
Graphs, Hypergraphs, and the Complexity of
Conjunctive Database Queries

Dániel Marx

Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary

ICDT Invited Lecture 2017, Venice, Italy
March 23, 2017

1

Conjunctive queries

Evaluating conjunctive queries is a fundamental problem.

Q = R(A,B,C) ∧ S(C ,D) ∧ T (B,C ,E)

Formally defined as:

Q = {(a, b, c , d , e) | (a, b, c) ∈ R, (c , d) ∈ S , (b, c, e) ∈ T}

Compute the answer relation Q.
Decide if the relation Q is empty.
Compute the size of Q.
. . .

2

Conjunctive queries

Constraint Satisfaction
Problems (CSP)

Homomorphism of
relational structures

3

Constraint Satisfaction Problems (CSP)

Q = R(A,B,C) ∧ S(C ,D) ∧ T (B,C ,E)

CSP lingo:

variables A,B,C ,D,E
constraints R, S ,T
find an assignment (a, b, c , d , e) to the variables that satisfies
every constraint.

Tasks:

Compute the answer relation.

Decide if Q is empty.

Compute the size of Q.

⇔
List the satisfying assignments.

Decide if the CSP is satisfiable.

Count the sat. assignments.

4

Goal

Goal: understand how efficiently a particular query
can be evaluated.

Worst-case setting: we know the query, but the database
relations can be arbitrary.
Different levels of efficiency: polynomial time, fixed-parameter
tractability, linear time.

Important message:

“Treelikeness” is very helpful!

. . .because it allows bottom-up dynamic programming.

5

Goal

Goal: understand how efficiently a particular query
can be evaluated.

Worst-case setting: we know the query, but the database
relations can be arbitrary.
Different levels of efficiency: polynomial time, fixed-parameter
tractability, linear time.

Important message:

“Treelikeness” is very helpful!

. . .because it allows bottom-up dynamic programming.

5

First: binary relations only

If every relation is binary (i.e., only two variables), then the
structure of the query can be described by the primal graph.

A B

D E

F

C

R(A,B) ∧ R(A,C)∧
R(B,D) ∧ R(C ,D)∧
R(B,E) ∧ R(D,E)∧
R(C ,F) ∧ R(D,F)

Goal: understand what graph-theoretic properties
allow efficient query evaluation.

6

The Party Problem
Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun.

6

644

5

2

Input: A tree with
weights on the vertices.
Task: Find an
independent set of
maximum weight.

7

The Party Problem
Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun.

Do not invite a colleague and
his direct boss at the same time!

6

644

5

2

Input: A tree with
weights on the vertices.
Task: Find an
independent set of
maximum weight.

7

The Party Problem
Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun.

Do not invite a colleague and
his direct boss at the same time!

2

5

4 4 6

6
Input: A tree with
weights on the vertices.
Task: Find an
independent set of
maximum weight.

7

The Party Problem
Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun.

Do not invite a colleague and
his direct boss at the same time!

2

5

4 4 6

6
Input: A tree with
weights on the vertices.
Task: Find an
independent set of
maximum weight.

7

Solving the Party Problem

Dynamic programming paradigm:
We solve a large number of subproblems that depend on each
other. The answer is a single subproblem.

Subproblems:
Tv : the subtree rooted at v .

A[v]: max. weight of an independent set in Tv

B[v]: max. weight of an independent set in Tv

that does not contain v

Goal: determine A[r] for the root r .

8

Solving the Party Problem

Subproblems:
Tv : the subtree rooted at v .

A[v]: max. weight of an independent set in Tv

B[v]: max. weight of an independent set in Tv

that does not contain v

Recurrence:
Assume v1, . . . , vk are the children of v . Use the recurrence
relations

B[v] =
∑k

i=1 A[vi]

A[v] = max{B[v] , w(v) +
∑k

i=1 B[vi]}

The values A[v] and B[v] can be calculated in a bottom-up order
(the leaves are trivial).

8

Treewidth

9

Generalizing trees
How could we define that a graph is “treelike”?

1 Number of cycles is bounded.

good bad bad bad
2 Removing a bounded number of vertices makes it acyclic.

good good bad bad
3 Bounded-size parts connected in a tree-like way.

bad bad good good

10

Generalizing trees
How could we define that a graph is “treelike”?

1 Number of cycles is bounded.

good bad bad bad

2 Removing a bounded number of vertices makes it acyclic.

good good bad bad
3 Bounded-size parts connected in a tree-like way.

bad bad good good

10

Generalizing trees
How could we define that a graph is “treelike”?

1 Number of cycles is bounded.

good bad bad bad
2 Removing a bounded number of vertices makes it acyclic.

good good bad bad

3 Bounded-size parts connected in a tree-like way.

bad bad good good

10

Generalizing trees
How could we define that a graph is “treelike”?

1 Number of cycles is bounded.

good bad bad bad
2 Removing a bounded number of vertices makes it acyclic.

good good bad bad
3 Bounded-size parts connected in a tree-like way.

bad bad good good
10

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 For any edge uv , there is a bag containing both of them.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

A subtree communicates with the outside world
only via the root of the subtree.

11

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 For any edge uv , there is a bag containing both of them.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

hgfe

a

b c d

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

A subtree communicates with the outside world
only via the root of the subtree.

11

Weighted Max Independent Set and treewidth
Theorem
Given a tree decomposition of width w , Weighted Max
Independent Set can be solved in time 2w · wO(1) · n.
Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

Generalizing our solution for trees:

Instead of computing 2 values A[v], B[v] for
each vertex of the tree, we compute 2|Bx | ≤
2w+1 values for each bag Bx .

M[x , S]:
the max. weight of an independent set
I ⊆ Vx with I ∩ Bx = S .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

∅ =? bc =?
b =? cf =?
c =? bf =?
f =? bcf =?

12

Weighted Max Independent Set and treewidth
Theorem
Given a tree decomposition of width w , Weighted Max
Independent Set can be solved in time 2w · wO(1) · n.
Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

Generalizing our solution for trees:

Instead of computing 2 values A[v], B[v] for
each vertex of the tree, we compute 2|Bx | ≤
2w+1 values for each bag Bx .

M[x , S]:
the max. weight of an independent set
I ⊆ Vx with I ∩ Bx = S .

Claim: We can determine M[x , S] if all the
values are known for the children of x .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

∅ =? bc =?
b =? cf =?
c =? bf =?
f =? bcf =?

12

3-Coloring and tree decompositions

Theorem
Given a tree decomposition of width w , 3-Coloring can be
solved in time 3w · wO(1) · n.

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

For every node x and coloring c : Bx →
{1, 2, 3}, we compute the Boolean value
E [x , c], which is true if and only if c can
be extended to a proper 3-coloring of Vx .

Claim:
We can determine E [x , c] if all the values are
known for the children of x .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

bcf=T bcf=F
bcf=T bcf=F
.

13

Coloring as a CSP

We can interpret 3-coloring as a CSP:

vertices ⇔ variables
domain D = {r , g , b}
edges ⇔ inequality constraints

R = {(x , y) ∈ D × D | x 6= y}

Straightforward generalization to higher number of colors:

Theorem
Given a tree decomposition of width w , c-Coloring can be
solved in time cw+1 · wO(1) · n.

14

Coloring as a CSP

We can interpret 3-coloring as a CSP:

vertices ⇔ variables
domain D = {r , g , b}
edges ⇔ inequality constraints

R = {(x , y) ∈ D × D | x 6= y}

Straightforward generalization to arbitrary binary CSPs:

Theorem
Given a tree decomposition of width w , binary CSP over domain D
can be solved in time |D|w+1 · wO(1) · n.

14

Coloring as a database query
vertices ⇔ variables
edges ⇔ relation R = {rg , rb, gr , gb, br , bg}

A B

D E

F

C

R(A,B) ∧ R(A,C)∧
R(B,D) ∧ R(C ,D)∧
R(B,E) ∧ R(D,E)∧
R(C ,F) ∧ R(D,F)

Straightforward generalization to arbitrary binary queries:

Theorem
Given a tree decomposition of width w , a Boolean Conjunctive
Query where every variable allows at most N different values can
can be solved in time Nw+1 · |Q|O(1).

15

Projections

Projecting the relation R(A,B,C ,D) to {A,B}:

R|AB = {(a, b) | ∃c , d : (a, b, c , d) ∈ R}

Projection of the query to a set S : projecting every relation.

Q =R(A,B,C) ∧ S(C ,D) ∧ T (B,C ,E)

Q|AB = R|AB(A,B,C) ∧ S|AB(C ,D) ∧ T|AB(B,C ,E)

= R|AB(A,B,C) ∧ T|B(B,C ,E)

Easy: If (a, b, c) ∈ Q, then (a, b) ∈ Q|AB , but not necessarily the
other way around!

16

Boolean Conjunctive Queries and tree decompositions

Theorem
Given a tree decomposition of width w , a Boolean Conjunctive
Query where every variable allows at most N different values can
can be solved in time Nw+1 · |Q|O(1).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

For every node x and tuple t ∈ Q|Bx
, we

compute the Boolean value E [x , t], which is
true if and only if t can be extended to a
tuple of Q|Vx

.

Claim:
We can determine E [x , t] if all the values are
known for the children of x .

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

17

Boolean Conjunctive Queries and tree decompositions

Theorem
Given a tree decomposition of width w , a Boolean Conjunctive
Query where every variable allows at most N different values can
can be solved in time Nw+1 · |Q|O(1).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

For every node x and tuple t ∈ Q|Bx
, we

compute the Boolean value E [x , t], which is
true if and only if t can be extended to a
tuple of Q|Vx

.

Running time:
Dominating factor is the size of Q|Bx

, which
can be bounded by N |Bx | ≤ Nw+1.

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

17

Tractable classes

We have seen that for every fixed bound on the treewidth, BCQ is
polynomial-time solvable in the size of the database.

Are there other properties that make the problem polynomial-time
solvable?

An equally interesting question: we can relax polynomial time and
allow arbitrary dependence on the length of the query.

⇒ Fixed-parameter tractability

18

Tractable classes

Formally:

If G is a class of graphs with bounded treewidth, then BCQ
restricted G (we call it BCQ(G)) is polynomial-time solvable.
Are there other such classes?

An equally interesting question: we can relax polynomial time and
allow arbitrary dependence on the length of the query.

⇒ Fixed-parameter tractability

18

Tractable classes

Formally:

If G is a class of graphs with bounded treewidth, then BCQ
restricted G (we call it BCQ(G)) is polynomial-time solvable.
Are there other such classes?

An equally interesting question: we can relax polynomial time and
allow arbitrary dependence on the length of the query.

⇒ Fixed-parameter tractability

18

Fixed-parameter tractability

Main definition
A parameterized problem is fixed-parameter tractable (FPT) if
there is an f (k)nc time algorithm for some constant c .

Main goal of parameterized complexity: to find FPT problems.

Examples of NP-hard problems that are FPT:
Finding a vertex cover of size k .
Finding a path of length k .
Finding k disjoint triangles.
Drawing the graph in the plane with k edge crossings.
Finding disjoint paths that connect k pairs of points.
. . .

19

Fixed-parameter tractability

Main definition
A parameterized problem is fixed-parameter tractable (FPT) if
there is an f (k)nc time algorithm for some constant c .

Main goal of parameterized complexity: to find FPT problems.

Examples of NP-hard problems that are FPT:
Finding a vertex cover of size k .
Finding a path of length k .
Finding k disjoint triangles.
Drawing the graph in the plane with k edge crossings.
Finding disjoint paths that connect k pairs of points.
. . .

19

W[1]-hardness

Negative evidence similar to NP-completeness. If a problem is
W[1]-hard, then the problem is not FPT unless FPT=W[1].

Some W[1]-hard problems:
Finding a clique/independent set of size k .
Finding a dominating set of size k .
Finding k pairwise disjoint sets.
. . .

20

Tractable classes

Theorem [Grohe, Schwentick, Segoufin 2001]

Let G be a computable class of graphs. Then assuming
FPT 6= W [1], the following are equivalent:

BCQ(G) is polynomial-time solvable.
BCQ(G) is FPT.
G has bounded treewidth.

Two surprises:
Treewidth-based algorithms already solve every
polynomial-time solvable case.
FPT does not give us extra power over polynomial time.

21

Tractable classes

Theorem [Grohe, Schwentick, Segoufin 2001]

Let G be a computable class of graphs. Then assuming
FPT 6= W [1], the following are equivalent:

BCQ(G) is polynomial-time solvable.
BCQ(G) is FPT.
G has bounded treewidth.

Two surprises:
Treewidth-based algorithms already solve every
polynomial-time solvable case.
FPT does not give us extra power over polynomial time.

21

Minors

Definition
Graph H is a minor of G (H ≤ G) if H can be obtained from G by
deleting edges, deleting vertices, and contracting edges.

deleting uv

vu w

u v
contracting uv

22

Excluded Grid Theorem

Theorem [Chuzhoy 2016] [Chekuri and Chuzhoy 2014]

Every graph with treewidth at least k19polylog(k) has a k × k grid
minor.

The k × k grid has treewidth exactly k .

23

Tractable classes

Theorem [Grohe, Schwentick, Segoufin 2001]

Let G be a computable class of graphs. Then assuming
FPT 6= W [1], the following are equivalent:

BCQ(G) is polynomial-time solvable.
BCQ(G) is FPT.
G has bounded treewidth.

24

Tractable classes

Theorem [Grohe, Schwentick, Segoufin 2001]

Let G be a computable class of graphs with unbounded treewidth.
Then assuming FPT 6= W [1], BCQ(G) is not FPT.

Assuming FPT 6= W [1], k-Clique is not FPT.
k-Clique can be simulated by a BCQ whose primal graph is
a k × k grid.
G has unbounded treewidth
⇒ Excluded Grid Theorem
⇒ G contains graphs with a k × k grid minor
⇒ BCQ(G) can simulate BCQ’s with k × k grid structure.

24

Can you beat treewidth?

We have seen that treewidth-based algorithms discover every
polynomial time solvable class.

Is there a class G where we can be significantly faster than the
treewidth-based algorithm? E.g., running time N

√
tw(Q) or

N(tw(Q))1/100
or N(log log tw(Q)).

Theorem [M. 2007]

Let G be a computable class of graphs. Assuming the
Exponential-time Hypothesis, there is no algorithm for BCQ(G)
with running time f (Q)No(tw(Q)/ log tw(Q)).

Exponential-time Hypothesis:
There is no 2o(n) time algorithm for n-variable 3SAT.

Proof requires a tighter combinatorial understanding of what large
treewidth means.

25

Can you beat treewidth?

We have seen that treewidth-based algorithms discover every
polynomial time solvable class.

Is there a class G where we can be significantly faster than the
treewidth-based algorithm? E.g., running time N

√
tw(Q) or

N(tw(Q))1/100
or N(log log tw(Q)).

Theorem [M. 2007]

Let G be a computable class of graphs. Assuming the
Exponential-time Hypothesis, there is no algorithm for BCQ(G)
with running time f (Q)No(tw(Q)/ log tw(Q)).

Exponential-time Hypothesis:
There is no 2o(n) time algorithm for n-variable 3SAT.

Proof requires a tighter combinatorial understanding of what large
treewidth means.

25

Homomorphisms

The primal graph loses information if some relation appears more
than once in the query.

Q = R(A,B) ∧ S(B,C) ∧ R(A,D) ∧ S(D,C)

A

D

B

C

A

D

B

C

R

S

R S

This is empty if and only if

Q ′ = R(A,B) ∧ S(B,C)

is empty!

26

Homomorphisms

The primal graph loses information if some relation appears more
than once in the query.

Q = R(A,B) ∧ S(B,C) ∧ R(A,D) ∧ S(D,C)

A

D

B

C

A

D

B

C

R

S

R S

This is empty if and only if

Q ′ = R(A,B) ∧ S(B,C)

is empty!

26

Homomorphisms

A homomorphism from Q to Q ′ is a mapping φ of the variables of
Q to the variables of Q ′ such that if R(A,B) appears in Q, then
R(φ(A), φ(B)) appears in Q ′.

Observation:
If there is a homomorphism Q → Q ′ and Q ′ is nonempty, then
Q is nonempty as well.
If there is a homomorphism from Q to a subquery Q ′, then Q
is empty ⇔ Q ′ is empty.

Fact: Every query Q has a unique (up to isomorphism) smallest
subquery Q ′ with a homomorphism Q → Q ′. This is the core of
Q.

For Boolean Conjunctive Queries, it is only the core of the query
that matters!

27

Homomorphisms

A homomorphism from Q to Q ′ is a mapping φ of the variables of
Q to the variables of Q ′ such that if R(A,B) appears in Q, then
R(φ(A), φ(B)) appears in Q ′.

Observation:
If there is a homomorphism Q → Q ′ and Q ′ is nonempty, then
Q is nonempty as well.
If there is a homomorphism from Q to a subquery Q ′, then Q
is empty ⇔ Q ′ is empty.

Fact: Every query Q has a unique (up to isomorphism) smallest
subquery Q ′ with a homomorphism Q → Q ′. This is the core of
Q.

For Boolean Conjunctive Queries, it is only the core of the query
that matters!

27

Homomorphisms

What is the core of

Q =R(A1,B1) ∧ R(A1,B2) ∧ R(A2,B2)∧
R(A1,B3) ∧ R(A1,B4) ∧ R(A2,B4)∧
R(A2,B5) ∧ R(A2,B6) ∧ R(A3,B1)∧
R(A3,B6) ∧ R(A4,B2) ∧ R(A4,B7)∧
R(A5,B7)?

A1

A2

A3

A4

A5

B1

B2

B3

B4

B5

B6

B7

It is just R(A1,B1)! (As the graph is bipartite.)

28

Homomorphisms

What is the core of

Q =R(A1,B1) ∧ R(A1,B2) ∧ R(A2,B2)∧
R(A1,B3) ∧ R(A1,B4) ∧ R(A2,B4)∧
R(A2,B5) ∧ R(A2,B6) ∧ R(A3,B1)∧
R(A3,B6) ∧ R(A4,B2) ∧ R(A4,B7)∧
R(A5,B7)?

A1

A2

A3

A4

A5

B1

B2

B3

B4

B5

B6

B7
It is just R(A1,B1)! (As the graph is bipartite.)

28

Homomorphisms

Theorem [Grohe 2003]

Let Q be a computable class of queries with binary relations. Then
assuming FPT 6= W [1], the following are equivalent:

BCQ restricted to queries Q is is polynomial-time solvable.
BCQ restricted to queries Q is FPT.
The primal graph of the core of every query in Q has bounded
treewidth.

Theorem [M. 2007]

Let Q be a computable class of queries with binary relations.
Assuming the Exponential-time Hypothesis, there is no algorithm
for BCQ restricted to Q with running time
f (Q)No(ctw(Q)/ log ctw(Q)), where ctw(Q) is the treewidth of the
core of the primal graph of Q.

29

Homomorphisms

Theorem [Grohe 2003]

Let Q be a computable class of queries with binary relations. Then
assuming FPT 6= W [1], the following are equivalent:

BCQ restricted to queries Q is is polynomial-time solvable.
BCQ restricted to queries Q is FPT.
The primal graph of the core of every query in Q has bounded
treewidth.

Theorem [M. 2007]

Let Q be a computable class of queries with binary relations.
Assuming the Exponential-time Hypothesis, there is no algorithm
for BCQ restricted to Q with running time
f (Q)No(ctw(Q)/ log ctw(Q)), where ctw(Q) is the treewidth of the
core of the primal graph of Q.

29

Next: relations of arbitrary arity

Primal graph: vertices are the variables, two vertices are adjacent
if they appear in a common relation of the query.

A B

D E

F

C
R(A,B) ∧ R(A,C)∧
R(B,D,E) ∧ R(C ,D,F)

Most of the theoretical results go through for fixed constant arity.

But for undbounded arities we need to look at the hypergraph of
the query!

30

Next: relations of arbitrary arity

Primal graph: vertices are the variables, two vertices are adjacent
if they appear in a common relation of the query.

A B

D E

F

C
R(A,B) ∧ R(A,C)∧
R(B,D,E) ∧ R(C ,D,F)

Most of the theoretical results go through for fixed constant arity.

But for undbounded arities we need to look at the hypergraph of
the query!

30

Primal graph vs. hypergraphs
The primal graph loses a lot of information if arity is unbounded.

Q1 =
∧
i 6=j

R(Ai ,Aj)

Q2 = R(A1, . . . ,Ak)

Queries of the form Q1 are hard: binary relations with large
treewidth.
Queries of the form Q2 are trivial: N tuples to consider.

31

Primal graph vs. hypergraphs
The primal graph loses a lot of information if arity is unbounded.

Q1 =
∧
i 6=j

R(Ai ,Aj)

Q2 = R(A1, . . . ,Ak) ∧ S(A2,A3,A5) ∧ T (A3,A8) . . .

Queries of the form Q1 are hard: binary relations with large
treewidth.
Queries of the form Q2 are trivial: N tuples to consider.

31

What do we know about
bounding the size of the

answer?
(. . .and enumerating all solutions)

32

Upper bound
Observation: If the hypergraph has edge cover number ρ and
every relation has size at most N, then there are at most Nρ tuples
in the answer.

33

Upper bound
Observation: If the hypergraph has edge cover number ρ and
every relation has size at most N, then there are at most Nρ tuples
in the answer.

33

Lower bound
Observation: If the hypergraph has independence number α, then
one can construct an instance where every relation has size N at
the answer has size Nα.

Definition of the relations:
If variable A is in the independent set, then it can take any
value in [N].
Otherwise it is forced to 1.

34

N2 N3

Which is tight: the upper bound or the lower bound?

35

Example: triangles

A1

A2 A3

Upper bound

Two kind of values for A1:
Light: can be extended to at most

√
N ways to A2.

⇒ ≤ N ·
√
N answers with light A1

Heavy: can be extended to at least
√
N ways to A2.

⇒ ≤
√
N heavy values ⇒ ≤

√
N · N answers with heavy A1

⇒ At most 2 · N3/2 answers.
36

Example: triangles

[
√
N]

[
√
N] [

√
N]

Lower bound

Allow every variable to be any value from [
√
N] ⇒ N3/2 answers.

The correct bound N3/2 is between
Nα = N1 and Nρ = N2.

36

Fractional values

α: independence number
α∗: fractional independence number
(max. weight of vertices s.t. each edge contains weight ≤ 1)
ρ∗: fractional edge cover number
(min. weight of edges s.t. each vertex receives weight ≥ 1)
ρ: edge cover number

1
2

1
2

1
2

1
2

1
2

1
2

≤ = ≤

α = 1 α∗ = 3/2 ρ∗ = 3/2 ρ = 2

LP duality!

37

Tight bound

Theorem [Atserias, Grohe, M. 2008]

Consider a query with fractional edge cover number ρ∗.
If every relation has size at most N, there are at most Nρ∗

answers.
For every N, one can construct relations of size ≤ N such that
there are ≈ Nρ∗ answers.

Upper bound

Follows from classic combinatorial/probabilistic/geometric results
(Shearer’s Lemma, Submodularity of Entropy, Loomis-Whitney, . . .)

38

Tight bound

Theorem [Atserias, Grohe, M. 2008]

Consider a query with fractional edge cover number ρ∗.
If every relation has size at most N, there are at most Nρ∗

answers.
For every N, one can construct relations of size ≤ N such that
there are ≈ Nρ∗ answers.

Lower bound

Let f be a max. fractional independent set. Allow variable A to have
any value from [N f (A)].

Size of relation R :∏
A in R

N f (A) = N
∑

A∈a(R) f (A) ≤ N1

Answer size:∏
A

N f (A) = N
∑

A f (A) = Nα∗ = Nρ∗

38

Enumerating all solutions

Can we find all solutions in time roughly Nρ∗?

Possible approaches:
Join plan
Join-Project plan
Something else

39

Join-Project plans

Qi = Q|A1,...,Ai
— projection to the first i variables.

Observation 1:
ρ∗(Qi) ≤ ρ∗(Q), so the Nρ∗ upper bound holds for every Qi .

Observation 2:
Qi can be computed from Qi−1 in time Nρ∗+1:

Qi = ((. . . (Qi−1 ./ R1|A1,...,Ai
)) ./ R2|A1,...,Ai

)/ Rm|A1,...,Ai

⇒ Simple Join-Project plan in Nρ∗+1 time.

Do we need projections?
Can we get rid of the +1?

40

Join-Project plans

Qi = Q|A1,...,Ai
— projection to the first i variables.

Observation 1:
ρ∗(Qi) ≤ ρ∗(Q), so the Nρ∗ upper bound holds for every Qi .

Observation 2:
Qi can be computed from Qi−1 in time Nρ∗+1:

Qi = ((. . . (Qi−1 ./ R1|A1,...,Ai
)) ./ R2|A1,...,Ai

)/ Rm|A1,...,Ai

⇒ Simple Join-Project plan in Nρ∗+1 time.

Do we need projections?
Can we get rid of the +1?

40

Join-Project plans

Qi = Q|A1,...,Ai
— projection to the first i variables.

Observation 1:
ρ∗(Qi) ≤ ρ∗(Q), so the Nρ∗ upper bound holds for every Qi .

Observation 2:
Qi can be computed from Qi−1 in time Nρ∗+1:

Qi = ((. . . (Qi−1 ./ R1|A1,...,Ai
)) ./ R2|A1,...,Ai

)/ Rm|A1,...,Ai

⇒ Simple Join-Project plan in Nρ∗+1 time.

Do we need projections?
Can we get rid of the +1?

40

Example

Our “favorite hypergraph”: 2m relations,
(2m
m

)
variables, each

contained in exactly m relations.

m = 2: R1(A12,A13,A14) ∧ R2(A12,A23,A24)∧
R3(A13,A23,A34) ∧ R4(A14,A24,A34)

41

Example

Our “favorite hypergraph”: 2m relations,
(2m
m

)
variables, each

contained in exactly m relations.

m = 3: R1(A123,A124,A125,A126,A134,A135,A136,A145,A146,A156)∧
R2(A123,A124,A125,A126,A234,A235,A236,A245,A246,A256)∧
R3(A123,A134,A135,A136,A234,A235,A236,A245,A246,A256)∧
R4(A124,A134,A145,A146,A234,A245,A246,A345,A346,A456)∧
R5(A125,A135,A145,A156,A235,A245,A256,A345,A356,A456)∧
R6(A126,A136,A146,A156,A236,A246,A256,A346,A356,A456)

41

Example

Our “favorite hypergraph”: 2m relations,
(2m
m

)
variables, each

contained in exactly m relations.

m = 3: R1(A123,A124,A125,A126,A134,A135,A136,A145,A146,A156)∧
R2(A123,A124,A125,A126,A234,A235,A236,A245,A246,A256)∧
R3(A123,A134,A135,A136,A234,A235,A236,A245,A246,A256)∧
R4(A124,A134,A145,A146,A234,A245,A246,A345,A346,A456)∧
R5(A125,A135,A145,A156,A235,A245,A256,A345,A356,A456)∧
R6(A126,A136,A146,A156,A236,A246,A256,A346,A356,A456)

Edge cover number

ρ = m + 1: if you pick e.g., R1, . . . , Rm, then Am+1,...,2m is not
covered.

Fractional edge cover number

ρ∗ = 2: weight 1/m for every relation, every variable is inm relations.

41

Example

Our “favorite hypergraph”: 2m relations,
(2m
m

)
variables, each

contained in exactly m relations.

m = 3: R1(A123,A124,A125,A126,A134,A135,A136,A145,A146,A156)∧
R2(A123,A124,A125,A126,A234,A235,A236,A245,A246,A256)∧
R3(A123,A134,A135,A136,A234,A235,A236,A245,A246,A256)∧
R4(A124,A134,A145,A146,A234,A245,A246,A345,A346,A456)∧
R5(A125,A135,A145,A156,A235,A245,A256,A345,A356,A456)∧
R6(A126,A136,A146,A156,A236,A246,A256,A346,A356,A456)

Join plans

There is a point where we have joined roughly m/2 relations,
say, R1 ∧ . . . ∧ Rm/2.
This hypergraph has an independent set of size m/2: variables
Ai ,m+1,...,2m are independent for 1 ≤ i ≤ m/2.
One can use this to make sure that there are Nm/2 solutions.

41

Join-Project plans are suboptimal

A1

A2 A3

R = ([N/2]× [1]) ∪ ([1]× [N/2])

Join-Project plan first joins two relations:

R(A1,A2) ./ R(A2,A3) = ([N/2]× 1× [N/2]) ∪ (1 ∪ ×[N/2] ∪ 1)

Has size Ω(N2) — but the upper bound is N3/2.

42

Optimal join algorithms

We can get rid of the +1 in the exponent, but these are not
Join-Project algorithms.

Ngo, Porat, Ré, and Rutra [PODS 2012]
Veldhuizen [ICDT 2014]
Ngo and Rudra [Sigmod Record 13]

43

Back to Boolean Conjunctive Queries

We have seen that treewidth of the primal graph is not a good
measure of the complexity of BCQ with unbounded arities.

Tree decomposition + Size bounds = ?

44

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 For any hyperedge e, there is a bag containing e.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

A subtree communicates with the outside world
only via the root of the subtree.

45

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 For any hyperedge e, there is a bag containing e.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

hgfe

a

b c d

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

A subtree communicates with the outside world
only via the root of the subtree.

45

Boolean Conjunctive Queries and tree decompositions

Theorem
Given a tree decomposition of width w , a Boolean Conjunctive
Query where every variable allows at most N different values can
can be solved in time Nw+1 · |Q|O(1).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

For every node x and tuple t ∈ Q|Bx
, we

compute the Boolean value E [x , t], which is
true if and only if t can be extended to a
tuple of Q|Vx

.

Claim:
We can determine E [x , t] if all the values are
known for the children of x .

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

46

Boolean Conjunctive Queries and tree decompositions

Theorem
Given a tree decomposition of width w , a Boolean Conjunctive
Query where every variable allows at most N different values can
can be solved in time Nw+1 · |Q|O(1).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

For every node x and tuple t ∈ Q|Bx
, we

compute the Boolean value E [x , t], which is
true if and only if t can be extended to a
tuple of Q|Vx

.

Running time:
Dominating factor is the size of Q|Bx

, which
can be bounded by N |Bx | ≤ Nw+1.

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

46

Fractional hypertree width

Fractional hypertree width: every bag has fractional edge cover
number at most k .

Theorem [Grohe and M. 2006]

Given a fractional hypertree decomposition of width k , a Boolean
Conjunctive Query where every variable allows at most N different
values can can be solved in time Nk · |Q|O(1).

Generalized hypertree width: every bag has edge cover number
at most k .

Hypertree width: same as generalized hypertree width, with an
additional “special condition.”

Acyclic hypergraphs: hypetree width = generalized hypertree
width = 1.

47

Fractional hypertree width

Fractional hypertree width: every bag has fractional edge cover
number at most k .

Theorem [Grohe and M. 2006]

Given a fractional hypertree decomposition of width k , a Boolean
Conjunctive Query where every variable allows at most N different
values can can be solved in time Nk · |Q|O(1).

Generalized hypertree width: every bag has edge cover number
at most k .

Hypertree width: same as generalized hypertree width, with an
additional “special condition.”

Acyclic hypergraphs: hypetree width = generalized hypertree
width = 1.

47

Finding decompositions

If we want fixed-parameter tractability, then we can find an
optimal decomposition in time f (H).
For polynomial-time algorithms, we need to find good
decompositions in polynomial time.

48

Finding decompositions

If we want fixed-parameter tractability, then we can find an
optimal decomposition in time f (H).
For polynomial-time algorithms, we need to find good
decompositions in polynomial time.

Treewidth
optimal decomposition in time nk [Robertson and Seymour].
optimal decomposition in time 2O(k3) · n
[Bodlaender 1996].
5-approximate decomposition in time 2O(k) · n
[Bodlaender et al. 2013].
O(
√

log k)-approximation in polynomial time
[Feige, Hajiaghayi, Lee 2008].

48

Finding decompositions

If we want fixed-parameter tractability, then we can find an
optimal decomposition in time f (H).
For polynomial-time algorithms, we need to find good
decompositions in polynomial time.

Hypertree width
optimal decomposition in time nk [Gottlob, Leone, and Scarcello
2002]

W[1]-hard ⇒ no FPT algorithm.

48

Finding decompositions

If we want fixed-parameter tractability, then we can find an
optimal decomposition in time f (H).
For polynomial-time algorithms, we need to find good
decompositions in polynomial time.

Generalized hypertree width
NP-hard even for k ≥ 3 [Gottlob, Miklós, Schwentick PODS
2007] and for w = 2 [Fischl, Gottlob, and Pichler 2016]

But ghw ≤ hw ≤ 3 · ghw ⇒ Hypertree width gives a
3-approximation!

48

Finding decompositions

If we want fixed-parameter tractability, then we can find an
optimal decomposition in time f (H).
For polynomial-time algorithms, we need to find good
decompositions in polynomial time.

Fractional hypertree width
For every k ≥ 1, there is a polynomial-time algorithm
computing a decomposition of width O(k3) [M. 2009].

Theorem
If class H has bounded fractional hypertree width, then BCQ(H)
can be solved in polynomial time.

NP-hard for every k ≥ 2 [Fischl, Gottlob, and Pichler 2016]

48

Better decompositions?

Fractional hypertree decomposition is the best possible tree
decomposition in a formal sense.

Observation: If a tree decomposition guarantees that the projection
to every bag has at most Nw solutions, then the decomposition has
fractional hypertree width at most w .

(If a bag has fractional edge cover number ρ∗, we can construct an
instance where it has Nρ∗ solutions.)

49

Better decompositions?

Fractional hypertree decomposition is the best possible tree
decomposition in a formal sense.

How can we move beyond fractional hypertree decompositions?

Idea 1: Look at the database, and choose a decomposition
based on that (not only on the query).
Idea 2: Branch and partition the solution space (e.g.,
light-heavy) and choose different decompositions.

49

Submodular width

Theorem [M. 2010]

Let H be a computable class of hypergraphs. Assuming the
Exponential-Time Hypothesis, the following are equivalent:

BCQ(H) is fixed-parameter tractable
(solvable in time f (Q) · NO(1)).
H has bounded submodular width.

Definition: H has submodular width ≤ w if for any function
f : 2V (H) → R+ that is

monotone (f (X) ≥ f (Y) for any X ⊃ Y),
submodular (f (X) + f (Y) ≥ f (X ∩ Y) + f (X ∪ Y)), and
edge dominated (f (e) ≤ 1 for any edge e ∈ E (H))

there is a tree decomposition of H with f (B) ≤ w for every bag B .

50

Submodular width

Definition: H has submodular width ≤ w if for any function
f : 2V (H) → R+ that is

monotone (f (X) ≥ f (Y) for any X ⊃ Y),
submodular (f (X) + f (Y) ≥ f (X ∩ Y) + f (X ∪ Y)), and
edge dominated (f (e) ≤ 1 for any edge e ∈ E (H))

there is a tree decomposition of H with f (B) ≤ w for every bag B .

Intuitive algorithmic idea: we imagine

f (X) ≈
log# solutions in Q|X

logN

Then there is a decomposition where f (B) ≤ w for every bag, so
|Q|B | ≤ Nw .

50

Conclusions

Messages
Treelike decompositions can make the problem easy.
You may want to look at the data and choose a decomposition
based on that.
You may want to branch and choose different decompositions
in the different branches.

Topics not covered: counting, enumeration, quantification,
functional dependencies, parallel algorithms . . .

51

