Important separators and parameterized algorithms

Dániel Marx¹

¹Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

> ICERM Providence, RI April 27, 2014

Overview

Main message

Small separators in graphs have interesting extremal properties that can be exploited in combinatorial and algorithmic results.

- Bounding the number of "important" cuts.
- Edge/vertex versions, directed/undirected versions.
- Algorithmic applications: FPT algorithm for
 - MULTIWAY CUT,
 - $\bullet~\ensuremath{\mathsf{D}\mathrm{IRECTED}}$ FEEDBACK VERTEX SET, and
 - (p, q)-CLUSTERING.

Definition: $\delta(R)$ is the set of edges with exactly one endpoint in R. **Definition:** A set S of edges is a **minimal** (X, Y)-**cut** if there is no X - Y path in $G \setminus S$ and no proper subset of S breaks every X - Y path.

Observation: Every minimal (X, Y)-cut S can be expressed as $S = \delta(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$.

Definition: A minimal (X, Y)-cut $\delta(R)$ is **important** if there is no (X, Y)-cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \le |\delta(R)|$.

Note: Can be checked in polynomial time if a cut is important.

Definition: A minimal (X, Y)-cut $\delta(R)$ is **important** if there is no (X, Y)-cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \le |\delta(R)|$.

Note: Can be checked in polynomial time if a cut is important.

Definition: A minimal (X, Y)-cut $\delta(R)$ is **important** if there is no (X, Y)-cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \le |\delta(R)|$.

Note: Can be checked in polynomial time if a cut is important.

The number of important cuts can be exponentially large.

Example:

This graph has $2^{k/2}$ important (X, Y)-cuts of size at most k.

The number of important cuts can be exponentially large.

Example:

This graph has $2^{k/2}$ important (X, Y)-cuts of size at most k.

Theorem

There are at most 4^k important (X, Y)-cuts of size at most k.

(Proof is implicit in [Chen, Liu, Lu 2007], worse bound in [M. 2004].)

Fact: The function δ is **submodular**: for arbitrary sets *A*, *B*, $|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$

Fact: The function δ is **submodular:** for arbitrary sets A, B, $|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$

Fact: The function δ is submodular: for arbitrary sets A, B, $|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$ 0 1 1 0

Fact: The function δ is submodular: for arbitrary sets A, B, $|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$ $1 \qquad 0 \qquad 1 \qquad 0$

Fact: The function δ is submodular: for arbitrary sets A, B, $|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$ 0 1 0 1

Fact: The function δ is submodular: for arbitrary sets A, B, $|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$ $1 \qquad 0 \qquad 0 \qquad 1$

Fact: The function δ is submodular: for arbitrary sets A, B, $|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$ $1 \qquad 1 \qquad 1 \qquad 1$

Fact: The function δ is submodular: for arbitrary sets A, B, $|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$ $1 \qquad 1 \qquad 0 \qquad 0$

Lemma

Let λ be the minimum (X, Y)-cut size. There is a unique maximal $R_{\max} \supseteq X$ such that $\delta(R_{\max})$ is an (X, Y)-cut of size λ .

Lemma

Let λ be the minimum (X, Y)-cut size. There is a unique maximal $R_{\max} \supseteq X$ such that $\delta(R_{\max})$ is an (X, Y)-cut of size λ .

Proof: Let $R_1, R_2 \supseteq X$ be two sets such that $\delta(R_1), \delta(R_2)$ are (X, Y)-cuts of size λ .

```
\begin{split} |\delta(R_1)| + |\delta(R_2)| &\geq |\delta(R_1 \cap R_2)| + |\delta(R_1 \cup R_2)| \\ \lambda & \lambda &\geq \lambda \\ &\Rightarrow |\delta(R_1 \cup R_2)| \leq \lambda \end{split}
```


Note: Analogous result holds for a unique minimal R_{\min} .

Theorem

There are at most 4^k important (X, Y)-cuts of size at most k.

Proof: Let λ be the minimum (X, Y)-cut size and let $\delta(R_{\text{max}})$ be the unique important cut of size λ such that R_{max} is maximal.

(1) We show that $R_{\max} \subseteq R$ for every important cut $\delta(R)$.

Theorem

There are at most 4^k important (X, Y)-cuts of size at most k.

Proof: Let λ be the minimum (X, Y)-cut size and let $\delta(R_{max})$ be the unique important cut of size λ such that R_{max} is maximal. (1) We show that $R_{\max} \subseteq R$ for every important cut $\delta(R)$. By the submodularity of δ : $|\delta(R_{\max})| + |\delta(R)| \ge |\delta(R_{\max} \cap R)| + |\delta(R_{\max} \cup R)|$ $\geq \lambda$ $|\delta(R_{\max} \cup R)| \leq |\delta(R)|$ JL If $R \neq R_{\max} \cup R$, then $\delta(R)$ is not important.

Theorem

There are at most 4^k important (X, Y)-cuts of size at most k.

Proof: Let λ be the minimum (X, Y)-cut size and let $\delta(R_{max})$ be the unique important cut of size λ such that R_{max} is maximal. (1) We show that $R_{\max} \subseteq R$ for every important cut $\delta(R)$. By the submodularity of δ : $|\delta(R_{\max})| + |\delta(R)| \ge |\delta(R_{\max} \cap R)| + |\delta(R_{\max} \cup R)|$ $\geq \lambda$ $|\delta(R_{\max} \cup R)| \leq |\delta(R)|$ JL If $R \neq R_{\max} \cup R$, then $\delta(R)$ is not important.

Thus the important (X, Y)- and (R_{\max}, Y) -cuts are the same. \Rightarrow We can assume $X = R_{\max}$.

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving $X = R_{max}$ is either in the cut or not.

$$X = R_{\max} \frac{u}{v} \qquad Y$$

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving $X = R_{max}$ is either in the cut or not.

Branch 1: If $uv \in S$, then $S \setminus uv$ is an important (X, Y)-cut of size at most k - 1 in $G \setminus uv$.

Branch 2: If $uv \notin S$, then S is an important $(X \cup v, Y)$ -cut of size at most k in G.

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving $X = R_{max}$ is either in the cut or not.

Branch 1: If $uv \in S$, then $S \setminus uv$ is an important (X, Y)-cut of size at most k - 1 in $G \setminus uv$.

⇒ k decreases by one, λ decreases by at most 1. **Branch 2:** If $uv \notin S$, then S is an important $(X \cup v, Y)$ -cut of size at most k in G. ⇒ k remains the same, λ increases by 1.

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving $X = R_{max}$ is either in the cut or not.

Branch 1: If $uv \in S$, then $S \setminus uv$ is an important (X, Y)-cut of size at most k - 1 in $G \setminus uv$.

⇒ k decreases by one, λ decreases by at most 1. Branch 2: If $uv \notin S$, then S is an important $(X \cup v, Y)$ -cut of size at most k in G.

 \Rightarrow k remains the same, λ increases by 1.

The measure $2k - \lambda$ decreases in each step. \Rightarrow Height of the search tree $\leq 2k$ $\Rightarrow \leq 2^{2k} = 4^k$ important cuts of size at most k.

Theorem

There are at most 4^k important (X, Y)-cuts of size at most k.

Example: The bound 4^k is essentially tight.

Theorem

There are at most 4^k important (X, Y)-cuts of size at most k.

Example: The bound 4^k is essentially tight.

Any subtree with k leaves gives an important (X, Y)-cut of size k.

Theorem

There are at most 4^k important (X, Y)-cuts of size at most k.

Example: The bound 4^k is essentially tight.

Any subtree with k leaves gives an important (X, Y)-cut of size k.

Theorem

There are at most 4^k important (X, Y)-cuts of size at most k.

Example: The bound 4^k is essentially tight.

Any subtree with k leaves gives an important (X, Y)-cut of size k. The number of subtrees with k leaves is the Catalan number

$$C_{k-1} = \frac{1}{k} \binom{2k-2}{k-1} \ge 4^k / \operatorname{poly}(k).$$

Definition: A **multiway cut** of a set of terminals T is a set S of edges such that each component of $G \setminus S$ contains at most one vertex of T.

Polynomial for |T| = 2, but NP-hard for any fixed $|T| \ge 3$ [Dalhaus et al. 1994].

Definition: A multiway cut of a set of terminals T is a set S of edges such that each component of $G \setminus S$ contains at most one vertex of T.

Trivial to solve in polynomial time for fixed k (in time $n^{O(k)}$).

Theorem

MULTIWAY CUT can be solved in time $4^k \cdot n^{O(1)}$, i.e., it is fixed-parameter tractable (FPT) parameterized by the size k of the solution.

Intuition: Consider a $t \in T$. A subset of the solution S is a $(t, T \setminus t)$ -cut.

Intuition: Consider a $t \in T$. A subset of the solution S is a $(t, T \setminus t)$ -cut.

There are many such cuts.

Intuition: Consider a $t \in T$. A subset of the solution *S* is a $(t, T \setminus t)$ -cut.

There are many such cuts.

Intuition: Consider a $t \in T$. A subset of the solution S is a $(t, T \setminus t)$ -cut.

There are many such cuts.

But a cut farther from t and closer to $T \setminus t$ seems to be more useful.

$\ensuremath{\operatorname{MULTIWAY}}\xspace$ CUT and important cuts

Pushing Lemma

Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.
$\ensuremath{\operatorname{MULTIWAY}}\xspace$ CUT and important cuts

Pushing Lemma

Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Proof: Let *R* be the vertices reachable from *t* in $G \setminus S$ for a solution *S*.

$\ensuremath{\mathrm{MULTIWAY}}\xspace$ CUT and important cuts

Pushing Lemma

Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Proof: Let *R* be the vertices reachable from *t* in $G \setminus S$ for a solution *S*.

 $\delta(R)$ is not important, then there is an important cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$. Replace S with $S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \leq |S|$

$\ensuremath{\mathrm{MULTIWAY}}\xspace$ CUT and important cuts

Pushing Lemma

Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Proof: Let *R* be the vertices reachable from *t* in $G \setminus S$ for a solution *S*.

 $\delta(R)$ is not important, then there is an important cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \le |\delta(R)|$. Replace *S* with $S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \le |S|$

S' is a multiway cut: (1) There is no t-u path in $G \setminus S'$ and (2) a u-v path in $G \setminus S'$ implies a t-u path, a contradiction.

$\ensuremath{\mathrm{MULTIWAY}}\xspace$ CUT and important cuts

Pushing Lemma

Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Proof: Let *R* be the vertices reachable from *t* in $G \setminus S$ for a solution *S*.

 $\delta(R)$ is not important, then there is an important cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \le |\delta(R)|$. Replace *S* with $S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \le |S|$

S' is a multiway cut: (1) There is no t-u path in $G \setminus S'$ and (2) a u-v path in $G \setminus S'$ implies a t-u path, a contradiction.

Algorithm for MULTIWAY CUT

- If every vertex of T is in a different component, then we are done.
- 2 Let $t \in T$ be a vertex that is not separated from every $T \setminus t$.
- Solution Branch on a choice of an important $(t, T \setminus t)$ cut S of size at most k.
- Set $G := G \setminus S$ and k := k |S|.
- **6** Go to step 1.

We branch into at most 4^k directions at most k times.

(Better analysis gives 4^k bound on the size of the search tree.)

MULTICUT

MULTICUTInput:Graph G, pairs $(s_1, t_1), \ldots, (s_\ell, t_\ell)$, integer kFind:A set S of edges such that $G \setminus S$ has no $s_i - t_i$ path for any i.

Theorem

MULTICUT can be solved in time $f(k, \ell) \cdot n^{O(1)}$ (FPT parameterized by combined parameters k and ℓ).

Multicut

MULTICUTInput:Graph G, pairs $(s_1, t_1), \ldots, (s_{\ell}, t_{\ell})$, integer kFind:A set S of edges such that $G \setminus S$ has no $s_i - t_i$ path for any i.

Theorem

MULTICUT can be solved in time $f(k, \ell) \cdot n^{O(1)}$ (FPT parameterized by combined parameters k and ℓ).

Proof: The solution partitions $\{s_1, t_1, \ldots, s_\ell, t_\ell\}$ into components. Guess this partition, contract the vertices in a class, and solve MULTIWAY CUT.

Theorem [Bousquet, Daligault, Thomassé 2011] [M., Razgon 2011] MULTICUT is FPT parameterized by the size k of the solution.

Directed graphs

Definition: $\vec{\delta}(R)$ is the set of edges leaving *R*.

Observation: Every inclusionwise-minimal directed (X, Y)-cut S can be expressed as $S = \vec{\delta}(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$.

Definition: A minimal (X, Y)-cut $\vec{\delta}(R)$ is **important** if there is no (X, Y)-cut $\vec{\delta}(R')$ with $R \subset R'$ and $|\vec{\delta}(R')| \leq |\vec{\delta}(R)|$.

Directed graphs

Definition: $\vec{\delta}(R)$ is the set of edges leaving *R*.

Observation: Every inclusionwise-minimal directed (X, Y)-cut S can be expressed as $S = \vec{\delta}(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$.

Definition: A minimal (X, Y)-cut $\vec{\delta}(R)$ is **important** if there is no (X, Y)-cut $\vec{\delta}(R')$ with $R \subset R'$ and $|\vec{\delta}(R')| \leq |\vec{\delta}(R)|$.

Directed graphs

Definition: $\vec{\delta}(R)$ is the set of edges leaving *R*.

Observation: Every inclusionwise-minimal directed (X, Y)-cut S can be expressed as $S = \vec{\delta}(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$. **Definition:** A minimal (X, Y)-cut $\vec{\delta}(R)$ is **important** if there is no (X, Y)-cut $\vec{\delta}(R')$ with $R \subset R'$ and $|\vec{\delta}(R')| < |\vec{\delta}(R)|$.

The proof for the undirected case goes through for the directed case:

Theorem

There are at most 4^k important directed (X, Y)-cuts of size at most k.

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)

Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Directed counterexample:

Unique solution with k = 1 edges, but it is not an important cut (boundary of $\{s, a\}$, but the boundary of $\{s, a, b\}$ has same size).

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)

Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Directed counterexample:

Unique solution with k = 1 edges, but it is not an important cut (boundary of $\{s, a\}$, but the boundary of $\{s, a, b\}$ has same size).

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)

Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Directed counterexample:

Unique solution with k = 1 edges, but it is not an important cut (boundary of $\{s, a\}$, but the boundary of $\{s, a, b\}$ has same size).

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)

Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Problem in the undirected proof:

Replacing *R* by *R'* cannot create a $t \rightarrow u$ path, but can create a $u \rightarrow t$ path.

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)

Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Using additional techniques, one can show:

Theorem [Chitnis, Hajiaghayi, M. 2011]

DIRECTED MULTIWAY CUT is FPT parameterized by the size k of the solution.

DIRECTED MULTICUT Input: Graph G, pairs $(s_1, t_1), \ldots, (s_{\ell}, t_{\ell})$, integer k Find: A set S of edges such that $G \setminus S$ has no $s_i \to t_i$ path for any *i*.

Theorem [M. and Razgon 2011]

DIRECTED MULTICUT is W[1]-hard parameterized by k.

DIRECTED MULTICUT Input: Graph G, pairs $(s_1, t_1), \ldots, (s_{\ell}, t_{\ell})$, integer k Find: A set S of edges such that $G \setminus S$ has no $s_i \to t_i$ path for any *i*.

Theorem [M. and Razgon 2011]

DIRECTED MULTICUT is W[1]-hard parameterized by k.

But the case $\ell = 2$ can be reduced to DIRECTED MULTIWAY CUT:

DIRECTED MULTICUT Input: Graph G, pairs $(s_1, t_1), \ldots, (s_{\ell}, t_{\ell})$, integer k Find: A set S of edges such that $G \setminus S$ has no $s_i \to t_i$ path for any *i*.

Theorem [M. and Razgon 2011]

DIRECTED MULTICUT is W[1]-hard parameterized by k.

But the case $\ell = 2$ can be reduced to DIRECTED MULTIWAY CUT:

DIRECTED MULTICUT Input: Graph G, pairs $(s_1, t_1), \ldots, (s_{\ell}, t_{\ell})$, integer k Find: A set S of edges such that $G \setminus S$ has no $s_i \to t_i$ path for any *i*.

Theorem [M. and Razgon 2011]

DIRECTED MULTICUT is W[1]-hard parameterized by k.

But the case $\ell = 2$ can be reduced to DIRECTED MULTIWAY CUT:

DIRECTED MULTICUT Input: Graph G, pairs $(s_1, t_1), \ldots, (s_{\ell}, t_{\ell})$, integer k Find: A set S of edges such that $G \setminus S$ has no $s_i \to t_i$ path for any *i*.

Theorem [M. and Razgon 2011]

DIRECTED MULTICUT is W[1]-hard parameterized by k.

Corollary

DIRECTED MULTICUT with $\ell = 2$ is FPT parameterized by the size k of the solution.

?

Open: Is DIRECTED MULTICUT with $\ell = 3$ FPT? **Open:** Is there an $f(k, \ell) \cdot n^{O(1)}$ algorithm for DIRECTED MULTICUT?

Skew Multicut

SKEW MULTICUT Input: Graph G, pairs $(s_1, t_1), \ldots, (s_{\ell}, t_{\ell})$, integer k Find: A set S of k directed edges such that $G \setminus S$ contains no $s_i \to t_j$ path for any $i \ge j$.

Skew Multicut

SKEW MULTICUT Input: Graph G, pairs $(s_1, t_1), \ldots, (s_{\ell}, t_{\ell})$, integer k **Find:** A set S of k directed edges such that $G \setminus S$ contains no $s_i \to t_j$ path for any $i \ge j$.

Pushing Lemma

SKEW MULTCUT problem has a solution S that contains an important $(s_{\ell}, \{t_1, \ldots, t_{\ell}\})$ -cut.

Skew Multicut

SKEW MULTICUT Input: Graph G, pairs $(s_1, t_1), \ldots, (s_{\ell}, t_{\ell})$, integer k **Find:** A set S of k directed edges such that $G \setminus S$ contains no $s_i \to t_j$ path for any $i \ge j$.

Pushing Lemma

SKEW MULTCUT problem has a solution S that contains an important $(s_{\ell}, \{t_1, \ldots, t_{\ell}\})$ -cut.

Theorem [Chen, Liu, Lu, O'Sullivan, Razgon 2008] SKEW MULTICUT can be solved in time $4^k \cdot n^{O(1)}$.

DIRECTED FEEDBACK VERTEX SET

DIRECTED FEEDBACK VERTEX/EDGE SET Input: Directed graph *G*, integer *k* Find: A set *S* of *k* vertices/edges such that $G \setminus S$ is acyclic.

Note: Edge and vertex versions are equivalent, we will consider the edge version here.

Theorem [Chen, Liu, Lu, O'Sullivan, Razgon 2008] DIRECTED FEEDBACK EDGE SET is FPT parameterized by the size k of the solution.

Solution uses the technique of **iterative compression** introduced by [Reed, Smith, Vetta 2004].

Directed Feedback Edge Set Compression		
Input:	Directed graph G , integer k ,	
	a set W of $k + 1$ edges such that $G \setminus W$	
	is acyclic	
Find:	A set S of k edges such that $G \setminus S$ is acyclic.	

Easier than the original problem, as the extra input W gives us useful structural information about G.

Lemma

The compression problem is FPT parameterized by k.

Directed Feedback Edge Set Compression		
Input:	Directed graph G , integer k ,	
	a set W of $k + 1$ vertices such that $G \setminus W$	
	IS acyclic A set S of k odges such that $C \setminus S$ is	
Find:	acyclic.	

Easier than the original problem, as the extra input W gives us useful structural information about G.

Lemma

The compression problem is FPT parameterized by k.

A useful trick for edge deletion problems: we define the compression problem in a way that a solution of k + 1 vertices are given and we have to find a solution of k edges.

Proof: Let $W = \{w_1, \dots, w_{k+1}\}$ Let us split each w_i into an edge $\overrightarrow{t_i s_i}$.

By guessing the order of {w₁,..., w_{k+1}} in the acyclic ordering of G \ S, we can assume that w₁ < w₂ < ··· < w_{k+1} in G \ S [(k + 1)! possibilities].

Proof: Let $W = \{w_1, \dots, w_{k+1}\}$ Let us split each w_i into an edge $\overrightarrow{t_i s_i}$.

Claim:

 $G \setminus S$ is acyclic and has an ordering with $w_1 < w_2 < \cdots < w_{k+1}$ $\downarrow \\ S$ covers every $s_i \rightarrow t_j$ path for every $i \ge j$ $\downarrow \\ G \setminus S$ is acyclic

Proof: Let $W = \{w_1, \dots, w_{k+1}\}$ Let us split each w_i into an edge $\overrightarrow{t_i s_i}$.

Claim:

 $G \setminus S$ is acyclic and has an ordering with $w_1 < w_2 < \cdots < w_{k+1}$ $\downarrow \\ S$ covers every $s_i \rightarrow t_j$ path for every $i \ge j$ $\downarrow \\ G \setminus S$ is acyclic

Proof: Let $W = \{w_1, \dots, w_{k+1}\}$ Let us split each w_i into an edge $\overrightarrow{t_i s_i}$.

Claim:

 $G \setminus S$ is acyclic and has an ordering with $w_1 < w_2 < \cdots < w_{k+1}$ $\downarrow \\ S$ covers every $s_i \rightarrow t_j$ path for every $i \ge j$ $\downarrow \\ G \setminus S$ is acyclic

⇒ We can solve the compression problem by (k + 1)! applications of SKEW MULTICUT.

We have given a $f(k)n^{O(1)}$ algorithm for the following problem:

Directed Feedback Edge Set Compression		
Input:	Directed graph G , integer k ,	
	a set W of $k + 1$ vertices such that $G \setminus W$	
Find:	A set S of k edges such that $G \setminus S$ is	
	acyclic.	

Nice, but how do we get a solution W of size k + 1?

We have given a $f(k)n^{O(1)}$ algorithm for the following problem:

Directed Feedback Edge Set Compression		
Input:	Directed graph G , integer k ,	
	a set W of $k + 1$ vertices such that $G \setminus W$	
	is acyclic	
Find:	A set S of k edges such that $G \setminus S$ is acyclic.	

Nice, but how do we get a solution W of size k + 1?

We get it for free!

Powerful technique: **iterative compression** (introduced by [Reed, Smith, Vetta 2004] for BIPARTITE DELETION).

Let v_1, \ldots, v_n be the edges of G and let G_i be the subgraph induced by $\{v_1, \ldots, v_i\}$.

For every i = 1, ..., n, we find a set S_i of at most k edges such that $G_i \setminus S_i$ is acyclic.

Let v_1, \ldots, v_n be the edges of G and let G_i be the subgraph induced by $\{v_1, \ldots, v_i\}$.

For every i = 1, ..., n, we find a set S_i of at most k edges such that $G_i \setminus S_i$ is acyclic.

- For i = 1, we have the trivial solution $S_i = \emptyset$.
- Suppose we have a solution S_i for G_i . Let W_i contain the head of each edge in S_i . Then $W_i \cup \{v_{i+1}\}$ is a set of at most k + 1 vertices whose removal makes G_{i+1} acyclic.
- Use the compression algorithm for G_{i+1} with the set $W_i \cup \{v_{i+1}\}$.
 - If there is no solution of size k for G_{i+1} , then we can stop.
 - Otherwise the compression algorithm gives a solution S_{i+1} of size k for G_{i+1}.

We call the compression algorithm n times, everything else is polynomial.

 \Rightarrow Directed Feedback Edge Set is FPT.

Outline

So far we have seen:

- Definition of important cuts.
- Combinatorial bound on the number of important cuts.
- Pushing argument: we can assume that the solution contains an important cut. Solves MULTIWAY CUT, SKEW MULTIWAY CUT.
- Iterative compression reduces DIRECTED FEEDBACK VERTEX SET to SKEW MULTIWAY CUT.

Next:

• Randomized sampling of important separators.

Randomized sampling of important cuts

A new technique used by several results:

- MULTICUT [M. and Razgon STOC 2011]
- Clustering problems [Lokshtanov and M. ICALP 2011]
- DIRECTED MULTIWAY CUT [Chitnis, Hajiaghayi, M. SODA 2012]
- DIRECTED MULTICUT in DAGs [Kratsch, Pilipczuk, Pilipczuk, Wahlström ICALP 2012]
- DIRECTED SUBSET FEEDBACK VERTEX SET [Chitnis, Cygan, Hajiaghayi, M. ICALP 2012]
- $\bullet~{\rm PARITY}~{\rm MULTIWAY}~{\rm CUT}$ [Lokshtanov, Ramanujan ICALP 2012]
- List homomorphism removal problems [Chitnis, Egri, and M. ESA 2013]
- ... more work in progress.
Clustering

We want to partition objects into clusters subject to certain requirements (typically: related objects are clustered together, bounds on the number or size of the clusters etc.)

(p, q)-CLUSTERING

Input: A graph G, integers p, q. A partition $(V_1, ..., V_m)$ of V(G) such that for every *i* Find: • $|V_i| \le p$ and

• $\delta(V_i) \leq q$.

 $\delta(V_i)$: number of edges leaving V_i .

Theorem [Lokshtanov and M. 2011]

(p,q)-CLUSTERING can be solved in time $2^{O(q)} \cdot n^{O(1)}$.

Good cluster: size at most *p* and at most *q* edges leaving it. **Necessary condition:** Every vertex is contained in a good cluster.

Good cluster: size at most p and at most q edges leaving it.

Necessary condition:

Every vertex is contained in a good cluster.

But surprisingly, this is also a sufficient condition!

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a good cluster.

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a good cluster.

Proof: Find a collection of good clusters covering every vertex and having minimum total size. Suppose two clusters intersect.

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a good cluster.

Proof: Find a collection of good clusters covering every vertex and having minimum total size. Suppose two clusters intersect.

 $\delta(X) + \delta(Y) \ge \delta(X \setminus Y) + \delta(Y \setminus X)$ (posimodularity)

 $\Rightarrow \text{ either } \delta(X) \geq \delta(X \setminus Y) \text{ or } \delta(Y) \geq \delta(Y \setminus X) \text{ holds}.$

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a good cluster.

Proof: Find a collection of good clusters covering every vertex and having minimum total size. Suppose two clusters intersect.

 $\delta(X) + \delta(Y) \ge \delta(X \setminus Y) + \delta(Y \setminus X)$ (posimodularity)

If $\delta(X) \ge \delta(X \setminus Y)$, replace X with $X \setminus Y$, strictly decreasing the total size of the clusters.

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a good cluster.

Proof: Find a collection of good clusters covering every vertex and having minimum total size. Suppose two clusters intersect.

 $\begin{aligned} \delta(X) + \delta(Y) \geq \delta(X \setminus Y) + \delta(Y \setminus X) \\ (\text{posimodularity}) \end{aligned}$

If $\delta(Y) \ge \delta(Y \setminus X)$, replace Y with $Y \setminus X$, strictly decreasing the total size of the clusters.

QED

Finding a good cluster

We have seen:

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a good cluster.

All we have to do is to check if a given vertex v is in a good cluster. Trivial to do in time $n^{O(q)}$.

Finding a good cluster

We have seen:

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a good cluster.

All we have to do is to check if a given vertex v is in a good cluster. Trivial to do in time $n^{O(q)}$.

We prove next:

Lemma

We can check in time $2^{O(q)} \cdot n^{O(1)}$ if v is in a good cluster.

Definition

- $v \notin X$,
- there is no set $X \subset X'$ with $v \notin X$ and $\delta(X') \leq \delta(X)$.

Definition

- $v \notin X$,
- there is no set $X \subset X'$ with $v \notin X$ and $\delta(X') \leq \delta(X)$.

Definition

- $v \notin X$,
- there is no set $X \subset X'$ with $v \notin X$ and $\delta(X') \leq \delta(X)$.

Definition

- $v \notin X$,
- there is no set $X \subset X'$ with $v \notin X$ and $\delta(X') \leq \delta(X)$.

Definition

- $v \notin X$,
- there is no set $X \subset X'$ with $v \notin X$ and $\delta(X') \leq \delta(X)$.

Definition

Fix a distinguished vertex v in a graph G. A set $X \subseteq V(G)$ is an important set if

- $v \notin X$,
- there is no set $X \subset X'$ with $v \notin X$ and $\delta(X') \leq \delta(X)$.

Observation: X is an important set if and only if $\delta(X)$ is an important (x, v)-cut for every $x \in X$.

Consequence: Every vertex is contained in at most 4^k important sets.

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

If C is a good cluster of minimum size containing v, then every component of $G \setminus C$ is an important set.

Thus *C* can be obtained by removing at most *q* important sets from V(G) (but there are $n^{O(q)}$ possibilities, we cannot try all of them).

Random sampling

- Let X be the set of all important sets of boundary size at most q in G.
- Let $\mathcal{X}' \subseteq \mathcal{X}$ contain each set with probability $\frac{1}{2}$ independently.
- Let $Z = \bigcup_{X \in \mathcal{X}'} X$.
- Let B be the set of vertices in C with neighbors outside C.

Lemma

Let *C* be a good cluster of minimum size containing *v*. With probability $2^{-2^{O(q)}}$, *Z* covers $G \setminus C$ and is disjoint from *B*.

Random sampling

- Let X be the set of all important sets of boundary size at most q in G.
- Let $\mathcal{X}' \subseteq \mathcal{X}$ contain each set with probability $\frac{1}{2}$ independently.
- Let $Z = \bigcup_{X \in \mathcal{X}'} X$.
- Let B be the set of vertices in C with neighbors outside C.

Lemma

Let *C* be a good cluster of minimum size containing *v*. With probability $2^{-2^{O(q)}}$, *Z* covers $G \setminus C$ and is disjoint from *B*.

Random sampling

Lemma

Let *C* be a good cluster of minimum size containing *v*. With probability $2^{-2^{O(q)}}$, *Z* covers $G \setminus C$ and is disjoint from *B*.

Two events:

(E1) Z covers G \ C. Each of the at most q components is an important set ⇒ all of them are selected by probability at least 2^{-q}.
(E2) Z is disjoint from B. Each vertex of B is in at most 4^q members of X ⇒ all of them are selected by probability at least 2^{-q4^q}.

The two events are independent (involve different sets of \mathcal{X}), thus the claimed probability follows.

Finding good clusters

Let C be a good cluster of minimum size containing ν and assume

- $G \setminus C$ is covered by Z, and
- Z is disjoint from B (hence no edge going out of C is contained in Z).

Where is the good cluster C in the figure?

Finding good clusters

Let C be a good cluster of minimum size containing v and assume

- $G \setminus C$ is covered by Z, and
- Z is disjoint from B (hence no edge going out of C is contained in Z).

Where is the good cluster C in the figure?

Observe: Components of Z are either fully in the cluster or fully outside the cluster. What is this problem?

Finding good clusters

Let C be a good cluster of minimum size containing ν and assume

- $G \setminus C$ is covered by Z, and
- Z is disjoint from B (hence no edge going out of C is contained in Z).

KNAPSACK!

Finding good clusters by $\operatorname{KNAPSACK}$

We interpret the componenents V_1, \ldots, V_t of G[Z] as items:

- V_i has value $\delta(V_i)$ and
- V_i has weight $|V_i|$.

The goal is to select items with total value at least $\delta(Z) - q$ and total weight at most $p - |V(G) \setminus Z|$.

Finding good clusters by KNAPSACK

Standard DP solves it in polynomial time: let T[i, j] be the maximum value of a subset of the first *i* items having total weight at most *j*. **Recurrence:**

$$T[i, j] = \max\{T[i - 1, j], T[i - 1, j - |V_i|] + \delta(V_i)\}$$

Summary of algorithm

- It is sufficient to check for each vertex v if it is in a good cluster.
- Enumerate all the important sets.
- Let Z be the union of random important sets.
- The solution is obtained by extending $G \setminus Z$ with some of the components of G[Z].
- Knapsack.

(p, q)-CLUSTERING

- With a slightly different probability distribution, one can reduce the error probability to $2^{-O(q)}$.
- Derandomization is possible using standard techniques, but nontrivial to obtain 2^{O(q)} running time.
- Other variants: maximum degree in the cluster is at most *p*, etc.

Summary

- A simple (but essentially tight) bound on the number of important cuts.
- Algorithmic results: FPT algorithms for
 - MULTIWAY CUT in undirected graphs,
 - $\bullet~S{\rm KEW}~MULTICUT$ in directed graphs,
 - \bullet Directed Feedback Vertex/Edge Set, and
 - (p, q)-CLUSTERING.