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Conjunctive queries

Evaluating conjunctive queries is a fundamental problem.

Q = R(A,B,C ) ∧ S(C ,D) ∧ T (B,C ,E )

Formally defined as:

Q = {(a, b, c , d , e) | (a, b, c) ∈ R, (c , d) ∈ S , (b, c, e) ∈ T}

Compute the answer relation Q.
Decide if the relation Q is empty.
Compute the size of Q.
. . .
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Conjunctive queries

Constraint Satisfaction
Problems (CSP)

Homomorphism of
relational structures
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Constraint Satisfaction Problems (CSP)

Q = R(A,B,C ) ∧ S(C ,D) ∧ T (B,C ,E )

CSP lingo:

variables A,B,C ,D,E
constraints R, S ,T
find an assignment (a, b, c , d , e) to the variables that satisfies
every constraint.

Tasks:

Compute the answer relation.

Decide if Q is empty.

Compute the size of Q.

⇔
List the satisfying assignments.

Decide if the CSP is satisfiable.

Count the sat. assignments.
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Goal

Goal: understand how efficiently a particular query
can be evaluated.

Worst-case setting: we know the query, but the database
relations can be arbitrary.
Different levels of efficiency: polynomial time, fixed-parameter
tractability, linear time.

Important message:

“Treelikeness” is very helpful!

. . .because it allows bottom-up dynamic programming.
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First: binary relations only

If every relation is binary (i.e., only two variables), then the
structure of the query can be described by the primal graph.

A B

D E

F

C

R(A,B) ∧ R(A,C )∧
R(B,D) ∧ R(C ,D)∧
R(B,E ) ∧ R(D,E )∧
R(C ,F ) ∧ R(D,F )

Goal: understand what graph-theoretic properties
allow efficient query evaluation.
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The Party Problem
Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun.

6

644

5

2

Input: A tree with
weights on the vertices.
Task: Find an
independent set of
maximum weight.
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Solving the Party Problem

Dynamic programming paradigm:
We solve a large number of subproblems that depend on each
other. The answer is a single subproblem.

Subproblems:
Tv : the subtree rooted at v .

A[v ]: max. weight of an independent set in Tv

B[v ]: max. weight of an independent set in Tv

that does not contain v

Goal: determine A[r ] for the root r .
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Solving the Party Problem

Subproblems:
Tv : the subtree rooted at v .

A[v ]: max. weight of an independent set in Tv

B[v ]: max. weight of an independent set in Tv

that does not contain v

Recurrence:
Assume v1, . . . , vk are the children of v . Use the recurrence
relations

B[v ] =
∑k

i=1 A[vi ]

A[v ] = max{B[v ] , w(v) +
∑k

i=1 B[vi ]}

The values A[v ] and B[v ] can be calculated in a bottom-up order
(the leaves are trivial).
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Treewidth
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Generalizing trees
How could we define that a graph is “treelike”?

1 Number of cycles is bounded.

good bad bad bad
2 Removing a bounded number of vertices makes it acyclic.

good good bad bad
3 Bounded-size parts connected in a tree-like way.

bad bad good good
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Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 For any edge uv , there is a bag containing both of them.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

A subtree communicates with the outside world
only via the root of the subtree.

11



Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 For any edge uv , there is a bag containing both of them.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

hgfe

a

b c d

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

A subtree communicates with the outside world
only via the root of the subtree.

11



Weighted Max Independent Set and treewidth
Theorem
Given a tree decomposition of width w , Weighted Max
Independent Set can be solved in time 2w · wO(1) · n.
Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

Generalizing our solution for trees:

Instead of computing 2 values A[v ], B[v ] for
each vertex of the tree, we compute 2|Bx | ≤
2w+1 values for each bag Bx .

M[x , S ]:
the max. weight of an independent set
I ⊆ Vx with I ∩ Bx = S .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

∅ =? bc =?
b =? cf =?
c =? bf =?
f =? bcf =?
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3-Coloring and tree decompositions

Theorem
Given a tree decomposition of width w , 3-Coloring can be
solved in time 3w · wO(1) · n.

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

For every node x and coloring c : Bx →
{1, 2, 3}, we compute the Boolean value
E [x , c], which is true if and only if c can
be extended to a proper 3-coloring of Vx .

Claim:
We can determine E [x , c] if all the values are
known for the children of x .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

bcf=T bcf=F
bcf=T bcf=F
. . . . . .
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Coloring as a CSP

We can interpret 3-coloring as a CSP:

vertices ⇔ variables
domain D = {r , g , b}
edges ⇔ inequality constraints

R = {(x , y) ∈ D × D | x 6= y}

Straightforward generalization to higher number of colors:

Theorem
Given a tree decomposition of width w , c-Coloring can be
solved in time cw+1 · wO(1) · n.
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We can interpret 3-coloring as a CSP:

vertices ⇔ variables
domain D = {r , g , b}
edges ⇔ inequality constraints

R = {(x , y) ∈ D × D | x 6= y}

Straightforward generalization to arbitrary binary CSPs:

Theorem
Given a tree decomposition of width w , binary CSP over domain D
can be solved in time |D|w+1 · wO(1) · n.
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Coloring as a database query
vertices ⇔ variables
edges ⇔ relation R = {rg , rb, gr , gb, br , bg}

A B

D E

F

C

R(A,B) ∧ R(A,C )∧
R(B,D) ∧ R(C ,D)∧
R(B,E ) ∧ R(D,E )∧
R(C ,F ) ∧ R(D,F )

Straightforward generalization to arbitrary binary queries:

Theorem
Given a tree decomposition of width w , a Boolean Conjunctive
Query where every variable allows at most N different values can
can be solved in time Nw+1 · |Q|O(1).
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Projections

Projecting the relation R(A,B,C ,D) to {A,B}:

R|AB = {(a, b) | ∃c , d : (a, b, c , d) ∈ R}

Projection of the query to a set S : projecting every relation.

Q =R(A,B,C ) ∧ S(C ,D) ∧ T (B,C ,E )

Q|AB = R|AB(A,B,C ) ∧ S|AB(C ,D) ∧ T|AB(B,C ,E )

= R|AB(A,B,C ) ∧ T|B(B,C ,E )

Easy: If (a, b, c) ∈ Q, then (a, b) ∈ Q|AB , but not necessarily the
other way around!
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Boolean Conjunctive Queries and tree decompositions

Theorem
Given a tree decomposition of width w , a Boolean Conjunctive
Query where every variable allows at most N different values can
can be solved in time Nw+1 · |Q|O(1).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

For every node x and tuple t ∈ Q|Bx
, we

compute the Boolean value E [x , t], which is
true if and only if t can be extended to a
tuple of Q|Vx

.

Claim:
We can determine E [x , t] if all the values are
known for the children of x .

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f
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can be solved in time Nw+1 · |Q|O(1).
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Vx : vertices appearing in the subtree rooted at x .

For every node x and tuple t ∈ Q|Bx
, we

compute the Boolean value E [x , t], which is
true if and only if t can be extended to a
tuple of Q|Vx

.

Running time:
Dominating factor is the size of Q|Bx

, which
can be bounded by N |Bx | ≤ Nw+1.

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f
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Tractable classes

We have seen that for every fixed bound on the treewidth, BCQ is
polynomial-time solvable in the size of the database.

Are there other properties that make the problem polynomial-time
solvable?

An equally interesting question: we can relax polynomial time and
allow arbitrary dependence on the length of the query.

⇒ Fixed-parameter tractability

18
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Formally:

If G is a class of graphs with bounded treewidth, then BCQ
restricted G (we call it BCQ(G)) is polynomial-time solvable.
Are there other such classes?

An equally interesting question: we can relax polynomial time and
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Fixed-parameter tractability

Main definition
A parameterized problem is fixed-parameter tractable (FPT) if
there is an f (k)nc time algorithm for some constant c .

Main goal of parameterized complexity: to find FPT problems.

Examples of NP-hard problems that are FPT:
Finding a vertex cover of size k .
Finding a path of length k .
Finding k disjoint triangles.
Drawing the graph in the plane with k edge crossings.
Finding disjoint paths that connect k pairs of points.
. . .
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W[1]-hardness

Negative evidence similar to NP-completeness. If a problem is
W[1]-hard, then the problem is not FPT unless FPT=W[1].

Some W[1]-hard problems:
Finding a clique/independent set of size k .
Finding a dominating set of size k .
Finding k pairwise disjoint sets.
. . .
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Tractable classes

Theorem [Grohe, Schwentick, Segoufin 2001]

Let G be a computable class of graphs. Then assuming
FPT 6= W [1], the following are equivalent:

BCQ(G) is polynomial-time solvable.
BCQ(G) is FPT.
G has bounded treewidth.

Two surprises:
Treewidth-based algorithms already solve every
polynomial-time solvable case.
FPT does not give us extra power over polynomial time.
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Minors

Definition
Graph H is a minor of G (H ≤ G ) if H can be obtained from G by
deleting edges, deleting vertices, and contracting edges.

deleting uv

vu w

u v
contracting uv
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Excluded Grid Theorem

Theorem [Chuzhoy 2016] [Chekuri and Chuzhoy 2014]

Every graph with treewidth at least k19polylog(k) has a k × k grid
minor.

The k × k grid has treewidth exactly k .
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Tractable classes

Theorem [Grohe, Schwentick, Segoufin 2001]
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Tractable classes

Theorem [Grohe, Schwentick, Segoufin 2001]

Let G be a computable class of graphs with unbounded treewidth.
Then assuming FPT 6= W [1], BCQ(G) is not FPT.

Assuming FPT 6= W [1], k-Clique is not FPT.
k-Clique can be simulated by a BCQ whose primal graph is
a k × k grid.
G has unbounded treewidth
⇒ Excluded Grid Theorem
⇒ G contains graphs with a k × k grid minor
⇒ BCQ(G) can simulate BCQ’s with k × k grid structure.
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Can you beat treewidth?

We have seen that treewidth-based algorithms discover every
polynomial time solvable class.

Is there a class G where we can be significantly faster than the
treewidth-based algorithm? E.g., running time N

√
tw(Q) or

N(tw(Q))1/100
or N(log log tw(Q)).

Theorem [M. 2007]

Let G be a computable class of graphs. Assuming the
Exponential-time Hypothesis, there is no algorithm for BCQ(G)
with running time f (Q)No(tw(Q)/ log tw(Q)).

Exponential-time Hypothesis:
There is no 2o(n) time algorithm for n-variable 3SAT.

Proof requires a tighter combinatorial understanding of what large
treewidth means.
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Homomorphisms

The primal graph loses information if some relation appears more
than once in the query.

Q = R(A,B) ∧ S(B,C ) ∧ R(A,D) ∧ S(D,C )

A

D

B

C

A

D

B

C

R

S

R S

This is empty if and only if

Q ′ = R(A,B) ∧ S(B,C )

is empty!
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Homomorphisms

A homomorphism from Q to Q ′ is a mapping φ of the variables of
Q to the variables of Q ′ such that if R(A,B) appears in Q, then
R(φ(A), φ(B)) appears in Q ′.

Observation:
If there is a homomorphism Q → Q ′ and Q ′ is nonempty, then
Q is nonempty as well.
If there is a homomorphism from Q to a subquery Q ′, then Q
is empty ⇔ Q ′ is empty.

Fact: Every query Q has a unique (up to isomorphism) smallest
subquery Q ′ with a homomorphism Q → Q ′. This is the core of
Q.

For Boolean Conjunctive Queries, it is only the core of the query
that matters!
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Homomorphisms

What is the core of

Q =R(A1,B1) ∧ R(A1,B2) ∧ R(A2,B2)∧
R(A1,B3) ∧ R(A1,B4) ∧ R(A2,B4)∧
R(A2,B5) ∧ R(A2,B6) ∧ R(A3,B1)∧
R(A3,B6) ∧ R(A4,B2) ∧ R(A4,B7)∧
R(A5,B7)?

A1

A2

A3

A4

A5

B1

B2

B3

B4

B5

B6

B7

It is just R(A1,B1)! (As the graph is bipartite.)
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Homomorphisms

Theorem [Grohe 2003]

Let Q be a computable class of queries with binary relations. Then
assuming FPT 6= W [1], the following are equivalent:

BCQ restricted to queries Q is is polynomial-time solvable.
BCQ restricted to queries Q is FPT.
The primal graph of the core of every query in Q has bounded
treewidth.

Theorem [M. 2007]

Let Q be a computable class of queries with binary relations.
Assuming the Exponential-time Hypothesis, there is no algorithm
for BCQ restricted to Q with running time
f (Q)No(ctw(Q)/ log ctw(Q)), where ctw(Q) is the treewidth of the
core of the primal graph of Q.
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Next: relations of arbitrary arity

Primal graph: vertices are the variables, two vertices are adjacent
if they appear in a common relation of the query.

A B

D E

F

C
R(A,B) ∧ R(A,C )∧
R(B,D,E ) ∧ R(C ,D,F )

Most of the theoretical results go through for fixed constant arity.

But for undbounded arities we need to look at the hypergraph of
the query!

30
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Primal graph vs. hypergraphs
The primal graph loses a lot of information if arity is unbounded.

Q1 =
∧
i 6=j

R(Ai ,Aj)

Q2 = R(A1, . . . ,Ak)

Queries of the form Q1 are hard: binary relations with large
treewidth.
Queries of the form Q2 are trivial: N tuples to consider.
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Primal graph vs. hypergraphs
The primal graph loses a lot of information if arity is unbounded.

Q1 =
∧
i 6=j

R(Ai ,Aj)

Q2 = R(A1, . . . ,Ak) ∧ S(A2,A3,A5) ∧ T (A3,A8) . . .

Queries of the form Q1 are hard: binary relations with large
treewidth.
Queries of the form Q2 are trivial: N tuples to consider.
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What do we know about
bounding the size of the

answer?
(. . .and enumerating all solutions)

32



Upper bound
Observation: If the hypergraph has edge cover number ρ and
every relation has size at most N, then there are at most Nρ tuples
in the answer.
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Upper bound
Observation: If the hypergraph has edge cover number ρ and
every relation has size at most N, then there are at most Nρ tuples
in the answer.
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Lower bound
Observation: If the hypergraph has independence number α, then
one can construct an instance where every relation has size N at
the answer has size Nα.

Definition of the relations:
If variable A is in the independent set, then it can take any
value in [N].
Otherwise it is forced to 1.

34



N2 N3

Which is tight: the upper bound or the lower bound?

35



Example: triangles

A1

A2 A3

Upper bound

Two kind of values for A1:
Light: can be extended to at most

√
N ways to A2.

⇒ ≤ N ·
√
N answers with light A1

Heavy: can be extended to at least
√
N ways to A2.

⇒ ≤
√
N heavy values ⇒ ≤

√
N · N answers with heavy A1

⇒ At most 2 · N3/2 answers.
36



Example: triangles

[
√
N]

[
√
N] [

√
N]

Lower bound

Allow every variable to be any value from [
√
N] ⇒ N3/2 answers.

The correct bound N3/2 is between
Nα = N1 and Nρ = N2.
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Fractional values

α: independence number
α∗: fractional independence number
(max. weight of vertices s.t. each edge contains weight ≤ 1)
ρ∗: fractional edge cover number
(min. weight of edges s.t. each vertex receives weight ≥ 1)
ρ: edge cover number

1
2

1
2

1
2

1
2

1
2

1
2

≤ = ≤

α = 1 α∗ = 3/2 ρ∗ = 3/2 ρ = 2

LP duality!
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Tight bound

Theorem [Atserias, Grohe, M. 2008]

Consider a query with fractional edge cover number ρ∗.
If every relation has size at most N, there are at most Nρ∗

answers.
For every N, one can construct relations of size ≤ N such that
there are ≈ Nρ∗ answers.

Upper bound

Follows from classic combinatorial/probabilistic/geometric results
(Shearer’s Lemma, Submodularity of Entropy, Loomis-Whitney, . . .)
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Tight bound

Theorem [Atserias, Grohe, M. 2008]

Consider a query with fractional edge cover number ρ∗.
If every relation has size at most N, there are at most Nρ∗

answers.
For every N, one can construct relations of size ≤ N such that
there are ≈ Nρ∗ answers.

Lower bound

Let f be a max. fractional independent set. Allow variable A to have
any value from [N f (A)].

Size of relation R :∏
A in R

N f (A) = N
∑

A∈a(R) f (A) ≤ N1

Answer size:∏
A

N f (A) = N
∑

A f (A) = Nα∗ = Nρ∗
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Enumerating all solutions

Can we find all solutions in time roughly Nρ∗?

Possible approaches:
Join plan
Join-Project plan
Something else
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Join-Project plans

Qi = Q|A1,...,Ai
— projection to the first i variables.

Observation 1:
ρ∗(Qi ) ≤ ρ∗(Q), so the Nρ∗ upper bound holds for every Qi .

Observation 2:
Qi can be computed from Qi−1 in time Nρ∗+1:

Qi = ((. . . (Qi−1 ./ R1|A1,...,Ai
)) ./ R2|A1,...,Ai

) . . . ./ Rm|A1,...,Ai

⇒ Simple Join-Project plan in Nρ∗+1 time.

Do we need projections?
Can we get rid of the +1?
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Example

Our “favorite hypergraph”: 2m relations,
(2m
m

)
variables, each

contained in exactly m relations.

m = 2: R1(A12,A13,A14) ∧ R2(A12,A23,A24)∧
R3(A13,A23,A34) ∧ R4(A14,A24,A34)
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Example

Our “favorite hypergraph”: 2m relations,
(2m
m

)
variables, each

contained in exactly m relations.

m = 3: R1(A123,A124,A125,A126,A134,A135,A136,A145,A146,A156)∧
R2(A123,A124,A125,A126,A234,A235,A236,A245,A246,A256)∧
R3(A123,A134,A135,A136,A234,A235,A236,A245,A246,A256)∧
R4(A124,A134,A145,A146,A234,A245,A246,A345,A346,A456)∧
R5(A125,A135,A145,A156,A235,A245,A256,A345,A356,A456)∧
R6(A126,A136,A146,A156,A236,A246,A256,A346,A356,A456)
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R4(A124,A134,A145,A146,A234,A245,A246,A345,A346,A456)∧
R5(A125,A135,A145,A156,A235,A245,A256,A345,A356,A456)∧
R6(A126,A136,A146,A156,A236,A246,A256,A346,A356,A456)

Edge cover number

ρ = m + 1: if you pick e.g., R1, . . . , Rm, then Am+1,...,2m is not
covered.

Fractional edge cover number

ρ∗ = 2: weight 1/m for every relation, every variable is inm relations.
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Example

Our “favorite hypergraph”: 2m relations,
(2m
m

)
variables, each

contained in exactly m relations.

m = 3: R1(A123,A124,A125,A126,A134,A135,A136,A145,A146,A156)∧
R2(A123,A124,A125,A126,A234,A235,A236,A245,A246,A256)∧
R3(A123,A134,A135,A136,A234,A235,A236,A245,A246,A256)∧
R4(A124,A134,A145,A146,A234,A245,A246,A345,A346,A456)∧
R5(A125,A135,A145,A156,A235,A245,A256,A345,A356,A456)∧
R6(A126,A136,A146,A156,A236,A246,A256,A346,A356,A456)

Join plans

There is a point where we have joined roughly m/2 relations,
say, R1 ∧ . . . ∧ Rm/2.
This hypergraph has an independent set of size m/2: variables
Ai ,m+1,...,2m are independent for 1 ≤ i ≤ m/2.
One can use this to make sure that there are Nm/2 solutions.
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Join-Project plans are suboptimal

A1

A2 A3

R = ([N/2]× [1]) ∪ ([1]× [N/2])

Join-Project plan first joins two relations:

R(A1,A2) ./ R(A2,A3) = ([N/2]× 1× [N/2]) ∪ (1 ∪ ×[N/2] ∪ 1)

Has size Ω(N2) — but the upper bound is N3/2.
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Optimal join algorithms

We can get rid of the +1 in the exponent, but these are not
Join-Project algorithms.

Ngo, Porat, Ré, and Rutra [PODS 2012]
Veldhuizen [ICDT 2014]
Ngo and Rudra [Sigmod Record 13]
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Back to Boolean Conjunctive Queries

We have seen that treewidth of the primal graph is not a good
measure of the complexity of BCQ with unbounded arities.

Tree decomposition + Size bounds = ?
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Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 For any hyperedge e, there is a bag containing e.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

A subtree communicates with the outside world
only via the root of the subtree.
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A subtree communicates with the outside world
only via the root of the subtree.
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Boolean Conjunctive Queries and tree decompositions

Theorem
Given a tree decomposition of width w , a Boolean Conjunctive
Query where every variable allows at most N different values can
can be solved in time Nw+1 · |Q|O(1).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

For every node x and tuple t ∈ Q|Bx
, we

compute the Boolean value E [x , t], which is
true if and only if t can be extended to a
tuple of Q|Vx

.

Claim:
We can determine E [x , t] if all the values are
known for the children of x .

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f
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Boolean Conjunctive Queries and tree decompositions

Theorem
Given a tree decomposition of width w , a Boolean Conjunctive
Query where every variable allows at most N different values can
can be solved in time Nw+1 · |Q|O(1).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

For every node x and tuple t ∈ Q|Bx
, we

compute the Boolean value E [x , t], which is
true if and only if t can be extended to a
tuple of Q|Vx

.

Running time:
Dominating factor is the size of Q|Bx

, which
can be bounded by N |Bx | ≤ Nw+1.

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f
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Fractional hypertree width

Fractional hypertree width: every bag has fractional edge cover
number at most k .

Theorem [Grohe and M. 2006]

Given a fractional hypertree decomposition of width k , a Boolean
Conjunctive Query where every variable allows at most N different
values can can be solved in time Nk · |Q|O(1).

Generalized hypertree width: every bag has edge cover number
at most k .

Hypertree width: same as generalized hypertree width, with an
additional “special condition.”

Acyclic hypergraphs: hypetree width = generalized hypertree
width = 1.
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Finding decompositions

If we want fixed-parameter tractability, then we can find an
optimal decomposition in time f (H).
For polynomial-time algorithms, we need to find good
decompositions in polynomial time.
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Finding decompositions

If we want fixed-parameter tractability, then we can find an
optimal decomposition in time f (H).
For polynomial-time algorithms, we need to find good
decompositions in polynomial time.

Treewidth
optimal decomposition in time nk [Robertson and Seymour].
optimal decomposition in time 2O(k3) · n
[Bodlaender 1996].
5-approximate decomposition in time 2O(k) · n
[Bodlaender et al. 2013].
O(
√

log k)-approximation in polynomial time
[Feige, Hajiaghayi, Lee 2008].
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Finding decompositions

If we want fixed-parameter tractability, then we can find an
optimal decomposition in time f (H).
For polynomial-time algorithms, we need to find good
decompositions in polynomial time.

Hypertree width
optimal decomposition in time nk [Gottlob, Leone, and Scarcello
2002]

W[1]-hard ⇒ no FPT algorithm.
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Finding decompositions

If we want fixed-parameter tractability, then we can find an
optimal decomposition in time f (H).
For polynomial-time algorithms, we need to find good
decompositions in polynomial time.

Generalized hypertree width
NP-hard even for k ≥ 3 [Gottlob, Miklós, Schwentick PODS
2007] and for w = 2 [Fischl, Gottlob, and Pichler 2016]

But ghw ≤ hw ≤ 3 · ghw ⇒ Hypertree width gives a
3-approximation!
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Finding decompositions

If we want fixed-parameter tractability, then we can find an
optimal decomposition in time f (H).
For polynomial-time algorithms, we need to find good
decompositions in polynomial time.

Fractional hypertree width
For every k ≥ 1, there is a polynomial-time algorithm
computing a decomposition of width O(k3) [M. 2009].

Theorem
If class H has bounded fractional hypertree width, then BCQ(H)
can be solved in polynomial time.

NP-hard for every k ≥ 2 [Fischl, Gottlob, and Pichler 2016]
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Better decompositions?

Fractional hypertree decomposition is the best possible tree
decomposition in a formal sense.

Observation: If a tree decomposition guarantees that the projection
to every bag has at most Nw solutions, then the decomposition has
fractional hypertree width at most w .

(If a bag has fractional edge cover number ρ∗, we can construct an
instance where it has Nρ∗ solutions.)
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Better decompositions?

Fractional hypertree decomposition is the best possible tree
decomposition in a formal sense.

How can we move beyond fractional hypertree decompositions?

Idea 1: Look at the database, and choose a decomposition
based on that (not only on the query).
Idea 2: Branch and partition the solution space (e.g.,
light-heavy) and choose different decompositions.
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Submodular width

Theorem [M. 2010]

Let H be a computable class of hypergraphs. Assuming the
Exponential-Time Hypothesis, the following are equivalent:

BCQ(H) is fixed-parameter tractable
(solvable in time f (Q) · NO(1)).
H has bounded submodular width.

Definition: H has submodular width ≤ w if for any function
f : 2V (H) → R+ that is

monotone (f (X ) ≥ f (Y ) for any X ⊃ Y ),
submodular (f (X ) + f (Y ) ≥ f (X ∩ Y ) + f (X ∪ Y )), and
edge dominated (f (e) ≤ 1 for any edge e ∈ E (H))

there is a tree decomposition of H with f (B) ≤ w for every bag B .
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Submodular width

Definition: H has submodular width ≤ w if for any function
f : 2V (H) → R+ that is

monotone (f (X ) ≥ f (Y ) for any X ⊃ Y ),
submodular (f (X ) + f (Y ) ≥ f (X ∩ Y ) + f (X ∪ Y )), and
edge dominated (f (e) ≤ 1 for any edge e ∈ E (H))

there is a tree decomposition of H with f (B) ≤ w for every bag B .

Intuitive algorithmic idea: we imagine

f (X ) ≈
log# solutions in Q|X

logN

Then there is a decomposition where f (B) ≤ w for every bag, so
|Q|B | ≤ Nw .
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Conclusions

Messages
Treelike decompositions can make the problem easy.
You may want to look at the data and choose a decomposition
based on that.
You may want to branch and choose different decompositions
in the different branches.

Topics not covered: counting, enumeration, quantification,
functional dependencies, parallel algorithms . . .
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