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Abstract. Matroid theory gives us powerful techniques for understand-
ing combinatorial optimization problems and for designing polynomial-
time algorithms. However, several natural matroid problems, such as
3-matroid intersection, are NP-hard. Here we investigate these problems
from the parameterized complexity point of view: instead of the trivial
O(nk) time brute force algorithm for finding a k-element solution, we try
to give algorithms with uniformly polynomial (i.e., f(k) · nO(1)) running
time. The main result is that if the ground set of a represented matroid
is partitioned into blocks of size ℓ, then we can determine in f(k, ℓ)·nO(1)

randomized time whether there is an independent set that is the union
of k blocks. As consequence, algorithms with similar running time are
obtained for other problems such as finding a k-set in the intersection of
ℓ matroids, or finding k terminals in a network such that each of them
can be connected simultaneously to the source by ℓ disjoint paths.

1 Introduction

Many of the classical combinatorial optimization problems can be studied in the
framework of matroid theory. The polynomial-time solvability of finding mini-
mum weight spanning trees, finding perfect matchings, and certain connectivity
problems all follow from the general algorithmic results on matroids.

Deciding whether there is an independent set of size k in the intersection of
two matroids can be done in polynomial time, but the problem becomes NP-
hard if we have to find a k-element set in the intersection of three matroids.
Of course, the problem can be solved in nO(k) time by brute force, hence it is
polynomial-time solvable for every fixed value of k. However, the running time
is prohibitively large, even for small values of k (e.g., k = 10) and moderate
values of n (e.g., n = 1000). The aim of parameterized complexity is to identify
problems that can be solved in uniformly polynomial time for every fixed value
of the problem parameter k, that is, the running time is of the form f(k) ·nO(1).
A problem that can be solved in such time is called fixed-parameter tractable.
Notice the huge qualitative difference between running times such as O(2k · n2)



and nk: the former can be efficient even for, say, k = 15, while the latter has no
chance of working. For more background on parameterized complexity, see [1].

The question that we investigate in this paper is whether the NP-hard ma-
troid optimization problems can be solved in uniformly polynomial time, if the
parameter is the size of the object that we are looking for. The most general
result is the following:

Theorem 1 (Main). Let M(E, I) be a matroid where the ground set is parti-
tioned into blocks of size ℓ. Given a representation A of M , it can be determined
in f(k, ℓ) · ‖A‖O(1) randomized time whether there is an independent set that is
the union of k blocks. (‖A‖ denotes the length of A in the input.)

For ℓ = 2, this problem is exactly the matroid parity problem, which is polynomial-
time solvable for represented matroids [4]. For ℓ ≥ 3, the problem is NP-hard.

As applications of the main result, we show that the following problems are
also solvable in f(k, ℓ) · nO(1) randomized time:

1. Given a family of subsets each of size at most ℓ, find k of them that are
pairwise disjoint.

2. Given a graph G, find k (edge) disjoint triangles in G.
3. Given ℓ matroids over the same ground set, find a set of size k that is

independent in each matroid.
4. Feedback Edge Set with Budget Vectors: given a graph with ℓ-

dimensional cost vectors on the edges, find a feedback edge set of size at most
k such that the total cost does not exceed a given vector C (see Section 5.3
for the precise definition).

5. Reliable Terminals: select k terminals and connect each of them to the
source with ℓ paths such that these k · ℓ paths are pairwise disjoint.

The fixed-parameter tractability of the first two problems is well-known: they can
be solved either with color coding or using representative systems. However, it is
interesting to see that randomized fixed-parameter tractability can be obtained
as a straightforward corollary of our results on matroids. We are not aware of
any parameterized investigations of the last three problems.

The algorithm behind the main result is inspired by the technique of repre-
sentative systems introduced by Monien [6] (see also [8,5] and [1, Section 8.2]).
Iteratively for i = 1, 2, . . . , ℓ, we construct a collection Si that contains indepen-
dent sets arising as the union of i blocks (if there are such independent sets).
The crucial observation is that we can ensure that the size of each Si is at most
a constant depending only on k and ℓ. In [5], this bound is obtained using Bol-
lobás’ Inequality. In our case, the bound can be obtained using a linear-algebraic
generalization of Bollobás’ Inequality due to Lovász [3, Theorem 4.8] (see also
[2, Chapter 31, Lemma 3.2]). However, we need an algorithmic way of bounding
the size of the Si’s, hence we do not state and use these inequalities here, but
rather reproduce the proof of Lovász in an algorithmic form (Lemma 12). The
proof of this lemma is a simple application of multilinear algebra.

The algorithms that we obtain are randomized in the sense that they use ran-
dom numbers and there is a small probability of not finding a solution even if it



exists. The randomized nature of the algorithm comes from the fact that we rely
on the Zippel-Schwartz Lemma in some of the operations involving matroid rep-
resentations. Additionally, when working with representations over finite fields,
then some of the algebraic operations are most conveniently done randomized.
As the main result is randomized, we do not discuss whether these miscellaneous
algebraic operations can be derandomized.

Section 2 summarizes the most important notions of matroid theory. Section 3
discusses how certain operations can be performed on the representations of
matroids. Most of these constructions are either easy or folklore. The reason
why we discuss them in detail is that we need these results in algorithmic form.
The main result is presented in Section 4. In Section 5, the randomized fixed-
parameter tractability of certain problems are deduced as corollaries.

2 Preliminaries

A matroid M(E, I) is defined by a ground set E and a collection I ⊆ 2E of
independent sets satisfying the following three properties:

(I1) ∅ ∈ I
(I2) If X ⊆ Y and Y ∈ I, then X ∈ I.
(I3) If X, Y ∈ I and |X | < |Y |, then ∃e ∈ Y \ X such that X ∪ {e} ∈ I.

An inclusionwise maximal set of I is called a basis of the matroid. It can be
shown that the bases of a matroid all have the same size. This size is called the
rank of the matroid M , and is denoted by r(M). The rank r(S) of a subset S is
the size of the largest independent set in S.

The definition of matroids was motivated by two classical examples. Let
G(V, E) be a graph, and let a subset X ⊆ E of edges be independent if X
does not contain any cycles. This results in a matroid, which is called the cycle
matroid of G. The second example comes from linear algebra. Let A be a matrix
over an arbitrary field F . Let E be the set of columns of A, and let X ⊆ E be
independent if these columns are linearly independent. The matroids that can be
defined by such a construction are called linear matroids, and if a matroid can be
defined by a matrix A over a field F , then we say that the matroid is representable
over F . In this paper we consider only representable matroids, hence matroids
are given by a matrix A over a field F . To avoid complications involving the
representations of the elements in the matrix, we assume that F is either a finite
field or the rationals. We denote by ‖A‖ the size of the representation A: the
total number of bits required to describe all elements of the matrix.

We say that an algorithm is randomized polynomial time if the running time
can be bounded by a polynomial of the input size and the error parameter P ,
and it produces incorrect answer with probability at most 2−P . Most of the
randomized algorithms in this paper are based on the following lemma:

Lemma 2 (Zippel-Schwartz [12,10]). Let p(x1, . . . , xn) be a nonzero poly-
nomial of degree d over some field F , and let S be an N element subset of F . If
each xi is independently assigned a value from S with uniform probability, then
p(x1, . . . , xn) = 0 with probability at most d/N .



3 Representation Issues

The algorithm in Section 4 is based on algebraic manipulations, hence it requires
that the matroid is given by a linear representation in the input. Therefore, in
the proof of the main result and in its applications, we need algorithmic results
on how to find representations for certain matroids, and if some operation is
performed on a matroid, then how to obtain a representation of the result.

3.1 Dimension

The rank of a matroid represented by an m×n matrix is a most m: if the columns
are m-dimensional vectors, then more than m of them cannot be independent.
Conversely, every linear matroid of rank r has a representation with r rows:

Proposition 3. Given a matroid M of rank r with a representation A over F ,
we can find in polynomial time a representation A′ over F having r rows. ⊓⊔

3.2 Increasing the Size of the Field

The applications of Lemma 2 requires N to be large, so the probability of ac-
cidentally finding a root is small. However, N can be large only if the field F
contains a sufficient number of elements. Therefore, if a matroid representation
is given over some small field F , then we need a method of transforming this
representation to a representation over a field F ′ having at least N elements.

Let |F | = q and let n = ⌈logq N⌉. We construct a field F ′ having qn ≥ N
elements. In order to do this, an irreducible polynomial p(x) of degree n over F
is required. Such a polynomial p(x) can be found for example by the randomized
algorithm of Shoup [11] in time polynomial in n and log q. Now the ring of degree
n polynomials over F modulo p(x) is a field F ′ of size qn. If a representation
over F is given, then each element can be replaced by the corresponding degree
0 polynomial from F ′, which yields a representation over F ′.

Proposition 4. Let A be the representation of a matroid M over some field F .
For every N , it is possible to construct a representation A′ of M over some field
F ′ with |F ′| ≥ N in (‖A‖ · log N)O(1) randomized time. ⊓⊔

3.3 Direct Sum

Let M1(E1, I1) and M2(E2, I2) be two matroids with E1 ∩ E2 = ∅. The direct
sum M1 ⊕ M2 is a matroid over E := E1 ∪ E2 such that X ⊆ E is independent
if and only if X ∩ E1 ∈ I1 and X ∩ E2 ∈ I2. The notion can be generalized for
the sum of more than two matroids.

Proposition 5. Given representations of matroids M1, . . . , Mk over the same
field F , a representation of their direct sum can be found in polynomial time. ⊓⊔

3.4 Uniform and Partition Matroids

The uniform matroid Un,k has an n-element ground set E, and a set X ⊆ E
is independent if and only if |X | ≤ k. Every uniform matroid is linear and can



be represented over the rationals by a k × n matrix where the element in the
i-th column of j-th row is i(j−1). Clearly, no set of size larger than k can be
independent in this representation, and every set of k columns is independent,
as they form a Vandermonde matrix.

A partition matroid is given by a ground set E partitioned into k blocks E1,
. . . , Ek, and by k integers a1, . . . , ak. A set X ⊆ E is independent if and only if
|X ∩Ei| ≤ ai holds for every i = 1, . . . , k. As this partition matroid is the direct
sum of uniform matroids U|E1|,a1

, . . . , U|Ek|,ak
, we have

Proposition 6. A representation over the rationals of a partition matroid can
be constructed in polynomial time. ⊓⊔

3.5 Dual

The dual of a matroid M(E, I) is a matroid M∗(E, I∗) over the same ground
set where a set B ⊆ E is a basis of M∗ if and only if E \ B is a basis of M .

Proposition 7. Given a representation A of a matroid M , a representation of
the dual matroid M∗ can be found in polynomial time.

Proof. Let r be the rank of the matroid M . By Prop. 3, it can be assumed that
A is of the form (Ir×r B), where Ir×r is the unit matrix of size n× n, and B is
a matrix of size r× (n− r). Now the matrix A∗ = (B⊤ I(n−r)×(n−r)) represents
the dual matroid M∗, see any text on matroid theory (e.g., [9]). ⊓⊔

3.6 Truncation

The k-truncation of a matroid M(E, I) is a matroid M ′(E, I ′) such that S ⊆ E
is independent in M ′ if and only if |S| ≤ k and S is independent in M .

Proposition 8. Given a matroid M with a representation A over a finite field
F and an integer k, a representation of the k-truncation M ′ can be found in
randomized polynomial time.

Proof. By Prop. 3 and 4, it can be assumed that A is of size r × n and the size
of F is at least N := 2P · knk. Let R be a random matrix of size k × r, where
each element is taken from F with uniform distribution. We claim that with high
probability, RA is a representation of the k-truncation. Since RA cannot have
more than k independent columns, all we have to show is that a k-element set is
independent in M ′ if and only if it is independent in M . Let S be a set of size k,
let A0 be the r× k submatrix of A formed by the corresponding k columns, and
let B0 = RA0 be the corresponding k columns in RA. If S is not independent
in M , then the columns of B0 are not independent either. This means that S is
not independent in the matroid M ′ represented by RA. Assume now that S is
independent in M . The columns of A0 are independent, thus detRA0 6= 0 with
positive probability (e.g., there is a matrix R such that RA0 is the unit matrix).
We use Lemma 2 to show that this probability is at least 1−2−P /nk. The value



detRA0 can be considered as a polynomial, with the kr elements of the matrix
R being the variables. Since detRA0 is not always zero, the polynomial is not
identically zero. As the degree of this polynomial is k, Lemma 2 ensures that
detRA0 = 0 with probability at most k/N = 2−P /nk. Thus the probability that
a particular k-element independent set of M is not independent in M ′ is at most
2−P /nk. As M has not more than nk independent set of size k, the probability
that M ′ is not the k-truncation of M is at most 2−P . ⊓⊔

3.7 Cycle Matroids

The cycle matroid of G(V, E) can be represented over the 2-element field: con-
sider the |V | × |E| incidence matrix of G, where the i-th element of the j-row is
1 if and only if the i-th vertex is an endpoint of the j-th edge.

Proposition 9. Given a graph, a representation of the cycle matroid over the
two element field can be constructed in polynomial time. ⊓⊔

3.8 Transversal Matroids

Let G(A, B; E) be a bipartite graph. The transversal matroid M of G has A as
its ground set, and a subset X ⊆ A is independent in M if and only if there is
a matching that covers X . That is, X is independent if and only if there is an
injective mapping φ : X → B such that φ(v) is a neighbor of v for every v ∈ X .

Proposition 10. Given a bipartite graph G(A, B; E), a representation of its
transversal matroid can be constructed in randomized polynomial time.

Proof. Let R be a |B| × |A| matrix, where the i-th element in the j-th row is

– a random integer between 1 and N := 2P · |A| · 2|A| if the i-th element of A
and the j-th element of B are adjacent, and

– 0 otherwise.

We claim that with high probability, R represents the transversal matroid of
M . Assume that a subset X of columns is independent. These columns have a
|X |×|X | submatrix with nonzero determinant, hence there is at least one nonzero
term in the expansion of this determinant. The nonzero term is a product of |X |
nonzero cells, and these cells define a matching covering X .

Assume now that X ⊆ A is independent in the transversal matroid: it can
be matched with elements Y ⊆ B. This means that the determinant of the
|Y | × |X | submatrix R0 of R corresponding to X and Y has a term that is the
product of nonzero elements. The determinant of R0 can be considered as a
polynomial of degree at most |A|, where the variables are the random elements
of R0. The existence of the matching and the corresponding nonzero term in the
determinant shows that this polynomial is not identically zero. By Lemma 2, the
probability that the determinant of R0 is zero is at most 2−P /2|A|, implying that
the columns X are independent with high probability. There are at most 2|A|

independent sets in M , thus the probability that not all of them are independent
in the matroid represented by R is at most 2−P . ⊓⊔



4 The Main Result

In this section we give a randomized fixed-parameter tractable algorithm for
determining whether there are k blocks whose union is independent, if a matroid
is given with a partition of the ground set into blocks of size ℓ. The idea is to
construct for i = 1, . . . , k the set Si of all independent sets that arise as the union
of i blocks. A solution exists if and only if Sk is not empty. The set Si is easy to
construct if Si−1 is already known. The problem is that the size of Si can be as
large as nΩ(i), hence we cannot handle sets of this size in uniformly polynomial
time. The crucial idea is that we retain only a constant size subset of each Si in
such a way that we do not throw away any sets essential for the solution. The
property that this reduced collection has to satisfy is the following:

Definition 11. Given a matroid M(E, I) and a collection S of subsets of E,
we say that a subsystem S∗ ⊆ S is r-representative for S if the following holds:
for every set Y ⊆ E of size at most r, if there is a set X ∈ S disjoint from Y
with X ∪ Y ∈ I, then there is a set X∗ ∈ S∗ disjoint from Y with X∗ ∪ Y ∈ I.

That is, if an independent set in S can be extended to an independent set by
r new elements, then there is a set in S∗ that can be extended by the same r
elements. 0-representative means that S∗ is not empty if S is not empty. We use
the following lemma to obtain a representative subcollection of constant size:

Lemma 12. Let M be a linear matroid of rank r + s, and let S = {S1, . . . , Sm}
be a collection of independent sets, each of size s. If |S| >

(

r+s
s

)

, then there is
a set S ∈ S such that S \ {S} is r-representative for S. Furthermore, given a
representation A of M , we can find such a set S in f(r, s) · (‖A‖m)O(1) time.

Proof. Assume that M is represented by an (r + s)×n matrix A over some field
F . Let E be the ground set of the matroid M , and for each element e ∈ E, let xe

be the corresponding (r+s)-dimensional column vector of A. Let wi =
∧

e∈Si
xe,

a vector in the exterior algebra of the linear space F r+s. As every wi is the wedge
product of s vectors, the wi’s span a space of dimension at most

(

r+s
s

)

. Therefore,

if |S| >
(

r+s
s

)

, then the wi’s are not independent. Thus it can be assumed that
some vector wk can be expressed as the linear combination of the other vectors.

We claim that if Sk is removed from S, then the resulting subsystem is r-
representative for S. Assume that, on the contrary, there is a set Y of size at
most r such that Sk ∩ Y = ∅ and Sk ∪ Y is independent, but this does not hold
for any other Si with i 6= k. Let y = ∧e∈Y xe. A crucial property of the wedge
product is that the product of some vectors in F r+s is zero if and only if they are
not independent. Therefore, wk ∧y 6= 0, but wi ∧y = 0 for every i 6= k. However,
wk is the linear combination of the other wi’s, thus, by the multilinearity of the
wedge product, wk ∧ y 6= 0 is a linear combination of the values wi ∧ y = 0 for
i 6= k, which is a contradiction.

It is straightforward to make this proof algorithmic. First we determine the
vectors wi, then a vector wk that is spanned by the other vectors can be found
by standard techniques of linear algebra. Let us fix a basis of F r+s, and express



the vectors xe as the linear combination of the basis vectors. The vector wi is
the wedge product of s vectors, hence, using the multilinearity of the wedge
product, each wi can be expressed as the sum of (r+s)s terms. Each term is the
wedge product of basis vectors of F r+s; therefore, the antisymmetry property
can be used to reduce each term to 0 or a basis vector of the exterior algebra.
Thus we obtain each wi as a linear combination of basis vectors. Now Gaussian
elimination can be used to determine the rank of the subspace spanned by the
wi’s, and to check whether the rank remains the same if one of the vectors is
removed. If so, then the set corresponding to this vector can be removed from
S, and the resulting subsystem S∗ is representative for S. The running time of
the algorithm can be bounded by a polynomial of the number of vectors n, the
number of terms in the expression of a wi (i.e., (r + s)s), the dimension of the
subspace spanned by the wi’s (i.e.,

(

r+s
s

)

), and the size of the representation of
M . Therefore, the algorithm is polynomial-time for every fixed value of r and
s. ⊓⊔

Now we are ready to prove the main result:

Proof (of Theorem 1). First we obtain a representation A′ for the kℓ-truncation
of the matroid. By Prop 8, this can be done in time polynomial in ‖A‖. Using A′

instead of A does not change the answer to the problem, as we consider the inde-
pendence of the union of at most k blocks. However, when invoking Lemma 12,
it will be important that the elements are represented as kℓ-dimensional vectors.

For i = 1, . . . , k, let Si be the set system containing those independent sets
that arise as the union of i blocks. Clearly, the task is to determine whether Sk

is empty or not. For each i, we construct a subsystem S∗
i ⊆ Si that is (k − i)ℓ-

representative for Si. As S∗
k is 0-representative for Sk, the emptiness of Sk can

be checked by checking whether S∗
k is empty.

The set system S1 is easy to construct, hence we can take S∗
1 = S1. As-

sume now that we have a set system S∗
i as above. The set system S∗

i+1 can be

constructed as follows. First, if |S∗
i | >

(

iℓ+(k−i)ℓ
iℓ

)

=
(

kℓ
iℓ

)

, then by Lemma 12,
we can throw away an element of S∗

i in such a way that S∗
i remains (k − i)ℓ-

representative for Si. Therefore, it can be assumed that |S∗
i | ≤

(

kℓ
iℓ

)

. To obtain
S∗

i+1, we enumerate every set S in S∗
i and every block B, and if S and B are

disjoint and S ∪ B is independent, then S ∪ B is put into S∗
i+1. We claim that

the resulting system is (k − i − 1)ℓ-representative for Si+1 provided that S∗
i is

(k − i)ℓ-representative for Si. Assume that there is a set X ∈ Si+1 and a set Y
of size (k− i−1)ℓ such that X ∩Y = ∅ and X ∪Y is independent. By definition,
X is the union of i+1 blocks; let B be an arbitrary block of X . Let X0 = X \B
and Y0 = Y ∪B. Now X0 is in Si, and we have X0∩Y0 = ∅ and X0∪Y0 = X ∪Y
is independent. Therefore, there is a set X∗

0 ∈ S∗
i with X∗

0 ∩Y0 = ∅ and X∗
0 ∪Y0

independent. This means that the independent set X∗ := X∗
0 ∪ B is put into

S∗
i+1, and it satisfies X∗ ∩ Y = ∅ and X∗ ∪ Y independent.

When constructing the set system S∗
i+1, the amount of work to be done is

polynomial in ‖A′‖ for each member S of S∗
i . As discussed above, the size of

each S∗
i can be bounded by

(

kℓ
iℓ

)

, thus the running time is f(k, ℓ) · ‖A′‖O(1). ⊓⊔



5 Applications

In this section we derive some consequences of the main result: we list problems
that can be solved using the algorithm of Theorem 1.

5.1 Matroid Intersection

Given matroids M1(E, I1), . . . , Mℓ(E, Iℓ) over a common ground set, their in-
tersection is the set system I1 ∩ · · · ∩ Iℓ. In general, the resulting set system
is not a matroid, even for k = 2. Deciding whether there is a k-element set in
the intersection of two matroids is polynomial-time solvable (cf. [9]), but NP-
hard for more than two matroids. Here we show that the problem is randomized
fixed-parameter tractable for a fixed number of represented matroids:

Theorem 13. Let M1, . . . , Mℓ be matroids over the same set, given by their
representations A1, . . . , Aℓ over F . We can decide in f(k, ℓ) · (

∑ℓ

i=1 ‖Ai‖)O(1)

randomized time if there is a k-element set that is independent in every Mi.

Proof. Let E = {e1, . . . , en}. We rename the elements of the matroids to make

the ground sets pairwise disjoint: let e
(i)
j be the copy of ej in Mi. By Prop. 5, a

representation of M := M1 ⊕ · · ·⊕Mℓ can be obtained. Partition the ground set

of M into blocks of size ℓ: for 1 ≤ j ≤ n, block Bj is {e
(1)
j , . . . , e

(ℓ)
j }. If M has an

independent set that is the union of k blocks, then the corresponding k elements
of E is independent in each of M1, . . . , Mℓ. Conversely, if X ⊆ E is independent
in every matroid, then the union of the corresponding blocks is independent in
M . Therefore, the algorithm of Theorem 1 answers the question. ⊓⊔

5.2 Disjoint Sets

Packing problems form a well-studied class of combinatorial optimization prob-
lems. Here we study the case when the objects to be packed are small:

Theorem 14. Let S = {S1, . . . , Sn} be a collection of subsets of E, each of size
at most ℓ. There is an f(k, ℓ) · nO(1) time randomized algorithm for deciding
whether it is possible to select k pairwise disjoint subsets from S.

Proof. By adding dummy elements, it can be assumed that each Si is of size
exactly ℓ. Let V = {vi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ ℓ}. We define a partition matroid
over V as follows. For every element e ∈ E, let Ve ⊆ V contain vi,j if and only if
the j-th element of Si is e. Clearly, the Ve’s form a partition of V . Consider the
partition matroid M where a set is independent if and only if it contains at most
1 element from each class of the partition. Let block Bi be {vi,1, . . . , vi,ℓ}. If k
disjoint sets can be selected from S, then the union of the corresponding k blocks
is independent in M as every element is contained in at most one of the selected
sets. The converse is also true: if the union of k blocks is independent, then the
corresponding k sets are disjoint, hence the result follows from Theorem 1. ⊓⊔

Theorem 14 immediately implies the existence of randomized fixed-parameter
tractable algorithms for two well-know problems: Disjoint Triangles and



Edge Disjoint Triangles. In these problems the task is to find, given a graph
G and an integer k, a collection of k triangles that are pairwise (edge) disjoint.
If E is the set of vertices (edges) of G, and the sets in S are the triangles of G,
then it is clear that the algorithm of Theorem 14 solves the problem.

5.3 Feedback Edge Set with Budget Vectors

Given a graph G(V, E), a feedback edge set is a subset X of edges such that
G(V, E \ X) is acyclic. If the edges of the graph are weighted, then finding a
minimum weight feedback edge set is the same as finding a maximum weight
spanning forest, hence it is polynomial time solvable. Here we study a general-
ization of the problem, where each edge has a vector of integer weights:

Feedback Edge Set with Budget Vectors

Input: A graph G(V, E), a vector xe ∈ [0, 1, . . . , m]ℓ for
each e ∈ E, a vector C ∈ Z

ℓ
+, and an integer k.

Parameter: k, ℓ, m

Question: Find a feedback edge set X of ≤ k edges such that
∑

e∈X xe ≤ C.

Theorem 15. Feedback Edge Set with Budget Vectors can be solved
in f(k, ℓ, m) · nO(1) randomized time.

Proof. It can be assumed that k = |E| − |V | + c(G) (where c(G) is the number
of components of G): if k is smaller, then there is no solution; if k is larger, then
it can be decreased without changing the problem. Let M0(E, I0) be the dual of
the cycle matroid of G. The rank of M0 is k, and a set X of k edges is a basis
of M if and only if the complement of X is a spanning forest.

Let C = [c1, . . . , cℓ] and n = |E|. For i = 1, . . . , ℓ, let Mi(Ei, Ii) be the
uniform matroid Unm,ci

. By Props. 9, 4, 7, 6, and 5, a representation of the
direct sum M = M0⊕M1⊕· · ·⊕Mk can be constructed in polynomial time. For

each e ∈ E, let Be be a block containing e ∈ E and x
(i)
e arbitrary elements of Ei

for every i = 1, . . . , ℓ (where x
(i)
e ≤ m denotes the i-th component of xe). The

set Ei contains nm elements, which is sufficiently large to make the blocks Bi

disjoint. The size of each block is at most ℓ′ := 1 + mℓ, hence the algorithm of
Theorem 1 can be used to determine in f(k, ℓ′) ·nO(1) randomized time whether
there is an independent set that is the union of k blocks. It is clear that every
such independent set corresponds to a feedback edge set such that the total
weight of the edges does not exceed C at any component. ⊓⊔

5.4 Reliable Terminals

In this section we give a randomized fixed-parameter tractable algorithm for a
combinatorial problem motivated by network design applications.



Reliable Terminals

Input: A directed graph D(V, A), a source vertex s ∈ V , a
set T ⊆ V \ {s} of possible terminals.

Parameter: k, ℓ

Question: Select k terminals t1, . . . , tk ∈ T and k · ℓ internally
vertex disjoint paths Pi,j (1 ≤ i ≤ k, 1 ≤ j ≤ ℓ)
such that path Pi,j goes from s to ti.

The problem models the situation when k terminals have to be selected that
receive k different data streams (hence the paths going to different terminals
should be disjoint due to capacity constraints) and each data stream is protected
from ℓ−1 node failures (hence the ℓ paths of each data stream should be disjoint).

Let D(V, A) be a directed graph, and let S ⊆ A be a subset of vertices. We
say that a subset X ⊆ S is linked to S if there are |X | vertex disjoint paths going
from S to X . (Note that here we require that the paths are disjoint, not only
internally disjoint. Furthermore, zero-length paths are also allowed if X∩S 6= ∅.)
A result due to Perfect shows that the set of linked vertices form a matroid:

Theorem 16 (Perfect [7]). Let D(V, A) be a directed graph, and let S ⊆ A
be a subset of vertices. The subsets that are linked to S form the independent
sets of a matroid over V . Furthermore, a representation of this matroid can be
obtained in randomized polynomial time.

Proof. Let V = {v1, . . . , vn} and assume that no arc enters S. Let G(U, W ; E)
be a bipartite graph where a vertex ui ∈ U corresponds to each vertex vi ∈ V ,
and a vertex wi ∈ W corresponds to each vertex vi ∈ V \ S. For each vi ∈ V ,
there is an edge wiui ∈ E, and for each −−→vivj ∈ A, there is an edge uiwj ∈ E.

The size of a maximum matching in G is at most |W | = n−|S|. Furthermore,
a matching of size n − |S| can be obtained by taking the edges uiwi for every
vi 6∈ S. Let V0 ⊆ V be a subset of size |S|, and let U0 be the corresponding subset
of U . We claim that V0 is linked to S if and only G has a matching covering
U \U0. Assume first that there are |S| disjoint paths going from S to V0. Consider
the matching where wi ∈ W is matched to uj if one of the paths enters vi from
vj , and wi is matched to ui otherwise. This means that ui is matched if one of
the paths reaches vi and continues further on, or if none of the paths reaches vi.
Thus the unmatched ui’s corresponds to the end points of the paths, as required.

To see the other direction, consider a matching covering U \U0. As |U \U0| =
n−|S|, this is only possible if the matching fully covers W . Let vi1 be a vertex of
S. Let ui2 be the pair of wi1 in the matching, let ui3 be the pair of wi2 , etc. We
can continue this until a vertex uik

is found that is not covered in the matching.
Now vi1 , vi2 , . . . , vik

is a path going from S to vik
∈ V0. If this procedure

is repeated for every vertex of S, then we obtain |S| paths that are pairwise
disjoint, and each of them ends in a vertex of V0.

If X is linked to S, then X can be extended to a linked set of size exactly |S|
by adding vertices of S to it (as they are connected to S by zero-length paths).
The observation above shows that linked sets of size |S| are exactly the bases of



the dual of the transversal matroid of G, which means that the linked sets are
exactly the independent sets of this matroid. By Props. 10 and 7, a representation
of this matroid can be constructed in randomized polynomial time. ⊓⊔

Theorem 17. Reliable Terminals is solvable in f(k, ℓ) · nO(1) randomized
time.

Proof. Let us replace the vertex s with k·ℓ independent vertices S = {s1, . . . , skℓ}
such that each new vertex has the same neighborhood as s. Similarly, each t ∈ T
is replaced with ℓ vertices t(1), . . . , t(ℓ), but now we remove every outgoing edge
from t(2), . . . , t(ℓ). Denote by D′ the new graph. It is easy to see that a set of
terminals t1, . . . , tk form a solution for the Reliable Terminals problem if and

only if the set {t
(j)
i : 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ} is linked to S. Using Theorem 16, we

can construct a representation of the matroid whose independent sets are exactly
the sets linked to S in D′. Delete the columns that do not correspond to vertices
in T , hence the ground set of the matroid has ℓ|T | elements. Partition the ground
set into blocks of size ℓ: for every t ∈ T , there is a block Bt = {t1, . . . , tℓ}. Clearly,
the Reliable Terminals problem has a solution if and only if the matroid has
an independent set that is the union of k blocks. Therefore, Theorem 1 can be
used to solve the problem. ⊓⊔
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