γ − 0.4γ,
– the y-coordinate of the left end point of bi is between y0+0.5−γ and y0+0.5.

In a symmetrical way, we can ensure that

– the x-coordinate of the left end point of di is x0 − 0.5 − ι2(i)γ + γ/2.
– the y-coordinate of the left end point of di is between y0−0.5−γ and y0−0.5,
– the x-coordinate of the right end point of di is between x0+0.5−ι2(i)γ+0.4γ

and x0 + 0.5 − ι2(i)γ + 0.6γ,
– the y-coord. of the right end point of di is between y0 − 0.5+ γ and y0 − 0.5.

In the vertical connection between the two gadgets centered at (x0, y0) and
(x0, y0 + 1.5), the segment gj is a unit length segment that goes through the
points (x0+0.5+jγ, y0+0.5), (x0+0.5−(j−1)γ, y0+1+γ), and the center point
of gj has y0 + 0.75 as y-coordinate. As γ < 1/n2, segment gj is almost vertical;
in particular, it reaches the line y = y0 + 0.5 + γ with an x-coordinate greater
than x0 + 0.5 + jγ − γ/2, and it reaches the line y = y0 + 1 with x-coordinate
less than x0 + 0.5 + (j − 1)γ + 0.4γ. This means that gj does not intersect a
segment bi if its right end point has x-coordinate at most x0 + jγ − γ/2 (i.e.,
ι2(i) > j) and it does intersect a gj if the x-coordinate of its right end point is
greater than x0 + jγ (i.e., ι2(i) ≤ j). Similarly, in the upper gadget, gj intersects
every di with ι2(i) < j, and does not intersect di if ι2(i) > j. ut
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