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Overview

Main message

Small separators in graphs have interesting extremal properties that
can be exploited in combinatorial and algorithmic results.

@ Bounding the number of “important” cuts.

e Edge/vertex versions, directed/undirected versions.
@ Algorithmic applications: FPT algorithm for

o MULTIWAY CUT,
e DIRECTED FEEDBACK VERTEX SET, and
o (p, q)-CLUSTERING.



Important cuts

Definition: 0(R) is the set of edges with exactly one endpoint in R.
Definition: A set S of edges is a minimal (X, Y)-cut if there is no
X — Y path in G\ S and no proper subset of S breaks every X — Y
path.

Observation: Every minimal (X, Y)-cut S can be expressed as S =
d(R) for some X C Rand RNY = .
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Important cuts

Definition: A minimal (X, Y)-cut §(R) is important if there is no
(X, Y)-cut 6(R") with R € R" and [6(R’)| < |6(R)|.

Note: Can be checked in polynomial time if a cut is important.
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Important cuts
The number of important cuts can be exponentially large.

Example:

This graph has 24/2 important (X, Y)-cuts of size at most k.



Important cuts
The number of important cuts can be exponentially large.

Example:

This graph has 24/2 important (X, Y)-cuts of size at most k.

Theorem

There are at most 4% important (X, Y)-cuts of size at most k.

(Proof is implicit in [Chen, Liu, Lu 2007], worse bound in [M. 2004].)
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Submodularity

Fact: The function ¢ is submodaular: for arbitrary sets A, B,

B(A) + [6(B)] = [6(ANB)| + [6(AUB)
1 1 0 0

Proof: Determine separately the contribution of the different types
of edges.

/\
@



Submodularity

Lemma

Let A be the minimum (X, Y)-cut size. There is a unique maximal
Rmax = X such that §(Rmax) is an (X, Y)-cut of size \.



Submodularity

Lemma

Let A be the minimum (X, Y)-cut size. There is a unique maximal
Rmax = X such that §(Rmax) is an (X, Y)-cut of size \.

Proof: Let Ry, R, 2 X be two sets such that §(Ry), (Rz) are
(X, Y)-cuts of size \.

[0(R1)| + [6(R2)| = [6(RL N R2)| + [6(R1 U Ra)|
A A > A

= |(5(R1 U R2)| <A\

o
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Note: Analogous result holds for a unique minimal Ry;,.



Important cuts
Theorem
There are at most 4% important (X, Y)-cuts of size at most k.
Proof: Let A\ be the minimum (X, Y)-cut size and let §(Rmax) be
the unique important cut of size )\ such that Ryayx is maximal.

(1) We show that Rmax C R for every important cut 6(R).



Important cuts

Theorem

There are at most 4% important (X, Y)-cuts of size at most k.

Proof: Let A\ be the minimum (X, Y)-cut size and let §(Rmax) be
the unique important cut of size )\ such that Ryayx is maximal.

(1) We show that Rmax C R for every important cut 6(R).
By the submodularity of §:
A > A
I
|0(Rmax U R)| < [0(R)|
U
If R # Rmax U R, then 6(R) is not important.



Important cuts

Theorem

There are at most 4% important (X, Y)-cuts of size at most k.

Proof: Let A\ be the minimum (X, Y)-cut size and let §(Rmax) be
the unique important cut of size )\ such that Ryayx is maximal.

(1) We show that Rmax C R for every important cut 6(R).

By the submodularity of §:
0(Rmax)| + [0(R)| = [6(Rmax N R)| + [6(Rmax U R)
A > A
I
|0(Rmax U R)| < [0(R)|

I
If R # Rmax U R, then 6(R) is not important.

Thus the important (X, Y)- and (Rmax, Y)-cuts are the same.
= We can assume X = Rnax.



Important cuts
(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rnax is either in the cut or not.

ondf
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size at most k — 1 in G \ uv.

Branch 2: If uv ¢ S, then S is an important
(X Uv, Y)-cut of size at most k in G.
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Important cuts
(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Ryax is either in the cut or not.

ondf

Branch 1: If uv € S, then S\ uv is an important (X, Y)-cut of
size at most k — 1 in G \ uv.

= k decreases by one, \ decreases by at most 1.

Branch 2: If uv ¢ S, then S is an important
(X Uv, Y)-cut of size at most k in G.

= k remains the same, \ increases by 1.
The measure 2k — \ decreases in each step.

= Height of the search tree < 2k
= < 22k — gk important cuts of size at most k.
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Theorem
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Example: The bound 4 is essentially tight.
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Important cuts

Theorem

There are at most 4% important (X, Y)-cuts of size at most k.

Example: The bound 4 is essentially tight.

(dedodododedodede )Y

Any subtree with k leaves gives an important (X, Y)-cut of size k.
The number of subtrees with k leaves is the Catalan number

1(2k-2 B
Ck—1k<k_1> > 4% /poly(k).




MuLTIWAY CUT

Definition: A multiway cut of a set of terminals T is a set S of
edges such that each component of G \ S contains at most one

vertex of T.
Mvurriway Cut t.1 11 ,_;2
Graph G, set T of vertices, inte- .,
Input: .
ger k - -
Find: A multiway cut S of at most k | [,y ® .. [T®
" edges. - .
od °

Polynomial for | T| = 2, but NP-hard for any fixed | T| > 3 [Dalhaus
et al. 1994].
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MuLTIWAY CUT

Definition: A multiway cut of a set of terminals T is a set S of
edges such that each component of G \ S contains at most one

vertex of T.
Murriway CuUT t.l — t.2
Graph G, set T of vertices, inte- T L
Input: \
ger k 3 IF
Find: A multiway cut S of at most k | [, ® . [T®
© edges. 4 4
[ J [}

Trivial to solve in polynomial time for fixed k (in time n©(¥)),

Theorem

MULTIWAY CUT can be solved in time 4% - n°(1) ie. it is

fixed-parameter tractable (FPT) parameterized by the size k of the
solution.

10



MuLTIWAY CUT

Intuition: Consider a t € T. A subset of the solution S is a
(t, T\ t)-cut.

@ —~+
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MuLTIWAY CUT

Intuition: Consider a t € T. A subset of the solution S is a
(t, T\ t)-cut.

e o
I
t = [ ]
° \\\
il
11
o o

There are many such cuts.

But a cut farther from t and closer to T \ t seems to be more
useful.
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MULTIWAY CUT and important cuts

Pushing Lemma

Let t € T. The MuLTIwWAY CUT problem has a solution S that
contains an important (t, T\ t)-cut.
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Pushing Lemma

Let t € T. The MuLTIwWAY CUT problem has a solution S that
contains an important (t, T\ t)-cut.

Proof: Let R be the vertices reachable from tin G\ S for a
solution S.

~
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MULTIWAY CUT and important cuts

Pushing Lemma

Let t € T. The MuLTIwWAY CUT problem has a solution S that
contains an important (t, T\ t)-cut.

Proof: Let R be the vertices reachable from tin G\ S for a

solution S.
[ ] [ )
t °
[ ]
[ )
R
[ ] [ ]
- 1

d(R) is not important, then there is an important cut 6(R’) with
R C R"and |6(R")| < |6(R)|. Replace S with
S:=(S\(R)UNR) = |5 <|S]
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MULTIWAY CUT and important cuts

Pushing Lemma

Let t € T. The MuLTIwWAY CUT problem has a solution S that
contains an important (t, T\ t)-cut.

Proof: Let R be the vertices reachable from tin G\ S for a
solution S.

d(R) is not important, then there is an important cut 6(R’) with
R C R"and |6(R")| < |6(R)|. Replace S with
S':=(S\4(R)USR) = |5 <|S]

S’ is a multiway cut: (1) There is no t-u path in G\ S" and (2) a
u-v path in G\ S’ implies a t-u path, a contradiction.
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MULTIWAY CUT and important cuts

Pushing Lemma

Let t € T. The MuLTIwWAY CUT problem has a solution S that
contains an important (t, T\ t)-cut.

Proof: Let R be the vertices reachable from tin G\ S for a
solution S.

d(R) is not important, then there is an important cut 6(R’) with
R C R"and |6(R")| < |6(R)|. Replace S with
S:=(S\(R)UNR) = |5 <|S]

S’ is a multiway cut: (1) There is no t-u path in G\ S" and (2) a

u-v path in G\ S’ implies a t-u path, a contradiction. 1



Algorithm for MULTIWAY CUT

© |If every vertex of T is in a different component, then we are
done.

@ Let t € T be a vertex that is not separated from every T \ t.

© Branch on a choice of an important (t, T \ t) cut S of size at
most k.

Q Set G:=G\ Sand k:=k—|S|.
© Go to step 1.

We branch into at most 4% directions at most k times.

(Better analysis gives 4 bound on the size of the search tree.)

13



MUuULTICUT

MurricuT
Input:  Graph G, pairs (s1,t1), ..., (s, t), integer k
A set S of edges such that G \ S has no s;-t; path

Find: .
for any /.

Theorem

MULTICUT can be solved in time f(k,¢) - n®®) (FPT
parameterized by combined parameters k and /).
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MUuULTICUT

MurLTICUT
Input:  Graph G, pairs (s1,t1), ..., (s, t), integer k

. A set S of edges such that G \ S has no s;-t; path
Find: .
for any /.

Theorem

MULTICUT can be solved in time f(k,¢) - n®®) (FPT
parameterized by combined parameters k and /).

Proof: The solution partitions {si, t1,..., s, t;} into components.
Guess this partition, contract the vertices in a class, and solve
MuLrtiwAay CUT.

Theorem [Bousquet, Daligault, Thomassé 2011] [M., Razgon 2011]
MurTicuT is FPT parameterized by the size k of the solution.
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Directed graphs

—

Definition: §(R) is the set of edges leaving R.
Observation: Every inclusionwise-minimal directed (X, Y)-cut S

—

can be expressed as S = §(R) for some X C Rand RNY = (.

-

Definition: A minimal (X, Y)-cut §(R) is important if there is no

- = —

(X, Y)-cut 5(R') with R C R’ and |5(R")| < |6(R)!.
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Directed graphs

—

Definition: §(R) is the set of edges leaving R.
Observation: Every inclusionwise-minimal directed (X, Y)-cut S

—

can be expressed as S = §(R) for some X C Rand RNY = (.

-

Definition: A minimal (X, Y)-cut §(R) is important if there is no

- = —

(X, Y)-cut 6(R") with R C R and |6(R")| < [6(R)].
The proof for the undirected case goes through for the directed case:

Theorem

There are at most 4% important directed (X, Y)-cuts of size at
most k.

15



DIRECTED MULTIWAY CUT

The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)

Let t € T. The MULTIWAY CUT problem has a solution S that
contains an important (t, T \ t)-cut.

Directed counterexample:

a
f<>

Unique solution with k = 1 edges, but it is not an important cut
(boundary of {s, a}, but the boundary of {s. a, b} has same size).
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DIRECTED MULTIWAY CUT

The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)

Let t € T. The MULTIWAY CUT problem has a solution S that
contains an important (¢, T \ t)-cut.

Problem in the undirected proof:

co

Replacing R by R’ cannot create a t — u path, but can create a
u — t path.

16



DIRECTED MULTIWAY CUT
The undirected approach does not work: the pushing lemma is not

true.
Pushing Lemma (for undirected graphs)

Let t € T. The MULTIWAY CUT problem has a solution S that
contains an important (¢, T \ t)-cut.

Using additional techniques, one can show:

Theorem [Chitnis, Hajiaghayi, M. 2011]

DIRECTED MULTIWAY CUT is FPT parameterized by the size k of
the solution.

16



DIRECTED MULTICUT

DIRECTED MULTICUT
Input:  Graph G, pairs (s1,t1), ..., (ss, t), integer k

. A set S of edges such that G \ S has no s; — t; path
Find )
for any i.

Theorem [M. and Razgon 2011]
DIRECTED MuLTICUT is W[1]-hard parameterized by k.
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DIRECTED MULTICUT
Input:  Graph G, pairs (s1,t1), ..., (ss, t), integer k

. A set S of edges such that G \ S has no s; — t; path
Find )
for any i.

Theorem [M. and Razgon 2011]
DIRECTED MULTICUT is W[1]-hard parameterized by k.

But the case ¢ = 2 can be reduced to DIRECTED MULTIWAY CUT:

% 2
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DIRECTED MULTICUT

DIRECTED MULTICUT
Input:  Graph G, pairs (s1,t1), ..., (ss, t), integer k
Find A set S of edges such that G \ S has no s; — t; path
for any i.

Theorem [M. and Razgon 2011]

DIRECTED MULTICUT is W[1]-hard parameterized by k.

Corollary

DIRECTED MULTICUT with ¢ = 2 is FPT parameterized by the
size k of the solution.
Open: Is DIRECTED MULTICUT with / =3 FPT?

Open: Is there an f(k,¢) - n°1) algorithm for DIRECTED
MucrricuT?



SKEW MULTICUT

SKEW MULTICUT
Input:

Find:

Graph G, pairs (s1,t1), ..
A set S of k directed edges such that G\ S con-
tains no s; — t; path for any / > j.

. (s¢, tp), integer k

18



SKEW MULTICUT

SKEW MuLTICUT
Input:  Graph G, pairs (s1,t1), ..., (s, t), integer k

Find: A set S of k directed edges such that G\ S con-
" tains no s; — t; path for any i > j.

Pushing Lemma

SKEW MULTCUT problem has a solution S that contains an
important (sg, {t1, ..., ty})-cut.

18



SKEW MULTICUT

SKEW MuLTICUT
Input:  Graph G, pairs (s1,t1), ..., (s, t), integer k

A set S of k directed edges such that G\ S con-

Find: . C
tains no s; — t; path for any / > j.

S1 @esrsssansass Jun t

1 »f'::'l‘. 1

Pushing Lemma

SKEW MULTCUT problem has a solution S that contains an
important (sg, {t1, ..., ty})-cut.

Theorem [Chen, Liu, Lu, O'Sullivan, Razgon 2008]

SKEW MULTICUT can be solved in time 4% . n©(1).



DIRECTED FEEDBACK VERTEX SET

DIRECTED FEEDBACK VERTEX/EDGE SET
Input: Directed graph G, integer k
Find A set S of k vertices/edges such that G \ S
is acyclic.

Note: Edge and vertex versions are equivalent, we will consider the
edge version here.

Theorem [Chen, Liu, Lu, O'Sullivan, Razgon 2008]

DIRECTED FEEDBACK EDGE SET is FPT parameterized by the
size k of the solution.

Solution uses the technique of Iterative compression introduced by
[Reed, Smith, Vetta 2004].

19



The compression problem

DIRECTED FEEDBACK EDGE SET COMPRESSION
Input: Directed graph G, integer k,

a set W of k4 1 edges such that G\ W

is acyclic

A set S of k edges such that G\ S is

Find: .
acyclic.

Easier than the original problem, as the extra input W gives us
useful structural information about G.

Lemma

The compression problem is FPT parameterized by k.

20



The compression problem

DIRECTED FEEDBACK EDGE SET COMPRESSION
Input: Directed graph G, integer k,

aset W of k 4 1 vertices such that G \ W
is acyclic
A set S of k edges such that G\ S is

Find: .
acyclic.

Easier than the original problem, as the extra input W gives us
useful structural information about G.

Lemma
The compression problem is FPT parameterized by k.

A useful trick for edge deletion problems: we define the
compression problem in a way that a solution of k + 1 vertices are
given and we have to find a solution of k edges.

20



The compression problem

Proof: Let W = {wy, ..., w1}
Let us split each w; into an edge t;s;.

L |/IJ

L/ ANV LS

t1 51 tr So t3S3 taS4
@ By guessing the order of {wi, ..., wy.1} in the acyclic
ordering of G\ S, we can assume that w; < wo < -+ < wy g
in G\ S [(k+ 1)! possibilities].

21



The compression problem

Proof: Let W = {wy, ..., w1}
Let us split each w; into an edge t;s;.

L |/IJ

L/ ANV LS

t1 51 tr So t3S3 taS4

Claim:

G\ S is acyclic and has an ordering with wy < wy <

4

S covers every s; — t; path for every / > j

4
G\ S is acyclic

T < Wi
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Let us split each w; into an edge t;s;.
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The compression problem

Proof: Let W = {wy, ..., w1}
Let us split each w; into an edge t;s;.

\ AR |/ j
ANV LS

t1 51 tr So t3S53 tgS4

Claim:

G\ S is acyclic and has an ordering with wy < wy < -+ < wyiq

4

S covers every s; — t; path for every / > j

4
G\ S is acyclic

= We can solve the compression problem by (k + 1)! applications
of SKEW MULTICUT.
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Iterative compression

We have given a f(k)n®®) algorithm for the following problem:

DIRECTED FEEDBACK EDGE SET COMPRESSION
Input: Directed graph G, integer k,

a set W of k + 1 vertices such that G \ W
is acyclic
A set S of k edges such that G\ S is

Find: :
acyclic.

Nice, but how do we get a solution W of size k + 17

22



Iterative compression

We have given a f(k)n®®) algorithm for the following problem:

DIRECTED FEEDBACK EDGE SET COMPRESSION
Input: Directed graph G, integer k,

a set W of k + 1 vertices such that G \ W

is acyclic

A set S of k edges such that G\ S is

Find: :
acyclic.

Nice, but how do we get a solution W of size k + 17
We get it for free!

Powerful technique: Iterative compression (introduced by [Reed,
Smith, Vetta 2004] for BIPARTITE DELETION).

22



Iterative compression

Let vq, ..., v, be the edges of G and let G; be the subgraph
induced by {v1,...,v;}.
For every i = 1,...,n, we find a set S; of at most k edges such

that G; \ S; is acyclic.

23



Iterative compression

Let vq, ..., v, be the edges of G and let G; be the subgraph
induced by {v1,...,v;}.
For every i = 1,...,n, we find a set S; of at most k edges such

that G; \ S; is acyclic.
@ For i = 1, we have the trivial solution S; = ().

@ Suppose we have a solution S; for G;. Let W; contain the head
of each edge in S;. Then W; U {vj;1} is a set of at most k + 1
vertices whose removal makes G;.1 acyclic.

@ Use the compression algorithm for G; 1 with the set
W; U {vis1}.

o If there is no solution of size k for G;,1, then we can stop.
o Otherwise the compression algorithm gives a solution S; ;1 of
size k for G;y1.

We call the compression algorithm n times, everything else is
polynomial.
= DIRECTED FEEDBACK EDGE SET is FPT.
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Outline

So far we have seen:

Definition of important cuts.

Combinatorial bound on the number of important cuts.

Pushing argument: we can assume that the solution contains
an important cut. Solves MULTIWAY CUT, SKEW
MurTriway CuUT.

Iterative compression reduces DIRECTED FEEDBACK
VERTEX SET to SKEW MULTIWAY CUT.

Next:

e Randomized sampling of important separators.
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Randomized sampling of important cuts

A new technique used by several results:

MurLTICUT [M. and Razgon STOC 2011]
Clustering problems [Lokshtanov and M. ICALP 2011]

DIRECTED MULTIWAY CUT [Chitnis, Hajiaghayi, M. SODA
2012]

DIRECTED MULTICUT in DAGs [Kratsch, Pilipczuk, Pilipczuk,
Wahlstrom ICALP 2012]

DIRECTED SUBSET FEEDBACK VERTEX SET [Chitnis,
Cygan, Hajiaghayi, M. ICALP 2012]

PARITY MULTIWAY CUT [Lokshtanov, Ramanujan ICALP 2012]

List homomorphism removal problems [Chitnis, Egri, and M.
ESA 2013]

. more work in progress.
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Clustering

We want to partition objects into clusters subject to certain

requirements (typically: related objects are clustered together,
bounds on the number or size of the clusters etc.)

(p, q)-CLUSTERING

Input: A graph G, integers p, g.
A partition (V4,..., Vi) of V(G) such that for every i
Find: e |Vi|<pand

e i(Vj)) <gq

0(V;): number of edges leaving V.
Theorem [Lokshtanov and M. 2011]

(p, g)-CLUSTERING can be solved in time 20(a) . nO(1)
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A sufficient and necessary condition

Good cluster: size at most p and at most g edges leaving it.

Necessary condition:

Every vertex is contained in a good cluster.

27



A sufficient and necessary condition

Good cluster: size at most p and at most g edges leaving it.

Necessary condition:

Every vertex is contained in a good cluster.

But surprisingly, this is also a sufficient condition!

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.
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A sufficient and necessary condition

Lemma

Graph G has a (p, g)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.
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A sufficient and necessary condition

Lemma

Graph G has a (p, g)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

X Y

I(X)+(Y)=0(X\Y)+(Y\X)
(posimodularity)

= either §(X) > o(X \ Y) or 6(Y) > o(Y \ X) holds.
28



A sufficient and necessary condition

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

X\Y

I(X)+(Y)=0(X\Y)+(Y\X)
(posimodularity)
If 5(X) > (X \ Y), replace X with X'\ Y,
strictly decreasing the total size of the clusters.
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A sufficient and necessary condition

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

X  Y\X

I(X)+(Y)=0(X\Y)+(Y\X)
(posimodularity)
If 5(Y) > o(Y \ X), replace Y with Y\ X,

strictly decreasing the total size of the clusters. QED W
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Finding a good cluster

We have seen:

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

All we have to do is to check if a given vertex v is in a good
cluster. Trivial to do in time n©(@).
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Finding a good cluster

We have seen:

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

All we have to do is to check if a given vertex v is in a good
cluster. Trivial to do in time n©(@).

We prove next:

Lemma

We can check in time 29(9) . n°() if v is in a good cluster.

29



Important sets

Definition
Fix a distinguished vertex v in a graph G. A set X C V(G) is an
important set if

o v¢&X,

o there is no set X C X" with v ¢ X and §(X’) < 6(X).
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Important sets

Definition
Fix a distinguished vertex v in a graph G. A set X C V(G) is an
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o v¢&X,
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Important sets

Definition
Fix a distinguished vertex v in a graph G. A set X C V(G) is an
important set if

o v¢&X,

o there is no set X C X" with v ¢ X and §(X’) < 6(X).

v

Observation: X is an important set if and only if 6(X) is an
important (x, v)-cut for every x € X.

Consequence: Every vertex is contained in at most 4k important
sets.
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Pushing argument

Lemma

If C is a good cluster of minimum size containing v, then every
component of G \ C is an important set.

o<
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Pushing argument

Lemma

If C is a good cluster of minimum size containing v, then every
component of G \ C is an important set.

I,
L]
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Pushing argument

Lemma

If C is a good cluster of minimum size containing v, then every
component of G \ C is an important set.
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Pushing argument

Lemma

If C is a good cluster of minimum size containing v, then every

component of G\ C is

-
/
/

an important set.
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Pushing argument

Lemma

If C is a good cluster of minimum size containing v, then every
component of G \ C is an important set.
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Pushing argument

Lemma

If C is a good cluster of minimum size containing v, then every
component of G \ C is an important set.

4
.

Thus C can be obtained by removing at most g important sets from
V(G) (but there are n°(9) possibilities, we cannot try all of them).
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Random sampling

@ Let X be the set of all important sets of boundary size at
most g in G.

e Let X’ C X contain each set with probability % independently.

o Let Z = (Jycar X.

@ Let B be the set of vertices in C with neighbors outside C.

Lemma

Let C be a good cluster of minimum size containing v. With
probability 2299 7 covers G \ C and is disjoint from B.

(464 B 468 & @

v
°
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Random sampling

@ Let X be the set of all important sets of boundary size at
most g in G.

o Let X' C X contain each set with probability % independently.

o Let Z = Uyep X.

@ Let B be the set of vertices in C with neighbors outside C.

Lemma

Let C be a good cluster of minimum size containing v. With
probability 27299 7 covers G \ C and is disjoint from B.

. |
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Random sampling

Lemma

Let C be a good cluster of minimum size containing v. With
probability 27299 7 covers G \ C and is disjoint from B.

Two events:
(E1) Z covers G\ C.
Each of the at most g components is an important set
= all of them are selected by probability at least 279.
(E2) Z is disjoint from B.
Each vertex of B is in at most 49 members of X
= all of them are selected by probability at least 2947

The two events are independent (involve different sets of X'), thus
the claimed probability follows.
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Finding good clusters

Let C be a good cluster of minimum size containing v and assume
e G\ Cis covered by Z, and
e Z is disjoint from B (hence no edge going out of C is
contained in Z).

,

( IRUR
G\Z

v
([ ]

| J

Where is the good cluster C in the figure?



Finding good clusters

Let C be a good cluster of minimum size containing v and assume
e G\ Cis covered by Z, and
e Z is disjoint from B (hence no edge going out of C is
contained in Z).

,

G\Z ’
[ J

| J

Where is the good cluster C in the figure?

Observe: Components of Z are either fully in the cluster or fully

outside the cluster. What is this problem? 34



Finding good clusters

Let C be a good cluster of minimum size containing v and assume
e G\ Cis covered by Z, and
e Z is disjoint from B (hence no edge going out of C is
contained in Z).

-

G\Z

® <

KNAPSACK!
34



Finding good clusters by KNAPSACK

G\Z

® <

We interpret the componenents V4, ..., V; of G[Z] as items:
e V; has value 6(V;) and
e V; has weight | V;|.
The goal is to select items with total value at least §(Z) — g and
total weight at most p — |V/(G) \ Z]|.
35



Finding good clusters by KNAPSACK

G\Z

® <

Standard DP solves it in polynomial time: let T[/, j| be the maximum
value of a subset of the first i items having total weight at most ;.

Recurrence:
Tli,jl=max{T[i —1,j], T[i = 1,j — |[Vi[] + 6(Vi)}
35



Summary of algorithm

(p, q)-CLUSTERING
Input: A graph G, integers p, g.
A partition (V4,..., Vi) of V(G) such that for every i
Find: o [Vi[ < pand
e §(Vi)<gq.

@ It is sufficient to check for each vertex v if it is in a good
cluster.

@ Enumerate all the important sets.
@ Let Z be the union of random important sets.

@ The solution is obtained by extending G \ Z with some of the
components of G[Z].

o Knapsack.
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(p, g)-CLUSTERING

e With a slightly different probability distribution, one can
reduce the error probability to 2 9(4).

@ Derandomization is possible using standard techniques, but
nontrivial to obtain 2°(9) running time.

@ Other variants: maximum degree in the cluster is at most p,
etc.
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Summary

@ A simple (but essentially tight) bound on the number of
important cuts.
@ Algorithmic results: FPT algorithms for

e MurTiwAay CUT in undirected graphs,

SKEW MULTICUT in directed graphs,

DIRECTED FEEDBACK VERTEX/EDGE SET, and
(p, g)-CLUSTERING.



