
Important separators and parameterized
algorithms

Dániel Marx1

1Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary

ICERM
Providence, RI
April 27, 2014

1

Overview

Main message
Small separators in graphs have interesting extremal properties that
can be exploited in combinatorial and algorithmic results.

Bounding the number of “important” cuts.
Edge/vertex versions, directed/undirected versions.
Algorithmic applications: FPT algorithm for

Multiway cut,
Directed Feedback Vertex Set, and
(p, q)-Clustering.

2

Important cuts

Definition: δ(R) is the set of edges with exactly one endpoint in R .
Definition: A set S of edges is a minimal (X ,Y)-cut if there is no
X −Y path in G \ S and no proper subset of S breaks every X −Y
path.
Observation: Every minimal (X ,Y)-cut S can be expressed as S =
δ(R) for some X ⊆ R and R ∩ Y = ∅.

R

δ(R)

Y
X

3

Important cuts

Definition: A minimal (X ,Y)-cut δ(R) is important if there is no
(X ,Y)-cut δ(R ′) with R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|.
Note: Can be checked in polynomial time if a cut is important.

R

δ(R)

Y
X

3

Important cuts

Definition: A minimal (X ,Y)-cut δ(R) is important if there is no
(X ,Y)-cut δ(R ′) with R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|.
Note: Can be checked in polynomial time if a cut is important.

R ′

δ(R)

R

δ(R ′)
X

Y

3

Important cuts

Definition: A minimal (X ,Y)-cut δ(R) is important if there is no
(X ,Y)-cut δ(R ′) with R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|.
Note: Can be checked in polynomial time if a cut is important.

R

δ(R)

X
Y

3

Important cuts
The number of important cuts can be exponentially large.

Example:

X

Y

1 2 k/2

This graph has 2k/2 important (X ,Y)-cuts of size at most k .

Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

(Proof is implicit in [Chen, Liu, Lu 2007], worse bound in [M. 2004].)

4

Important cuts
The number of important cuts can be exponentially large.

Example:

X

Y

1 2 k/2

This graph has 2k/2 important (X ,Y)-cuts of size at most k .

Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

(Proof is implicit in [Chen, Liu, Lu 2007], worse bound in [M. 2004].)
4

Submodularity

Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|

Proof: Determine separately the contribution of the different types
of edges.

5

Submodularity

Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|

Proof: Determine separately the contribution of the different types
of edges.

A B

5

Submodularity

Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|
0 1 1 0

Proof: Determine separately the contribution of the different types
of edges.

BA

5

Submodularity

Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|
1 0 1 0

Proof: Determine separately the contribution of the different types
of edges.

A B

5

Submodularity

Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|
0 1 0 1

Proof: Determine separately the contribution of the different types
of edges.

A B

5

Submodularity

Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|
1 0 0 1

Proof: Determine separately the contribution of the different types
of edges.

BA

5

Submodularity

Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|
1 1 1 1

Proof: Determine separately the contribution of the different types
of edges.

BA

5

Submodularity

Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|
1 1 0 0

Proof: Determine separately the contribution of the different types
of edges.

BA

5

Submodularity

Lemma
Let λ be the minimum (X ,Y)-cut size. There is a unique maximal
Rmax ⊇ X such that δ(Rmax) is an (X ,Y)-cut of size λ.

Proof: Let R1,R2 ⊇ X be two sets such that δ(R1), δ(R2) are
(X ,Y)-cuts of size λ.

|δ(R1)| + |δ(R2)| ≥ |δ(R1 ∩ R2)| + |δ(R1 ∪ R2)|
λ λ ≥ λ

⇒ |δ(R1 ∪ R2)| ≤ λ
R2R1

Y

X

Note: Analogous result holds for a unique minimal Rmin.

6

Submodularity

Lemma
Let λ be the minimum (X ,Y)-cut size. There is a unique maximal
Rmax ⊇ X such that δ(Rmax) is an (X ,Y)-cut of size λ.

Proof: Let R1,R2 ⊇ X be two sets such that δ(R1), δ(R2) are
(X ,Y)-cuts of size λ.

|δ(R1)| + |δ(R2)| ≥ |δ(R1 ∩ R2)| + |δ(R1 ∪ R2)|
λ λ ≥ λ

⇒ |δ(R1 ∪ R2)| ≤ λ
R2R1

Y

X

Note: Analogous result holds for a unique minimal Rmin.

6

Important cuts
Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

Proof: Let λ be the minimum (X ,Y)-cut size and let δ(Rmax) be
the unique important cut of size λ such that Rmax is maximal.

(1) We show that Rmax ⊆ R for every important cut δ(R).

By the submodularity of δ:

|δ(Rmax)| + |δ(R)| ≥ |δ(Rmax ∩ R)| + |δ(Rmax ∪ R)|
λ ≥ λ

⇓
|δ(Rmax ∪ R)| ≤ |δ(R)|

⇓
If R 6= Rmax ∪ R , then δ(R) is not important.

Thus the important (X ,Y)- and (Rmax,Y)-cuts are the same.
⇒ We can assume X = Rmax.

7

Important cuts
Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

Proof: Let λ be the minimum (X ,Y)-cut size and let δ(Rmax) be
the unique important cut of size λ such that Rmax is maximal.

(1) We show that Rmax ⊆ R for every important cut δ(R).

By the submodularity of δ:

|δ(Rmax)| + |δ(R)| ≥ |δ(Rmax ∩ R)| + |δ(Rmax ∪ R)|
λ ≥ λ

⇓
|δ(Rmax ∪ R)| ≤ |δ(R)|

⇓
If R 6= Rmax ∪ R , then δ(R) is not important.

Thus the important (X ,Y)- and (Rmax,Y)-cuts are the same.
⇒ We can assume X = Rmax.

7

Important cuts
Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

Proof: Let λ be the minimum (X ,Y)-cut size and let δ(Rmax) be
the unique important cut of size λ such that Rmax is maximal.

(1) We show that Rmax ⊆ R for every important cut δ(R).

By the submodularity of δ:

|δ(Rmax)| + |δ(R)| ≥ |δ(Rmax ∩ R)| + |δ(Rmax ∪ R)|
λ ≥ λ

⇓
|δ(Rmax ∪ R)| ≤ |δ(R)|

⇓
If R 6= Rmax ∪ R , then δ(R) is not important.

Thus the important (X ,Y)- and (Rmax,Y)-cuts are the same.
⇒ We can assume X = Rmax.

7

Important cuts
(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rmax is either in the cut or not.

Y
vu

X = Rmax

Branch 1: If uv ∈ S , then S \ uv is an important (X ,Y)-cut of
size at most k − 1 in G \ uv .

⇒ k decreases by one, λ decreases by at most 1.
Branch 2: If uv 6∈ S , then S is an important
(X ∪ v ,Y)-cut of size at most k in G .

⇒ k remains the same, λ increases by 1.

The measure 2k − λ decreases in each step.
⇒ Height of the search tree ≤ 2k
⇒ ≤ 22k = 4k important cuts of size at most k .

8

Important cuts
(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rmax is either in the cut or not.

Y
vu

X = Rmax

Branch 1: If uv ∈ S , then S \ uv is an important (X ,Y)-cut of
size at most k − 1 in G \ uv .

⇒ k decreases by one, λ decreases by at most 1.

Branch 2: If uv 6∈ S , then S is an important
(X ∪ v ,Y)-cut of size at most k in G .

⇒ k remains the same, λ increases by 1.

The measure 2k − λ decreases in each step.
⇒ Height of the search tree ≤ 2k
⇒ ≤ 22k = 4k important cuts of size at most k .

8

Important cuts
(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rmax is either in the cut or not.

Y
vu

X = Rmax

Branch 1: If uv ∈ S , then S \ uv is an important (X ,Y)-cut of
size at most k − 1 in G \ uv .

⇒ k decreases by one, λ decreases by at most 1.
Branch 2: If uv 6∈ S , then S is an important
(X ∪ v ,Y)-cut of size at most k in G .

⇒ k remains the same, λ increases by 1.

The measure 2k − λ decreases in each step.
⇒ Height of the search tree ≤ 2k
⇒ ≤ 22k = 4k important cuts of size at most k .

8

Important cuts
(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rmax is either in the cut or not.

Y
vu

X = Rmax

Branch 1: If uv ∈ S , then S \ uv is an important (X ,Y)-cut of
size at most k − 1 in G \ uv .

⇒ k decreases by one, λ decreases by at most 1.
Branch 2: If uv 6∈ S , then S is an important
(X ∪ v ,Y)-cut of size at most k in G .

⇒ k remains the same, λ increases by 1.

The measure 2k − λ decreases in each step.
⇒ Height of the search tree ≤ 2k
⇒ ≤ 22k = 4k important cuts of size at most k .

8

Important cuts
Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

Example: The bound 4k is essentially tight.

Y

X

Any subtree with k leaves gives an important (X ,Y)-cut of size k .
The number of subtrees with k leaves is the Catalan number

Ck−1 =
1
k

(
2k − 2
k − 1

)
≥ 4k/poly(k).

9

Important cuts
Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

Example: The bound 4k is essentially tight.

X

Y

Any subtree with k leaves gives an important (X ,Y)-cut of size k .

The number of subtrees with k leaves is the Catalan number

Ck−1 =
1
k

(
2k − 2
k − 1

)
≥ 4k/poly(k).

9

Important cuts
Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

Example: The bound 4k is essentially tight.

Y

X

Any subtree with k leaves gives an important (X ,Y)-cut of size k .

The number of subtrees with k leaves is the Catalan number

Ck−1 =
1
k

(
2k − 2
k − 1

)
≥ 4k/poly(k).

9

Important cuts
Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

Example: The bound 4k is essentially tight.

Y

X

Any subtree with k leaves gives an important (X ,Y)-cut of size k .
The number of subtrees with k leaves is the Catalan number

Ck−1 =
1
k

(
2k − 2
k − 1

)
≥ 4k/poly(k).

9

Multiway Cut
Definition: A multiway cut of a set of terminals T is a set S of
edges such that each component of G \ S contains at most one
vertex of T .

Multiway Cut

Input: Graph G , set T of vertices, inte-
ger k

Find: A multiway cut S of at most k
edges. t4

t5

t4

t3

t2t1

Polynomial for |T | = 2, but NP-hard for any fixed |T | ≥ 3 [Dalhaus
et al. 1994].

10

Multiway Cut
Definition: A multiway cut of a set of terminals T is a set S of
edges such that each component of G \ S contains at most one
vertex of T .

Multiway Cut

Input: Graph G , set T of vertices, inte-
ger k

Find: A multiway cut S of at most k
edges. t4

t5

t4

t3

t2t1

Trivial to solve in polynomial time for fixed k (in time nO(k)).

Theorem
Multiway cut can be solved in time 4k · nO(1), i.e., it is
fixed-parameter tractable (FPT) parameterized by the size k of the
solution.

10

Multiway Cut

Intuition: Consider a t ∈ T . A subset of the solution S is a
(t,T \ t)-cut.

t

There are many such cuts.

But a cut farther from t and closer to T \ t seems to be more
useful.

11

Multiway Cut

Intuition: Consider a t ∈ T . A subset of the solution S is a
(t,T \ t)-cut.

t

There are many such cuts.

But a cut farther from t and closer to T \ t seems to be more
useful.

11

Multiway Cut

Intuition: Consider a t ∈ T . A subset of the solution S is a
(t,T \ t)-cut.

t

There are many such cuts.

But a cut farther from t and closer to T \ t seems to be more
useful.

11

Multiway Cut

Intuition: Consider a t ∈ T . A subset of the solution S is a
(t,T \ t)-cut.

t

There are many such cuts.

But a cut farther from t and closer to T \ t seems to be more
useful.

11

Multiway Cut and important cuts
Pushing Lemma
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Proof: Let R be the vertices reachable from t in G \ S for a
solution S .

δ(R) is not important, then there is an important cut δ(R ′) with
R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|. Replace S with
S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |
S ′ is a multiway cut: (1) There is no t-u path in G \ S ′ and (2) a
u-v path in G \ S ′ implies a t-u path, a contradiction.

12

Multiway Cut and important cuts
Pushing Lemma
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Proof: Let R be the vertices reachable from t in G \ S for a
solution S .

R

t

δ(R) is not important, then there is an important cut δ(R ′) with
R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|. Replace S with
S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |
S ′ is a multiway cut: (1) There is no t-u path in G \ S ′ and (2) a
u-v path in G \ S ′ implies a t-u path, a contradiction.

12

Multiway Cut and important cuts
Pushing Lemma
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Proof: Let R be the vertices reachable from t in G \ S for a
solution S .

R ′

R

t

δ(R) is not important, then there is an important cut δ(R ′) with
R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|. Replace S with
S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |

S ′ is a multiway cut: (1) There is no t-u path in G \ S ′ and (2) a
u-v path in G \ S ′ implies a t-u path, a contradiction.

12

Multiway Cut and important cuts
Pushing Lemma
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Proof: Let R be the vertices reachable from t in G \ S for a
solution S .

R ′

R

t
u

v

δ(R) is not important, then there is an important cut δ(R ′) with
R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|. Replace S with
S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |
S ′ is a multiway cut: (1) There is no t-u path in G \ S ′ and (2) a
u-v path in G \ S ′ implies a t-u path, a contradiction.

12

Multiway Cut and important cuts
Pushing Lemma
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Proof: Let R be the vertices reachable from t in G \ S for a
solution S .

t
u

vR

R ′

δ(R) is not important, then there is an important cut δ(R ′) with
R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|. Replace S with
S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |
S ′ is a multiway cut: (1) There is no t-u path in G \ S ′ and (2) a
u-v path in G \ S ′ implies a t-u path, a contradiction.

12

Algorithm for Multiway Cut

1 If every vertex of T is in a different component, then we are
done.

2 Let t ∈ T be a vertex that is not separated from every T \ t.
3 Branch on a choice of an important (t,T \ t) cut S of size at

most k .
4 Set G := G \ S and k := k − |S |.
5 Go to step 1.

We branch into at most 4k directions at most k times.

(Better analysis gives 4k bound on the size of the search tree.)

13

Multicut

Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si -ti path
for any i .

Theorem
Multicut can be solved in time f (k , `) · nO(1) (FPT
parameterized by combined parameters k and `).

Proof: The solution partitions {s1, t1, . . . , s`, t`} into components.
Guess this partition, contract the vertices in a class, and solve
Multiway Cut.

Theorem [Bousquet, Daligault, Thomassé 2011] [M., Razgon 2011]

Multicut is FPT parameterized by the size k of the solution.

14

Multicut

Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si -ti path
for any i .

Theorem
Multicut can be solved in time f (k , `) · nO(1) (FPT
parameterized by combined parameters k and `).

Proof: The solution partitions {s1, t1, . . . , s`, t`} into components.
Guess this partition, contract the vertices in a class, and solve
Multiway Cut.

Theorem [Bousquet, Daligault, Thomassé 2011] [M., Razgon 2011]

Multicut is FPT parameterized by the size k of the solution.

14

Directed graphs
Definition: ~δ(R) is the set of edges leaving R .
Observation: Every inclusionwise-minimal directed (X ,Y)-cut S
can be expressed as S = ~δ(R) for some X ⊆ R and R ∩ Y = ∅.
Definition: A minimal (X ,Y)-cut ~δ(R) is important if there is no
(X ,Y)-cut ~δ(R ′) with R ⊂ R ′ and |~δ(R ′)| ≤ |~δ(R)|.

R

~δ(R)

YX

15

Directed graphs
Definition: ~δ(R) is the set of edges leaving R .
Observation: Every inclusionwise-minimal directed (X ,Y)-cut S
can be expressed as S = ~δ(R) for some X ⊆ R and R ∩ Y = ∅.
Definition: A minimal (X ,Y)-cut ~δ(R) is important if there is no
(X ,Y)-cut ~δ(R ′) with R ⊂ R ′ and |~δ(R ′)| ≤ |~δ(R)|.

R ′

~δ(R ′)

R

~δ(R)

YX

15

Directed graphs
Definition: ~δ(R) is the set of edges leaving R .
Observation: Every inclusionwise-minimal directed (X ,Y)-cut S
can be expressed as S = ~δ(R) for some X ⊆ R and R ∩ Y = ∅.
Definition: A minimal (X ,Y)-cut ~δ(R) is important if there is no
(X ,Y)-cut ~δ(R ′) with R ⊂ R ′ and |~δ(R ′)| ≤ |~δ(R)|.
The proof for the undirected case goes through for the directed case:

Theorem
There are at most 4k important directed (X ,Y)-cuts of size at
most k .

15

Directed Multiway Cut
The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Directed counterexample:

s t
a

b

Unique solution with k = 1 edges, but it is not an important cut
(boundary of {s, a}, but the boundary of {s, a, b} has same size).

16

Directed Multiway Cut
The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Directed counterexample:

s t
a

b

Unique solution with k = 1 edges, but it is not an important cut
(boundary of {s, a}, but the boundary of {s, a, b} has same size).

16

Directed Multiway Cut
The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Directed counterexample:

b

a
ts

Unique solution with k = 1 edges, but it is not an important cut
(boundary of {s, a}, but the boundary of {s, a, b} has same size).

16

Directed Multiway Cut
The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Problem in the undirected proof:

v
u

t

R

R ′

Replacing R by R ′ cannot create a t → u path, but can create a
u → t path.

16

Directed Multiway Cut
The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Using additional techniques, one can show:

Theorem [Chitnis, Hajiaghayi, M. 2011]

Directed Multiway Cut is FPT parameterized by the size k of
the solution.

16

Directed Multicut
Directed Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si → ti path
for any i .

Theorem [M. and Razgon 2011]

Directed Multicut is W[1]-hard parameterized by k .

17

Directed Multicut
Directed Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si → ti path
for any i .

Theorem [M. and Razgon 2011]

Directed Multicut is W[1]-hard parameterized by k .

But the case ` = 2 can be reduced to Directed Multiway Cut:

t1s1

t2 s2

17

Directed Multicut
Directed Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si → ti path
for any i .

Theorem [M. and Razgon 2011]

Directed Multicut is W[1]-hard parameterized by k .

But the case ` = 2 can be reduced to Directed Multiway Cut:

x y

s2t2

s1 t1

17

Directed Multicut
Directed Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si → ti path
for any i .

Theorem [M. and Razgon 2011]

Directed Multicut is W[1]-hard parameterized by k .

But the case ` = 2 can be reduced to Directed Multiway Cut:

x y

s2t2

s1 t1

17

Directed Multicut
Directed Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si → ti path
for any i .

Theorem [M. and Razgon 2011]

Directed Multicut is W[1]-hard parameterized by k .

Corollary
Directed Multicut with ` = 2 is FPT parameterized by the
size k of the solution.

?
Open: Is Directed Multicut with ` = 3 FPT?

Open: Is there an f (k , `) · nO(1) algorithm for Directed
Multicut?

17

Skew Multicut
Skew Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of k directed edges such that G \ S con-
tains no si → tj path for any i ≥ j .

t4

t3

t2

t1

s4

s3

s2

s1

18

Skew Multicut
Skew Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of k directed edges such that G \ S con-
tains no si → tj path for any i ≥ j .

t4

t3

t2

t1

s4

s3

s2

s1

Pushing Lemma
Skew Multcut problem has a solution S that contains an
important (s`, {t1, . . . , t`})-cut.

18

Skew Multicut
Skew Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of k directed edges such that G \ S con-
tains no si → tj path for any i ≥ j .

t4

t3

t2

t1

s4

s3

s2

s1

Pushing Lemma
Skew Multcut problem has a solution S that contains an
important (s`, {t1, . . . , t`})-cut.

Theorem [Chen, Liu, Lu, O’Sullivan, Razgon 2008]

Skew Multicut can be solved in time 4k · nO(1).
18

Directed Feedback Vertex Set

Directed Feedback Vertex/Edge Set
Input: Directed graph G , integer k

Find: A set S of k vertices/edges such that G \ S
is acyclic.

Note: Edge and vertex versions are equivalent, we will consider the
edge version here.

Theorem [Chen, Liu, Lu, O’Sullivan, Razgon 2008]

Directed Feedback Edge Set is FPT parameterized by the
size k of the solution.

Solution uses the technique of iterative compression introduced by
[Reed, Smith, Vetta 2004].

19

The compression problem

Directed Feedback Edge Set Compression
Input: Directed graph G , integer k ,

a set W of k + 1 edges such that G \W
is acyclic

Find: A set S of k edges such that G \ S is
acyclic.

Easier than the original problem, as the extra input W gives us
useful structural information about G .

Lemma
The compression problem is FPT parameterized by k .

A useful trick for edge deletion problems: we define the
compression problem in a way that a solution of k + 1 vertices are
given and we have to find a solution of k edges.

20

The compression problem

Directed Feedback Edge Set Compression
Input: Directed graph G , integer k ,

a set W of k + 1 vertices such that G \W
is acyclic

Find: A set S of k edges such that G \ S is
acyclic.

Easier than the original problem, as the extra input W gives us
useful structural information about G .

Lemma
The compression problem is FPT parameterized by k .

A useful trick for edge deletion problems: we define the
compression problem in a way that a solution of k + 1 vertices are
given and we have to find a solution of k edges.

20

The compression problem
Proof: Let W = {w1, . . . ,wk+1}
Let us split each wi into an edge −→ti si .

t4s1t1 s2t2 s3t3 s4
By guessing the order of {w1, . . . ,wk+1} in the acyclic
ordering of G \ S , we can assume that w1 < w2 < · · · < wk+1
in G \ S [(k + 1)! possibilities].

⇒ We can solve the compression problem by (k + 1)! applications
of Skew Multicut.

21

The compression problem
Proof: Let W = {w1, . . . ,wk+1}
Let us split each wi into an edge −→ti si .

t4s1t1 s2t2 s3t3 s4
Claim:

G \ S is acyclic and has an ordering with w1 < w2 < · · · < wk+1
⇓

S covers every si → tj path for every i ≥ j
⇓

G \ S is acyclic

⇒ We can solve the compression problem by (k + 1)! applications
of Skew Multicut.

21

The compression problem
Proof: Let W = {w1, . . . ,wk+1}
Let us split each wi into an edge −→ti si .

s4t3 s3t2 s2t1 s1 t4
Claim:

G \ S is acyclic and has an ordering with w1 < w2 < · · · < wk+1
⇓

S covers every si → tj path for every i ≥ j
⇓

G \ S is acyclic

⇒ We can solve the compression problem by (k + 1)! applications
of Skew Multicut.

21

The compression problem
Proof: Let W = {w1, . . . ,wk+1}
Let us split each wi into an edge −→ti si .

s4t3 s3t2 s2t1 s1 t4
Claim:

G \ S is acyclic and has an ordering with w1 < w2 < · · · < wk+1
⇓

S covers every si → tj path for every i ≥ j
⇓

G \ S is acyclic

⇒ We can solve the compression problem by (k + 1)! applications
of Skew Multicut.

21

Iterative compression

We have given a f (k)nO(1) algorithm for the following problem:

Directed Feedback Edge Set Compression
Input: Directed graph G , integer k ,

a set W of k + 1 vertices such that G \W
is acyclic

Find: A set S of k edges such that G \ S is
acyclic.

Nice, but how do we get a solution W of size k + 1?

We get it for free!
Powerful technique: iterative compression (introduced by [Reed,
Smith, Vetta 2004] for Bipartite Deletion).

22

Iterative compression

We have given a f (k)nO(1) algorithm for the following problem:

Directed Feedback Edge Set Compression
Input: Directed graph G , integer k ,

a set W of k + 1 vertices such that G \W
is acyclic

Find: A set S of k edges such that G \ S is
acyclic.

Nice, but how do we get a solution W of size k + 1?

We get it for free!
Powerful technique: iterative compression (introduced by [Reed,
Smith, Vetta 2004] for Bipartite Deletion).

22

Iterative compression
Let v1, . . . , vn be the edges of G and let Gi be the subgraph
induced by {v1, . . . , vi}.

For every i = 1, . . . , n, we find a set Si of at most k edges such
that Gi \ Si is acyclic.

For i = 1, we have the trivial solution Si = ∅.
Suppose we have a solution Si for Gi . Let Wi contain the head
of each edge in Si . Then Wi ∪ {vi+1} is a set of at most k + 1
vertices whose removal makes Gi+1 acyclic.
Use the compression algorithm for Gi+1 with the set
Wi ∪ {vi+1}.

If there is no solution of size k for Gi+1, then we can stop.
Otherwise the compression algorithm gives a solution Si+1 of
size k for Gi+1.

We call the compression algorithm n times, everything else is
polynomial.
⇒ Directed Feedback Edge Set is FPT.

23

Iterative compression
Let v1, . . . , vn be the edges of G and let Gi be the subgraph
induced by {v1, . . . , vi}.

For every i = 1, . . . , n, we find a set Si of at most k edges such
that Gi \ Si is acyclic.

For i = 1, we have the trivial solution Si = ∅.
Suppose we have a solution Si for Gi . Let Wi contain the head
of each edge in Si . Then Wi ∪ {vi+1} is a set of at most k + 1
vertices whose removal makes Gi+1 acyclic.
Use the compression algorithm for Gi+1 with the set
Wi ∪ {vi+1}.

If there is no solution of size k for Gi+1, then we can stop.
Otherwise the compression algorithm gives a solution Si+1 of
size k for Gi+1.

We call the compression algorithm n times, everything else is
polynomial.
⇒ Directed Feedback Edge Set is FPT.

23

Outline

So far we have seen:
Definition of important cuts.
Combinatorial bound on the number of important cuts.
Pushing argument: we can assume that the solution contains
an important cut. Solves Multiway Cut, Skew
Multiway Cut.
Iterative compression reduces Directed Feedback
Vertex Set to Skew Multiway Cut.

Next:
Randomized sampling of important separators.

24

Randomized sampling of important cuts

A new technique used by several results:
Multicut [M. and Razgon STOC 2011]

Clustering problems [Lokshtanov and M. ICALP 2011]

Directed Multiway Cut [Chitnis, Hajiaghayi, M. SODA
2012]

Directed Multicut in DAGs [Kratsch, Pilipczuk, Pilipczuk,
Wahlström ICALP 2012]

Directed Subset Feedback Vertex Set [Chitnis,
Cygan, Hajiaghayi, M. ICALP 2012]

Parity Multiway Cut [Lokshtanov, Ramanujan ICALP 2012]

List homomorphism removal problems [Chitnis, Egri, and M.
ESA 2013]

. . . more work in progress.

25

Clustering

We want to partition objects into clusters subject to certain
requirements (typically: related objects are clustered together,
bounds on the number or size of the clusters etc.)

(p, q)-clustering

Input: A graph G , integers p, q.

Find:

A partition (V1, . . . ,Vm) of V (G) such that for every i
|Vi | ≤ p and
δ(Vi) ≤ q.

δ(Vi): number of edges leaving Vi .

Theorem [Lokshtanov and M. 2011]

(p, q)-clustering can be solved in time 2O(q) · nO(1).

26

A sufficient and necessary condition

Good cluster: size at most p and at most q edges leaving it.

Necessary condition:
Every vertex is contained in a good cluster.

But surprisingly, this is also a sufficient condition!

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

27

A sufficient and necessary condition

Good cluster: size at most p and at most q edges leaving it.

Necessary condition:
Every vertex is contained in a good cluster.

But surprisingly, this is also a sufficient condition!

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

27

A sufficient and necessary condition

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

X Y

δ(X) + δ(Y) ≥ δ(X \ Y) + δ(Y \ X)
(posimodularity)

28

A sufficient and necessary condition

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

X Y

δ(X) + δ(Y) ≥ δ(X \ Y) + δ(Y \ X)
(posimodularity)

⇒ either δ(X) ≥ δ(X \ Y) or δ(Y) ≥ δ(Y \ X) holds.

28

A sufficient and necessary condition

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

X \ Y Y

δ(X) + δ(Y) ≥ δ(X \ Y) + δ(Y \ X)
(posimodularity)

If δ(X) ≥ δ(X \ Y), replace X with X \ Y ,
strictly decreasing the total size of the clusters.

28

A sufficient and necessary condition

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

X Y \ X

δ(X) + δ(Y) ≥ δ(X \ Y) + δ(Y \ X)
(posimodularity)

If δ(Y) ≥ δ(Y \ X), replace Y with Y \ X ,
strictly decreasing the total size of the clusters. QED �

28

Finding a good cluster

We have seen:

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

All we have to do is to check if a given vertex v is in a good
cluster. Trivial to do in time nO(q).

We prove next:

Lemma
We can check in time 2O(q) · nO(1) if v is in a good cluster.

29

Finding a good cluster

We have seen:

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

All we have to do is to check if a given vertex v is in a good
cluster. Trivial to do in time nO(q).

We prove next:

Lemma
We can check in time 2O(q) · nO(1) if v is in a good cluster.

29

Important sets

Definition
Fix a distinguished vertex v in a graph G . A set X ⊆ V (G) is an
important set if

v 6∈ X ,
there is no set X ⊂ X ′ with v 6∈ X and δ(X ′) ≤ δ(X).

v

Observation: X is an important set if and only if δ(X) is an
important (x , v)-cut for every x ∈ X .
Consequence: Every vertex is contained in at most 4k important
sets.

30

Important sets

Definition
Fix a distinguished vertex v in a graph G . A set X ⊆ V (G) is an
important set if

v 6∈ X ,
there is no set X ⊂ X ′ with v 6∈ X and δ(X ′) ≤ δ(X).

v

Observation: X is an important set if and only if δ(X) is an
important (x , v)-cut for every x ∈ X .
Consequence: Every vertex is contained in at most 4k important
sets.

30

Important sets

Definition
Fix a distinguished vertex v in a graph G . A set X ⊆ V (G) is an
important set if

v 6∈ X ,
there is no set X ⊂ X ′ with v 6∈ X and δ(X ′) ≤ δ(X).

v

Observation: X is an important set if and only if δ(X) is an
important (x , v)-cut for every x ∈ X .
Consequence: Every vertex is contained in at most 4k important
sets.

30

Important sets

Definition
Fix a distinguished vertex v in a graph G . A set X ⊆ V (G) is an
important set if

v 6∈ X ,
there is no set X ⊂ X ′ with v 6∈ X and δ(X ′) ≤ δ(X).

v

Observation: X is an important set if and only if δ(X) is an
important (x , v)-cut for every x ∈ X .
Consequence: Every vertex is contained in at most 4k important
sets.

30

Important sets

Definition
Fix a distinguished vertex v in a graph G . A set X ⊆ V (G) is an
important set if

v 6∈ X ,
there is no set X ⊂ X ′ with v 6∈ X and δ(X ′) ≤ δ(X).

v

Observation: X is an important set if and only if δ(X) is an
important (x , v)-cut for every x ∈ X .
Consequence: Every vertex is contained in at most 4k important
sets.

30

Important sets

Definition
Fix a distinguished vertex v in a graph G . A set X ⊆ V (G) is an
important set if

v 6∈ X ,
there is no set X ⊂ X ′ with v 6∈ X and δ(X ′) ≤ δ(X).

v

Observation: X is an important set if and only if δ(X) is an
important (x , v)-cut for every x ∈ X .
Consequence: Every vertex is contained in at most 4k important
sets.

30

Pushing argument

Lemma
If C is a good cluster of minimum size containing v , then every
component of G \ C is an important set.

v

Thus C can be obtained by removing at most q important sets from
V (G) (but there are nO(q) possibilities, we cannot try all of them).

31

Pushing argument

Lemma
If C is a good cluster of minimum size containing v , then every
component of G \ C is an important set.

v

Thus C can be obtained by removing at most q important sets from
V (G) (but there are nO(q) possibilities, we cannot try all of them).

31

Pushing argument

Lemma
If C is a good cluster of minimum size containing v , then every
component of G \ C is an important set.

v

Thus C can be obtained by removing at most q important sets from
V (G) (but there are nO(q) possibilities, we cannot try all of them).

31

Pushing argument

Lemma
If C is a good cluster of minimum size containing v , then every
component of G \ C is an important set.

v

Thus C can be obtained by removing at most q important sets from
V (G) (but there are nO(q) possibilities, we cannot try all of them).

31

Pushing argument

Lemma
If C is a good cluster of minimum size containing v , then every
component of G \ C is an important set.

v

Thus C can be obtained by removing at most q important sets from
V (G) (but there are nO(q) possibilities, we cannot try all of them).

31

Pushing argument

Lemma
If C is a good cluster of minimum size containing v , then every
component of G \ C is an important set.

v

Thus C can be obtained by removing at most q important sets from
V (G) (but there are nO(q) possibilities, we cannot try all of them).

31

Random sampling
Let X be the set of all important sets of boundary size at
most q in G .
Let X ′ ⊆ X contain each set with probability 1

2 independently.
Let Z =

⋃
X∈X ′ X .

Let B be the set of vertices in C with neighbors outside C .

Lemma
Let C be a good cluster of minimum size containing v . With
probability 2−2O(q)

, Z covers G \ C and is disjoint from B .

v

B

32

Random sampling
Let X be the set of all important sets of boundary size at
most q in G .
Let X ′ ⊆ X contain each set with probability 1

2 independently.
Let Z =

⋃
X∈X ′ X .

Let B be the set of vertices in C with neighbors outside C .

Lemma
Let C be a good cluster of minimum size containing v . With
probability 2−2O(q)

, Z covers G \ C and is disjoint from B .

v

B

32

Random sampling

Lemma
Let C be a good cluster of minimum size containing v . With
probability 2−2O(q)

, Z covers G \ C and is disjoint from B .

Two events:
(E1) Z covers G \ C .

Each of the at most q components is an important set
⇒ all of them are selected by probability at least 2−q.

(E2) Z is disjoint from B .
Each vertex of B is in at most 4q members of X
⇒ all of them are selected by probability at least 2−q4q

.
The two events are independent (involve different sets of X), thus
the claimed probability follows.

33

Finding good clusters
Let C be a good cluster of minimum size containing v and assume

G \ C is covered by Z , and
Z is disjoint from B (hence no edge going out of C is
contained in Z).

v

Z

G \ Z

Where is the good cluster C in the figure?

Observe: Components of Z are either fully in the cluster or fully
outside the cluster. What is this problem?

34

Finding good clusters
Let C be a good cluster of minimum size containing v and assume

G \ C is covered by Z , and
Z is disjoint from B (hence no edge going out of C is
contained in Z).

v

Z

G \ Z

Where is the good cluster C in the figure?

Observe: Components of Z are either fully in the cluster or fully
outside the cluster. What is this problem? 34

Finding good clusters
Let C be a good cluster of minimum size containing v and assume

G \ C is covered by Z , and
Z is disjoint from B (hence no edge going out of C is
contained in Z).

v

Z

G \ Z

KNAPSACK!
34

Finding good clusters by Knapsack

v

Z

G \ Z

We interpret the componenents V1, . . . , Vt of G [Z] as items:
Vi has value δ(Vi) and
Vi has weight |Vi |.

The goal is to select items with total value at least δ(Z) − q and
total weight at most p − |V (G) \ Z |.

35

Finding good clusters by Knapsack

v

Z

G \ Z

Standard DP solves it in polynomial time: let T [i , j] be the maximum
value of a subset of the first i items having total weight at most j .

Recurrence:

T [i , j] = max{T [i − 1, j],T [i − 1, j − |Vi |] + δ(Vi)}

35

Summary of algorithm

(p, q)-clustering

Input: A graph G , integers p, q.

Find:

A partition (V1, . . . ,Vm) of V (G) such that for every i
|Vi | ≤ p and
δ(Vi) ≤ q.

It is sufficient to check for each vertex v if it is in a good
cluster.
Enumerate all the important sets.
Let Z be the union of random important sets.
The solution is obtained by extending G \ Z with some of the
components of G [Z].
Knapsack.

36

(p, q)-clustering

With a slightly different probability distribution, one can
reduce the error probability to 2−O(q).
Derandomization is possible using standard techniques, but
nontrivial to obtain 2O(q) running time.
Other variants: maximum degree in the cluster is at most p,
etc.

37

Summary

A simple (but essentially tight) bound on the number of
important cuts.
Algorithmic results: FPT algorithms for

Multiway Cut in undirected graphs,
Skew Multicut in directed graphs,
Directed Feedback Vertex/Edge Set, and
(p, q)-Clustering.

38

