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Abstract. The notion of “important separators” and bounding the num-
ber of such separators turned out to be a very useful technique in the
design of fixed-parameter tractable algorithms for multi(way) cut prob-
lems. For example, the recent breakthrough result of Chen et al. [3] on
the Directed Feedback Vertex Set problem can be also explained
using this notion. In my talk, I will overview combinatorial and algorith-
mic results that can be obtained by studying such separators.

1 Introduction

Problems related to cutting a graph into parts satisfying certain properties or
separating different parts of the graph from each other form a classical area
of graph theory and combinatorial optimization, with strong motivation com-
ing from applications. The study of these problems revealed deep mathematical
structures, such as connections to linear programming and semidefinite program-
ming. In this talk, we explore an aspect of these problems that has been inves-
tigated and exploited only recently. It seems that understanding the extremal
properties of small separators can be used to obtain combinatorial results and
fixed-parameter tractability results. In particular, the notion of “important sepa-
rators” has been used (implicitly or explicitly) in recent results on parameterized
algorithms for separation and related problems [11, 15, 2, 12, 1, 10, 9].

An (X,Y )-separator is a set S of edges that separate X and Y for each other,
that is, G \ S has no component containing vertices from both X and Y (most
of what we discuss here can be extended to vertex cutsets, but for simplicity
we stick to edge cuts now). An (X,Y )-separator S is inclusionwise minimal if
no subset S′ ⊂ S is an (X,Y )-separator. The main definition of the talk is the
following:

Definition 1. Let X,Y ⊆ V (G) be vertices, S ⊆ E(G) be an (X,Y )-separator,
and let R be the set of vertices reachable from X in G \ S. We say that S is
an important (X,Y )-separator if it is inclusionwise minimal and there is no
(X,Y )-separator S′ with |S′| ≤ |S| such that R ⊂ R′, where R is the set of
vertices reachable from X in G \ S′.

Note that an important (X,Y )-separator is not necessarily an important
(Y,X)-separator. Intuitively, we want to minimize the size of the (X,Y )-separator



and at the same time we want to maximize the set of vertices that remain reach-
able from X after removing the separator. The important separators are the
separators that are Pareto-optimal with respect to these two objectives. Note
that we do not want the number of vertices reachable from X to be maximal, we
just want that this set of vertices is inclusionwise maximal (i.e., we have R ⊂ R′

and not |R| < |R′| in the definition). The main observation of [11] is that the
number of important (X,Y )-separators of size at most k can be bounded by a
function of k; a better bound is implicit in [2].

Theorem 2. [11, 2] Let X,Y ⊆ V (G) be two sets of vertices in graph G, let
k ≥ 0 be an integer, and let Sk be the set of all (X,Y )-important separators of
size at most k. Then |Sk| ≤ 4k and Sk can be constructed in time |Sk| · nO(1).

The following lemma clearly proves the bound in Theorem 2: if the sum is at
most 1, then there cannot be more than 4k important (X,Y )-separators of size
at most k.

Lemma 3. [10] Let X,Y ⊆ V (G). If S is the set of all important (X,Y )-
separators, then

∑
S∈S 4−|S| ≤ 1.

As an application, we can prove the following surprisingly simple, but still non-
trivial combinatorial result:

Lemma 4. Let X,Y ⊆ V (G). The union of all inclusionwise minimal (X,Y )-
separators of size at most k contains at most k · 4k edges incident to Y .

2 Multiway Cut

Let G be a graph and T be a set of terminals. A multiway cut is a set S of edges
such that every component of G \ S contains at most one vertex of T .

Multiway Cut
Input: Graph G, set T of vertices, integer k
Find: A multiway cut S of size at most k

The Multiway Cut problem is known to be NP-hard already for |T | = 3
terminals [6] (for two terminals, it is the classical minimum s − t cut prob-
lem, hence it is polynomial-time solvable). For every fixed k, the problem is
polynomial-time solvable: using brute force, we can try all possible subsets of
k edges in time nO(k). Of course, for moderately large values of n, such a solu-
tion seems to be practically useless already for very small values of k, say for
k = 10. Can we do anything significantly smarter than complete enumeration of
these subsets? The main goal of parameterized complexity is to design algorithms
where the combinatorial explosion is restricted to a well-defined parameter (such
as the size k of the solution we are looking for). Recall that a problem with a



parameter k is fixed-parameter tractable if it can be solved in time f(k) ·nO(1) for
some function f depending only on the parameter k [7, 8, 13]. If f(k) is “nice,”
say, f(k) is ck for some small constant c, then such an algorithm can be useful
for small values of k even for large n.

We show that Multiway Cut is FPT parameterized by k. The following
observation connects Multiway Cut and the concept of important separators:

Lemma 5 (Pushing Lemma). Let t ∈ T be a terminal that is not separated
from T \ t in G. If G has a multiway cut S, then it also has a multiway cut S′

with |S′| ≤ |S| that contains an important (t, T \ t)-separator.

Using this observation, we can solve the problem by branching on the choice
of an important separator and including it into the solution:

Theorem 6. [2] Multiway Cut can be solved in time 4k · nO(1).

Proof. We solve the problem by a recursive branching algorithm. If all the ter-
minals are separated from each other, then we are done. Otherwise, let t ∈ T be
a terminal not separated from the rest of the terminals. Let us use the algorithm
of Theorem 2 to construct the set Sk consisting of every important (t, T \ t)-
separator of size at most k. By Lemma 5, there is a solution that contains one of
these separators. Therefore, we branch on the choice of one of these separators,
and for every important separator S′ ∈ Sk, we recursively solve the Multiway
Cut instance (G \ S′, k − |S′|). If one of these branches returns a solution S,
then clearly S ∪ S′ is a multiway cut of size at most k in G.

The correctness of the algorithm is clear from Lemma 5. We claim that the
search tree explored by the algorithm has at most 4k leaves. We prove this by
induction on k, thus let us assume that the statement is true for every value
less than k. This means that we know that the recursive call (G \ S′, k − |S′|)
explores a search tree with at most 4k−|S

′| leaves. Using Lemma 3, we can bound
the number of leaves of the search tree by∑

S′∈Sk

4k−|S
′| ≤ 4k ·

∑
S′∈Sk

4−|S
′| ≤ 4−k.

ut

The running time can be improved from 4k · nO(1) to 2k · nO(1) with somewhat
different techniques [15, 5].

A natural generalization of Multiway Cut can be obtained if, instead of
requiring that all the terminals are separated from each other, we require that
a specified set of pairs are separated from each other:

Multicut
Input: Graph G, pairs (s1, t1), . . . , (s`, t`), integer k
Find: A set S of at most k edges such that G \ S has
no si − ti path for any i



Theorem 6 implies that Multicut is FPT jointly parameterized by k and
`, that is, can be solved in time f(k, `) · nO(1). We can guess how the solution
S partitions the 2` vertices si, ti (1 ≤ i ≤ `), identify those vertices that are
supposed to be in the same component of G \ S, and solve the resulting Mul-
tiway Cut instance. It is a more challenging question whether the problem is
FPT parameterized by k (the size of the solution) only. Very recently, a positive
answer was given to this question:

Theorem 7. [1, 12] Multicut is FPT parameterized by k.

The proof in [12] introduces a new way of using important separators: with
the “random sampling of important separators” technique we can significantly
simplify the problem instance. This technique has found applications for other
problems [4, 10] and it is very likely that it will be of use in the future.

3 Directed Graphs

Problems on directed graphs are notoriously more difficult than problems on
undirected graphs. This is phenomenon has been observed equally often in
the area of polynomial-time algorithms, approximability, and fixed-parameter
tractability. Let us see if the techniques based on important separators survive
the generalization to directed graphs. First, important separators can be defined
analogously for directed graphs and the bound of 4k of Lemma 2 still holds.
This gives us some hope that we would be able to use the technique on directed
graphs and in particular to show that Directed Multiway Cut (Delete a set
of at most k edges such that there is no t1 → t2 path in G \ S for any two
distinct t1, t2 ∈ T ) is fixed-parameter tractable. However, the Pushing Lemma
(Lemma 5) is not true on directed graphs. This means that a straightforward
generalization of Theorem 6 to directed graphs is not possible. Nevertheless,
Chitnis et al. [4] showed, using the random sampling technique of [12], that the
problem is FPT:

Theorem 8. [4] Directed Multiway Cut is FPT.

What about the more general Directed Multicut problem? In contrast to the
undirected version, the directed problem is W[1]-hard parameterized by k [12].
But the problem can be interesting even for small values of `. The case ` = 2
can be reduced to Directed Multiway Cut in a simple way, thus Theorem 8
implies that Directed Multicut for ` = 2 is FPT parameterized by k. The
case of a fixed ` ≥ 3 and the case of jointly parameterizing with ` and k are still
open.

Chen et al. [3] considered the following (slightly unnatural) variant of Di-
rected Multicut:

Skew Multicut
Input: Graph G, pairs (s1, t1), . . . , (s`, t`), integer k
Find: A set S of at most k edges such that G \ S has
no si → tj path for any i ≤ j



For this problem, the Pushing Lemma can be made to work: there is a so-
lution that contains an important (s1, {t1, . . . , t`})-separator. Therefore, argu-
ments analogous to Theorem 6 give:

Theorem 9. [3] Skew Multicut is FPT parameterized by k.

The reason why Chen et al. [3] considered this problem is that it formed an
important ingredient in their proof showing that Directed Feedback Vertex
Set is FPT.

Directed Feedback Vertex Set
Input: A directed graph G, integer k
Find: A set S of at most k vertices such that G \ S has
no directed cycle

Using the technique of iterative compression (introduced by Reed et al. [14]),
Chen et al. [3] gave a nice reduction from Directed Feedback Vertex Set
to Skew Multicut. Together with Theorem 9, this reduction established the
fixed-parameter tractability of Directed Feedback Vertex Set, resolving a
longstanding open problem.

Theorem 10. [3] Directed Feedback Vertex Set is FPT parameterized
by k.

4 Conclusions

The notion of important separators seems to be useful for a wide range of com-
binatorial and algorithmic problems. In a particular application, first we need to
observe that important separators are relevant (an example of this is the Push-
ing Lemma for Multiway Cut) and then we can try to apply the upper bound
of Theorem 2. The random sampling technique of [12] raises the applicability of
important separators to a new level. After the initial application for Multicut,
randomized sampling turned out to be useful for Directed Multiway Cut
[4], and, in a very different context, for a clustering problem [10]. Based on the
recent surge of results using important separators, one can safely expect that it
will find further uses.
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