Important separators and parameterized
algorithms

Daniel Marx!

institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI)
Budapest, Hungary

ICERM
Providence, RI
April 27, 2014

Overview

Main message

Small separators in graphs have interesting extremal properties that
can be exploited in combinatorial and algorithmic results.

@ Bounding the number of “important” cuts.

e Edge/vertex versions, directed/undirected versions.
@ Algorithmic applications: FPT algorithm for

o MULTIWAY CUT,
e DIRECTED FEEDBACK VERTEX SET, and
o (p, q)-CLUSTERING.

Important cuts

Definition: 0(R) is the set of edges with exactly one endpoint in R.
Definition: A set S of edges is a minimal (X, Y)-cut if there is no
X — Y path in G\ S and no proper subset of S breaks every X — Y
path.

Observation: Every minimal (X, Y)-cut S can be expressed as S =
d(R) for some X C Rand RNY = .

x
(7~

Important cuts

Definition: A minimal (X, Y)-cut §(R) is important if there is no
(X, Y)-cut 6(R") with R € R" and [6(R’)| < |6(R)|.

Note: Can be checked in polynomial time if a cut is important.

x
(7~

Important cuts

Definition: A minimal (X, Y)-cut §(R) is important if there is no
(X, Y)-cut 6(R") with R € R" and [6(R’)| < |6(R)|.

Note: Can be checked in polynomial time if a cut is important.

x
\\
=z

R/

Important cuts

Definition: A minimal (X, Y)-cut §(R) is important if there is no
(X, Y)-cut 6(R") with R € R" and [6(R’)| < |6(R)|.

Note: Can be checked in polynomial time if a cut is important.

(7~

Important cuts
The number of important cuts can be exponentially large.

Example:

This graph has 24/2 important (X, Y)-cuts of size at most k.

Important cuts
The number of important cuts can be exponentially large.

Example:

This graph has 24/2 important (X, Y)-cuts of size at most k.

Theorem

There are at most 4% important (X, Y)-cuts of size at most k.

(Proof is implicit in [Chen, Liu, Lu 2007], worse bound in [M. 2004].)

Submodularity

Fact: The function ¢ is submodaular: for arbitrary sets A, B,

O(A) + [6(B)] = [6(ANB)| + [6(AUB)

Submodularity

Fact: The function ¢ is submodaular: for arbitrary sets A, B,

O(A) + [6(B)] = [6(ANB)| + [6(AUB)

Proof: Determine separately the contribution of the different types
of edges.

Submodularity

Fact: The function ¢ is submodaular: for arbitrary sets A, B,
6(A) + [0(B)] = [6(AnB)| + [6(AUB)
0 1 1 0

Proof: Determine separately the contribution of the different types
of edges.

Submodularity

Fact: The function ¢ is submodaular: for arbitrary sets A, B,
6(A) + [0(B)] = [6(AnB)| + [6(AUB)
1 0 1 0

Proof: Determine separately the contribution of the different types
of edges.

Submodularity

Fact: The function ¢ is submodaular: for arbitrary sets A, B,
6(A) + [0(B)] = [6(AnB)| + [6(AUB)
0 1 0 1

Proof: Determine separately the contribution of the different types
of edges.

Submodularity

Fact: The function ¢ is submodaular: for arbitrary sets A, B,
6(A) + [0(B)] = [6(AnB)| + [6(AUB)
1 0 0 1

Proof: Determine separately the contribution of the different types
of edges.

Submodularity

Fact: The function ¢ is submodaular: for arbitrary sets A, B,
6(A) + [0(B)] = [6(AnB)| + [6(AUB)
1 1 1 1

Proof: Determine separately the contribution of the different types
of edges.

Submodularity

Fact: The function ¢ is submodaular: for arbitrary sets A, B,

B(A) + [6(B)] = [6(ANB)| + [6(AUB)
1 1 0 0

Proof: Determine separately the contribution of the different types
of edges.

/\
@

Submodularity

Lemma

Let A be the minimum (X, Y)-cut size. There is a unique maximal
Rmax = X such that §(Rmax) is an (X, Y)-cut of size \.

Submodularity

Lemma

Let A be the minimum (X, Y)-cut size. There is a unique maximal
Rmax = X such that §(Rmax) is an (X, Y)-cut of size \.

Proof: Let Ry, R, 2 X be two sets such that §(Ry), (Rz) are
(X, Y)-cuts of size \.

[0(R1)| + [6(R2)| = [6(RL N R2)| + [6(R1 U Ra)|
A A > A

= |(5(R1 U R2)| <A\

o
%@

Note: Analogous result holds for a unique minimal Ry;,.

Important cuts
Theorem
There are at most 4% important (X, Y)-cuts of size at most k.
Proof: Let A\ be the minimum (X, Y)-cut size and let §(Rmax) be
the unique important cut of size)\ such that Ryayx is maximal.

(1) We show that Rmax C R for every important cut 6(R).

Important cuts

Theorem

There are at most 4% important (X, Y)-cuts of size at most k.

Proof: Let A\ be the minimum (X, Y)-cut size and let §(Rmax) be
the unique important cut of size)\ such that Ryayx is maximal.

(1) We show that Rmax C R for every important cut 6(R).
By the submodularity of §:
A > A
I
|0(Rmax U R)| < [0(R)|
U
If R # Rmax U R, then 6(R) is not important.

Important cuts

Theorem

There are at most 4% important (X, Y)-cuts of size at most k.

Proof: Let A\ be the minimum (X, Y)-cut size and let §(Rmax) be
the unique important cut of size)\ such that Ryayx is maximal.

(1) We show that Rmax C R for every important cut 6(R).

By the submodularity of §:
0(Rmax)| + [0(R)| = [6(Rmax N R)| + [6(Rmax U R)
A > A
I
|0(Rmax U R)| < [0(R)|

I
If R # Rmax U R, then 6(R) is not important.

Thus the important (X, Y)- and (Rmax, Y)-cuts are the same.
= We can assume X = Rnax.

Important cuts
(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rnax is either in the cut or not.

ondf

Important cuts
(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rnax is either in the cut or not.

ondf

Branch 1: If uv € S, then S\ uv is an important (X, Y)-cut of
size at most k — 1 in G \ uv.

Branch 2: If uv ¢ S, then S is an important
(X Uv, Y)-cut of size at most k in G.

Important cuts
(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Ryax is either in the cut or not.

ondf

Branch 1: If uv € S, then S\ uv is an important (X, Y)-cut of
size at most k — 1 in G \ uv.

= k decreases by one, \ decreases by at most 1.

Branch 2: If uv ¢ S, then S is an important
(X Uv, Y)-cut of size at most k in G.

= k remains the same, \ increases by 1.

Important cuts
(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Ryax is either in the cut or not.

ondf

Branch 1: If uv € S, then S\ uv is an important (X, Y)-cut of
size at most k — 1 in G \ uv.

= k decreases by one, \ decreases by at most 1.

Branch 2: If uv ¢ S, then S is an important
(X Uv, Y)-cut of size at most k in G.

= k remains the same, \ increases by 1.
The measure 2k — \ decreases in each step.

= Height of the search tree < 2k
= < 22k — gk important cuts of size at most k.

Important cuts

Theorem

There are at most 4% important (X, Y)-cuts of size at most k.

Example: The bound 4 is essentially tight.

X

(dedodododedodede)Y

Important cuts

Theorem

There are at most 4% important (X, Y)-cuts of size at most k.

Example: The bound 4 is essentially tight.

X

(dedodododedodede)Y

Any subtree with k leaves gives an important (X, Y)-cut of size k.

Important cuts

Theorem

There are at most 4% important (X, Y)-cuts of size at most k.

Example: The bound 4 is essentially tight.

(dedodododedodede)Y

Any subtree with k leaves gives an important (X, Y)-cut of size k.

Important cuts

Theorem

There are at most 4% important (X, Y)-cuts of size at most k.

Example: The bound 4 is essentially tight.

(dedodododedodede)Y

Any subtree with k leaves gives an important (X, Y)-cut of size k.
The number of subtrees with k leaves is the Catalan number

1(2k-2 B
Ck—1k<k_1> > 4% /poly(k).

MuLTIWAY CUT

Definition: A multiway cut of a set of terminals T is a set S of
edges such that each component of G \ S contains at most one

vertex of T.
Mvurriway Cut t.1 11 ,_;2
Graph G, set T of vertices, inte- .,
Input: .
ger k - -
Find: A multiway cut S of at most k | [,y ® .. [T®
" edges. - .
od °

Polynomial for | T| = 2, but NP-hard for any fixed | T| > 3 [Dalhaus
et al. 1994].

10

MuLTIWAY CUT

Definition: A multiway cut of a set of terminals T is a set S of
edges such that each component of G \ S contains at most one

vertex of T.
Murriway CuUT t.l — t.2
Graph G, set T of vertices, inte- T L
Input: \
ger k 3 IF
Find: A multiway cut S of at most k | [, ® . [T®
© edges. 4 4
[J [}

Trivial to solve in polynomial time for fixed k (in time n©(¥)),

Theorem

MULTIWAY CUT can be solved in time 4% - n°(1) ie. it is

fixed-parameter tractable (FPT) parameterized by the size k of the
solution.

10

MuLTIWAY CUT

Intuition: Consider a t € T. A subset of the solution S is a
(t, T\ t)-cut.

@ —~+

11

MuLTIWAY CUT

Intuition: Consider a t € T. A subset of the solution S is a
(t, T\ t)-cut.

@~

There are many such cuts.

11

MuLTIWAY CUT

Intuition: Consider a t € T. A subset of the solution S is a
(t, T\ t)-cut.

@~

There are many such cuts.

11

MuLTIWAY CUT

Intuition: Consider a t € T. A subset of the solution S is a
(t, T\ t)-cut.

e o
I
t = []
° \\\
il
11
o o

There are many such cuts.

But a cut farther from t and closer to T \ t seems to be more
useful.

11

MULTIWAY CUT and important cuts

Pushing Lemma

Let t € T. The MuLTIwWAY CUT problem has a solution S that
contains an important (t, T\ t)-cut.

12

MULTIWAY CUT and important cuts

Pushing Lemma

Let t € T. The MuLTIwWAY CUT problem has a solution S that
contains an important (t, T\ t)-cut.

Proof: Let R be the vertices reachable from tin G\ S for a
solution S.

~
[]

12

MULTIWAY CUT and important cuts

Pushing Lemma

Let t € T. The MuLTIwWAY CUT problem has a solution S that
contains an important (t, T\ t)-cut.

Proof: Let R be the vertices reachable from tin G\ S for a

solution S.
[] [)
t °
[]
[)
R
[] []
- 1

d(R) is not important, then there is an important cut 6(R’) with
R C R"and |6(R")| < |6(R)|. Replace S with
S:=(S\(R)UNR) = |5 <|S]

12

MULTIWAY CUT and important cuts

Pushing Lemma

Let t € T. The MuLTIwWAY CUT problem has a solution S that
contains an important (t, T\ t)-cut.

Proof: Let R be the vertices reachable from tin G\ S for a
solution S.

d(R) is not important, then there is an important cut 6(R’) with
R C R"and |6(R")| < |6(R)|. Replace S with
S':=(S\4(R)USR) = |5 <|S]

S’ is a multiway cut: (1) There is no t-u path in G\ S" and (2) a
u-v path in G\ S’ implies a t-u path, a contradiction.

12

MULTIWAY CUT and important cuts

Pushing Lemma

Let t € T. The MuLTIwWAY CUT problem has a solution S that
contains an important (t, T\ t)-cut.

Proof: Let R be the vertices reachable from tin G\ S for a
solution S.

d(R) is not important, then there is an important cut 6(R’) with
R C R"and |6(R")| < |6(R)|. Replace S with
S:=(S\(R)UNR) = |5 <|S]

S’ is a multiway cut: (1) There is no t-u path in G\ S" and (2) a

u-v path in G\ S’ implies a t-u path, a contradiction. 1

Algorithm for MULTIWAY CUT

© |If every vertex of T is in a different component, then we are
done.

@ Let t € T be a vertex that is not separated from every T \ t.

© Branch on a choice of an important (t, T \ t) cut S of size at
most k.

Q Set G:=G\ Sand k:=k—|S|.
© Go to step 1.

We branch into at most 4% directions at most k times.

(Better analysis gives 4 bound on the size of the search tree.)

13

MUuULTICUT

MurricuT
Input: Graph G, pairs (s1,t1), ..., (s, t), integer k
A set S of edges such that G \ S has no s;-t; path

Find: .
for any /.

Theorem

MULTICUT can be solved in time f(k,¢) - n®®) (FPT
parameterized by combined parameters k and /).

14

MUuULTICUT

MurLTICUT
Input: Graph G, pairs (s1,t1), ..., (s, t), integer k

. A set S of edges such that G \ S has no s;-t; path
Find: .
for any /.

Theorem

MULTICUT can be solved in time f(k,¢) - n®®) (FPT
parameterized by combined parameters k and /).

Proof: The solution partitions {si, t1,..., s, t;} into components.
Guess this partition, contract the vertices in a class, and solve
MuLrtiwAay CUT.

Theorem [Bousquet, Daligault, Thomassé 2011] [M., Razgon 2011]
MurTicuT is FPT parameterized by the size k of the solution.

14

Directed graphs

—

Definition: §(R) is the set of edges leaving R.
Observation: Every inclusionwise-minimal directed (X, Y)-cut S

—

can be expressed as S = §(R) for some X C Rand RNY = (.

-

Definition: A minimal (X, Y)-cut §(R) is important if there is no

- = —

(X, Y)-cut 5(R') with R C R’ and |5(R")| < |6(R)!.

15

Directed graphs

—

Definition: §(R) is the set of edges leaving R.
Observation: Every inclusionwise-minimal directed (X, Y)-cut S

—

can be expressed as S = §(R) for some X C Rand RNY = (.

-

Definition: A minimal (X, Y)-cut §(R) is important if there is no

- = —

(X, Y)-cut 5(R') with R C R’ and |5(R")| < |6(R)!.

15

Directed graphs

—

Definition: §(R) is the set of edges leaving R.
Observation: Every inclusionwise-minimal directed (X, Y)-cut S

—

can be expressed as S = §(R) for some X C Rand RNY = (.

-

Definition: A minimal (X, Y)-cut §(R) is important if there is no

- = —

(X, Y)-cut 6(R") with R C R and |6(R")| < [6(R)].
The proof for the undirected case goes through for the directed case:

Theorem

There are at most 4% important directed (X, Y)-cuts of size at
most k.

15

DIRECTED MULTIWAY CUT

The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)

Let t € T. The MULTIWAY CUT problem has a solution S that
contains an important (t, T \ t)-cut.

Directed counterexample:

a
f<>

Unique solution with k = 1 edges, but it is not an important cut
(boundary of {s, a}, but the boundary of {s. a, b} has same size).

16

DIRECTED MULTIWAY CUT

The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)

Let t € T. The MULTIWAY CUT problem has a solution S that
contains an important (t, T \ t)-cut.

Directed counterexample:

Unique solution with k = 1 edges, but it is not an important cut
(boundary of {s, a}, but the boundary of {s. a, b} has same size).

16

DIRECTED MULTIWAY CUT

The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)

Let t € T. The MULTIWAY CUT problem has a solution S that
contains an important (t, T \ t)-cut.

Directed counterexample:

<

Unique solution with k = 1 edges, but it is not an important cut
(boundary of {s, a}, but the boundary of {s. a, b} has same size).

16

DIRECTED MULTIWAY CUT

The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)

Let t € T. The MULTIWAY CUT problem has a solution S that
contains an important (¢, T \ t)-cut.

Problem in the undirected proof:

co

Replacing R by R’ cannot create a t — u path, but can create a
u — t path.

16

DIRECTED MULTIWAY CUT
The undirected approach does not work: the pushing lemma is not

true.
Pushing Lemma (for undirected graphs)

Let t € T. The MULTIWAY CUT problem has a solution S that
contains an important (¢, T \ t)-cut.

Using additional techniques, one can show:

Theorem [Chitnis, Hajiaghayi, M. 2011]

DIRECTED MULTIWAY CUT is FPT parameterized by the size k of
the solution.

16

DIRECTED MULTICUT

DIRECTED MULTICUT
Input: Graph G, pairs (s1,t1), ..., (ss, t), integer k

. A set S of edges such that G \ S has no s; — t; path
Find)
for any i.

Theorem [M. and Razgon 2011]
DIRECTED MuLTICUT is W[1]-hard parameterized by k.

17

DIRECTED MULTICUT

DIRECTED MULTICUT
Input: Graph G, pairs (s1,t1), ..., (ss, t), integer k

. A set S of edges such that G \ S has no s; — t; path
Find)
for any i.

Theorem [M. and Razgon 2011]
DIRECTED MULTICUT is W[1]-hard parameterized by k.

But the case ¢ = 2 can be reduced to DIRECTED MULTIWAY CUT:

% 2

17

DIRECTED MULTICUT

DIRECTED MULTICUT
Input: Graph G, pairs (s1,t1), ..., (ss, t), integer k
Find A set S of edges such that G \ S has no s; — t; path
for any i.

Theorem [M. and Razgon 2011]
DIRECTED MULTICUT is W[1]-hard parameterized by k.

But the case ¢ = 2 can be reduced to DIRECTED MULTIWAY CUT:

17

DIRECTED MULTICUT

DIRECTED MULTICUT
Input: Graph G, pairs (s1,t1), ..., (ss, t), integer k

. A set S of edges such that G \ S has no s; — t; path
Find)
for any i.

Theorem [M. and Razgon 2011]
DIRECTED MULTICUT is W[1]-hard parameterized by k.

But the case ¢ = 2 can be reduced to DIRECTED MULTIWAY CUT:

17

DIRECTED MULTICUT

DIRECTED MULTICUT
Input: Graph G, pairs (s1,t1), ..., (ss, t), integer k
Find A set S of edges such that G \ S has no s; — t; path
for any i.

Theorem [M. and Razgon 2011]

DIRECTED MULTICUT is W[1]-hard parameterized by k.

Corollary

DIRECTED MULTICUT with ¢ = 2 is FPT parameterized by the
size k of the solution.
Open: Is DIRECTED MULTICUT with / =3 FPT?

Open: Is there an f(k,¢) - n°1) algorithm for DIRECTED
MucrricuT?

SKEW MULTICUT

SKEW MULTICUT
Input:

Find:

Graph G, pairs (s1,t1), ..
A set S of k directed edges such that G\ S con-
tains no s; — t; path for any / > j.

. (s¢, tp), integer k

18

SKEW MULTICUT

SKEW MuLTICUT
Input: Graph G, pairs (s1,t1), ..., (s, t), integer k

Find: A set S of k directed edges such that G\ S con-
" tains no s; — t; path for any i > j.

Pushing Lemma

SKEW MULTCUT problem has a solution S that contains an
important (sg, {t1, ..., ty})-cut.

18

SKEW MULTICUT

SKEW MuLTICUT
Input: Graph G, pairs (s1,t1), ..., (s, t), integer k

A set S of k directed edges such that G\ S con-

Find: . C
tains no s; — t; path for any / > j.

S1 @esrsssansass Jun t

1 »f'::'l‘. 1

Pushing Lemma

SKEW MULTCUT problem has a solution S that contains an
important (sg, {t1, ..., ty})-cut.

Theorem [Chen, Liu, Lu, O'Sullivan, Razgon 2008]

SKEW MULTICUT can be solved in time 4% . n©(1).

DIRECTED FEEDBACK VERTEX SET

DIRECTED FEEDBACK VERTEX/EDGE SET
Input: Directed graph G, integer k
Find A set S of k vertices/edges such that G \ S
is acyclic.

Note: Edge and vertex versions are equivalent, we will consider the
edge version here.

Theorem [Chen, Liu, Lu, O'Sullivan, Razgon 2008]

DIRECTED FEEDBACK EDGE SET is FPT parameterized by the
size k of the solution.

Solution uses the technique of Iterative compression introduced by
[Reed, Smith, Vetta 2004].

19

The compression problem

DIRECTED FEEDBACK EDGE SET COMPRESSION
Input: Directed graph G, integer k,

a set W of k4 1 edges such that G\ W

is acyclic

A set S of k edges such that G\ S is

Find: .
acyclic.

Easier than the original problem, as the extra input W gives us
useful structural information about G.

Lemma

The compression problem is FPT parameterized by k.

20

The compression problem

DIRECTED FEEDBACK EDGE SET COMPRESSION
Input: Directed graph G, integer k,

aset W of k 4 1 vertices such that G \ W
is acyclic
A set S of k edges such that G\ S is

Find: .
acyclic.

Easier than the original problem, as the extra input W gives us
useful structural information about G.

Lemma
The compression problem is FPT parameterized by k.

A useful trick for edge deletion problems: we define the
compression problem in a way that a solution of k + 1 vertices are
given and we have to find a solution of k edges.

20

The compression problem

Proof: Let W = {wy, ..., w1}
Let us split each w; into an edge t;s;.

L |/IJ

L/ ANV LS

t1 51 tr So t3S3 taS4
@ By guessing the order of {wi, ..., wy.1} in the acyclic
ordering of G\ S, we can assume that w; < wo < -+ < wy g
in G\ S [(k+ 1)! possibilities].

21

The compression problem

Proof: Let W = {wy, ..., w1}
Let us split each w; into an edge t;s;.

L |/IJ

L/ ANV LS

t1 51 tr So t3S3 taS4

Claim:

G\ S is acyclic and has an ordering with wy < wy <

4

S covers every s; — t; path for every / > j

4
G\ S is acyclic

T < Wi

21

The compression problem

Proof: Let W = {wy, ..., w1}
Let us split each w; into an edge t;s;.

\ AR |/ j
ANV LS

t1 51 tr So t3S53 tgS4

Claim:

G\ S is acyclic and has an ordering with wy < wy <

4

S covers every s; — t; path for every / > j

4
G\ S is acyclic

T < Wi

21

The compression problem

Proof: Let W = {wy, ..., w1}
Let us split each w; into an edge t;s;.

\ AR |/ j
ANV LS

t1 51 tr So t3S53 tgS4

Claim:

G\ S is acyclic and has an ordering with wy < wy < -+ < wyiq

4

S covers every s; — t; path for every / > j

4
G\ S is acyclic

= We can solve the compression problem by (k + 1)! applications
of SKEW MULTICUT.

21

Iterative compression

We have given a f(k)n®®) algorithm for the following problem:

DIRECTED FEEDBACK EDGE SET COMPRESSION
Input: Directed graph G, integer k,

a set W of k + 1 vertices such that G \ W
is acyclic
A set S of k edges such that G\ S is

Find: :
acyclic.

Nice, but how do we get a solution W of size k + 17

22

Iterative compression

We have given a f(k)n®®) algorithm for the following problem:

DIRECTED FEEDBACK EDGE SET COMPRESSION
Input: Directed graph G, integer k,

a set W of k + 1 vertices such that G \ W

is acyclic

A set S of k edges such that G\ S is

Find: :
acyclic.

Nice, but how do we get a solution W of size k + 17
We get it for free!

Powerful technique: Iterative compression (introduced by [Reed,
Smith, Vetta 2004] for BIPARTITE DELETION).

22

Iterative compression

Let vq, ..., v, be the edges of G and let G; be the subgraph
induced by {v1,...,v;}.
For every i = 1,...,n, we find a set S; of at most k edges such

that G; \ S; is acyclic.

23

Iterative compression

Let vq, ..., v, be the edges of G and let G; be the subgraph
induced by {v1,...,v;}.
For every i = 1,...,n, we find a set S; of at most k edges such

that G; \ S; is acyclic.
@ For i = 1, we have the trivial solution S; = ().

@ Suppose we have a solution S; for G;. Let W; contain the head
of each edge in S;. Then W; U {vj;1} is a set of at most k + 1
vertices whose removal makes G;.1 acyclic.

@ Use the compression algorithm for G; 1 with the set
W; U {vis1}.

o If there is no solution of size k for G;,1, then we can stop.
o Otherwise the compression algorithm gives a solution S; ;1 of
size k for G;y1.

We call the compression algorithm n times, everything else is
polynomial.
= DIRECTED FEEDBACK EDGE SET is FPT.

23

Outline

So far we have seen:

Definition of important cuts.

Combinatorial bound on the number of important cuts.

Pushing argument: we can assume that the solution contains
an important cut. Solves MULTIWAY CUT, SKEW
MurTriway CuUT.

Iterative compression reduces DIRECTED FEEDBACK
VERTEX SET to SKEW MULTIWAY CUT.

Next:

e Randomized sampling of important separators.

24

Randomized sampling of important cuts

A new technique used by several results:

MurLTICUT [M. and Razgon STOC 2011]
Clustering problems [Lokshtanov and M. ICALP 2011]

DIRECTED MULTIWAY CUT [Chitnis, Hajiaghayi, M. SODA
2012]

DIRECTED MULTICUT in DAGs [Kratsch, Pilipczuk, Pilipczuk,
Wahlstrom ICALP 2012]

DIRECTED SUBSET FEEDBACK VERTEX SET [Chitnis,
Cygan, Hajiaghayi, M. ICALP 2012]

PARITY MULTIWAY CUT [Lokshtanov, Ramanujan ICALP 2012]

List homomorphism removal problems [Chitnis, Egri, and M.
ESA 2013]

. more work in progress.

25

Clustering

We want to partition objects into clusters subject to certain

requirements (typically: related objects are clustered together,
bounds on the number or size of the clusters etc.)

(p, q)-CLUSTERING

Input: A graph G, integers p, g.
A partition (V4,..., Vi) of V(G) such that for every i
Find: e |Vi|<pand

e i(Vj)) <gq

0(V;): number of edges leaving V.
Theorem [Lokshtanov and M. 2011]

(p, g)-CLUSTERING can be solved in time 20(a) . nO(1)

26

A sufficient and necessary condition

Good cluster: size at most p and at most g edges leaving it.

Necessary condition:

Every vertex is contained in a good cluster.

27

A sufficient and necessary condition

Good cluster: size at most p and at most g edges leaving it.

Necessary condition:

Every vertex is contained in a good cluster.

But surprisingly, this is also a sufficient condition!

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

27

A sufficient and necessary condition

Lemma

Graph G has a (p, g)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

28

A sufficient and necessary condition

Lemma

Graph G has a (p, g)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

X Y

I(X)+(Y)=0(X\Y)+(Y\X)
(posimodularity)

= either §(X) > o(X \ Y) or 6(Y) > o(Y \ X) holds.
28

A sufficient and necessary condition

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

X\Y

I(X)+(Y)=0(X\Y)+(Y\X)
(posimodularity)
If 5(X) > (X \ Y), replace X with X'\ Y,
strictly decreasing the total size of the clusters.

28

A sufficient and necessary condition

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

X Y\X

I(X)+(Y)=0(X\Y)+(Y\X)
(posimodularity)
If 5(Y) > o(Y \ X), replace Y with Y\ X,

strictly decreasing the total size of the clusters. QED W
28

Finding a good cluster

We have seen:

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

All we have to do is to check if a given vertex v is in a good
cluster. Trivial to do in time n©(@).

29

Finding a good cluster

We have seen:

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

All we have to do is to check if a given vertex v is in a good
cluster. Trivial to do in time n©(@).

We prove next:

Lemma

We can check in time 29(9) . n°() if v is in a good cluster.

29

Important sets

Definition
Fix a distinguished vertex v in a graph G. A set X C V(G) is an
important set if

o v¢&X,

o there is no set X C X" with v ¢ X and §(X’) < 6(X).

30

Important sets

Definition
Fix a distinguished vertex v in a graph G. A set X C V(G) is an
important set if

o v¢&X,

o there is no set X C X" with v ¢ X and §(X’) < 6(X).

30

Important sets

Definition
Fix a distinguished vertex v in a graph G. A set X C V(G) is an
important set if

o v¢&X,

o there is no set X C X" with v ¢ X and §(X’) < 6(X).

30

Important sets

Definition
Fix a distinguished vertex v in a graph G. A set X C V(G) is an
important set if

o v¢&X,

o there is no set X C X" with v ¢ X and §(X’) < 6(X).

30

Important sets

Definition
Fix a distinguished vertex v in a graph G. A set X C V(G) is an
important set if

o v¢&X,

o there is no set X C X" with v ¢ X and §(X’) < 6(X).

30

Important sets

Definition
Fix a distinguished vertex v in a graph G. A set X C V(G) is an
important set if

o v¢&X,

o there is no set X C X" with v ¢ X and §(X’) < 6(X).

v

Observation: X is an important set if and only if 6(X) is an
important (x, v)-cut for every x € X.

Consequence: Every vertex is contained in at most 4k important
sets.

30

Pushing argument

Lemma

If C is a good cluster of minimum size containing v, then every
component of G \ C is an important set.

o<

31

Pushing argument

Lemma

If C is a good cluster of minimum size containing v, then every
component of G \ C is an important set.

I,
L]

31

Pushing argument

Lemma

If C is a good cluster of minimum size containing v, then every
component of G \ C is an important set.

31

Pushing argument

Lemma

If C is a good cluster of minimum size containing v, then every

component of G\ C is

-
/
/

an important set.

~

[T

-7 N
T L
_/

i
1
|

o<

31

Pushing argument

Lemma

If C is a good cluster of minimum size containing v, then every
component of G \ C is an important set.

31

Pushing argument

Lemma

If C is a good cluster of minimum size containing v, then every
component of G \ C is an important set.

4
.

Thus C can be obtained by removing at most g important sets from
V(G) (but there are n°(9) possibilities, we cannot try all of them).

31

Random sampling

@ Let X be the set of all important sets of boundary size at
most g in G.

e Let X’ C X contain each set with probability % independently.

o Let Z = (Jycar X.

@ Let B be the set of vertices in C with neighbors outside C.

Lemma

Let C be a good cluster of minimum size containing v. With
probability 2299 7 covers G \ C and is disjoint from B.

(464 B 468 & @

v
°

32

Random sampling

@ Let X be the set of all important sets of boundary size at
most g in G.

o Let X' C X contain each set with probability % independently.

o Let Z = Uyep X.

@ Let B be the set of vertices in C with neighbors outside C.

Lemma

Let C be a good cluster of minimum size containing v. With
probability 27299 7 covers G \ C and is disjoint from B.

. |

5 N

Uy o

\

32

Random sampling

Lemma

Let C be a good cluster of minimum size containing v. With
probability 27299 7 covers G \ C and is disjoint from B.

Two events:
(E1) Z covers G\ C.
Each of the at most g components is an important set
= all of them are selected by probability at least 279.
(E2) Z is disjoint from B.
Each vertex of B is in at most 49 members of X
= all of them are selected by probability at least 2947

The two events are independent (involve different sets of X'), thus
the claimed probability follows.

33

Finding good clusters

Let C be a good cluster of minimum size containing v and assume
e G\ Cis covered by Z, and
e Z is disjoint from B (hence no edge going out of C is
contained in Z).

,

(IRUR
G\Z

v
([]

| J

Where is the good cluster C in the figure?

Finding good clusters

Let C be a good cluster of minimum size containing v and assume
e G\ Cis covered by Z, and
e Z is disjoint from B (hence no edge going out of C is
contained in Z).

,

G\Z ’
[J

| J

Where is the good cluster C in the figure?

Observe: Components of Z are either fully in the cluster or fully

outside the cluster. What is this problem? 34

Finding good clusters

Let C be a good cluster of minimum size containing v and assume
e G\ Cis covered by Z, and
e Z is disjoint from B (hence no edge going out of C is
contained in Z).

-

G\Z

® <

KNAPSACK!
34

Finding good clusters by KNAPSACK

G\Z

® <

We interpret the componenents V4, ..., V; of G[Z] as items:
e V; has value 6(V;) and
e V; has weight | V;|.
The goal is to select items with total value at least §(Z) — g and
total weight at most p — |V/(G) \ Z]|.
35

Finding good clusters by KNAPSACK

G\Z

® <

Standard DP solves it in polynomial time: let T[/, j| be the maximum
value of a subset of the first i items having total weight at most ;.

Recurrence:
Tli,jl=max{T[i —1,j], T[i = 1,j — |[Vi[] + 6(Vi)}
35

Summary of algorithm

(p, q)-CLUSTERING
Input: A graph G, integers p, g.
A partition (V4,..., Vi) of V(G) such that for every i
Find: o [Vi[< pand
e §(Vi)<gq.

@ It is sufficient to check for each vertex v if it is in a good
cluster.

@ Enumerate all the important sets.
@ Let Z be the union of random important sets.

@ The solution is obtained by extending G \ Z with some of the
components of G[Z].

o Knapsack.

36

(p, g)-CLUSTERING

e With a slightly different probability distribution, one can
reduce the error probability to 2 9(4).

@ Derandomization is possible using standard techniques, but
nontrivial to obtain 2°(9) running time.

@ Other variants: maximum degree in the cluster is at most p,
etc.

37

Summary

@ A simple (but essentially tight) bound on the number of
important cuts.
@ Algorithmic results: FPT algorithms for

e MurTiwAay CUT in undirected graphs,

SKEW MULTICUT in directed graphs,

DIRECTED FEEDBACK VERTEX/EDGE SET, and
(p, g)-CLUSTERING.

