

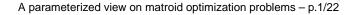
A parameterized view on matroid optimization problems

Dániel Marx

Humboldt-Universität zu Berlin

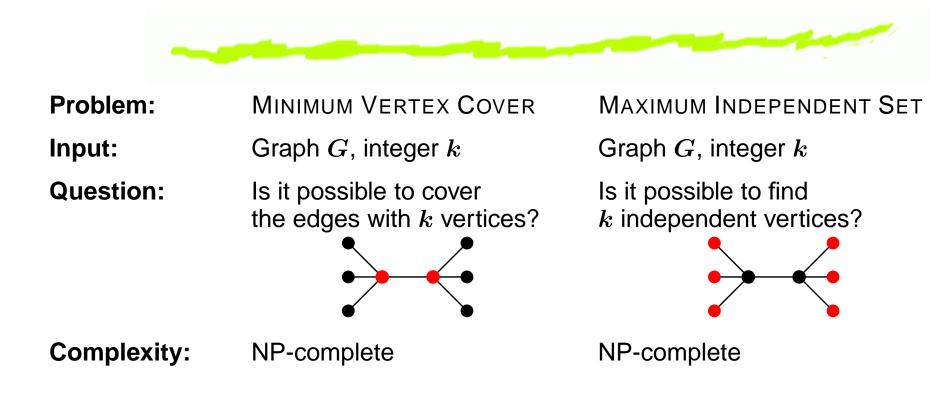
dmarx@informatik.hu-berlin.de

ICALP 2006 Venice, Italy July 14, 2006

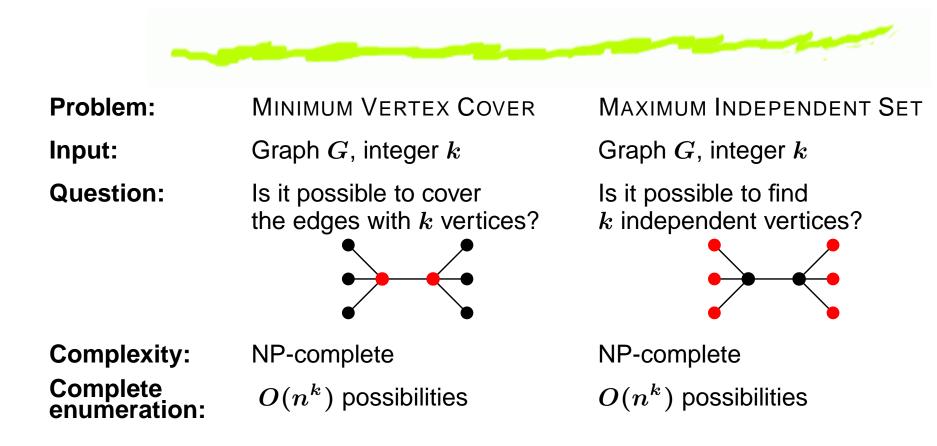


- 6 Parameterized complexity
- 6 Matroid basics
- 6 Main result
- 6 Applications

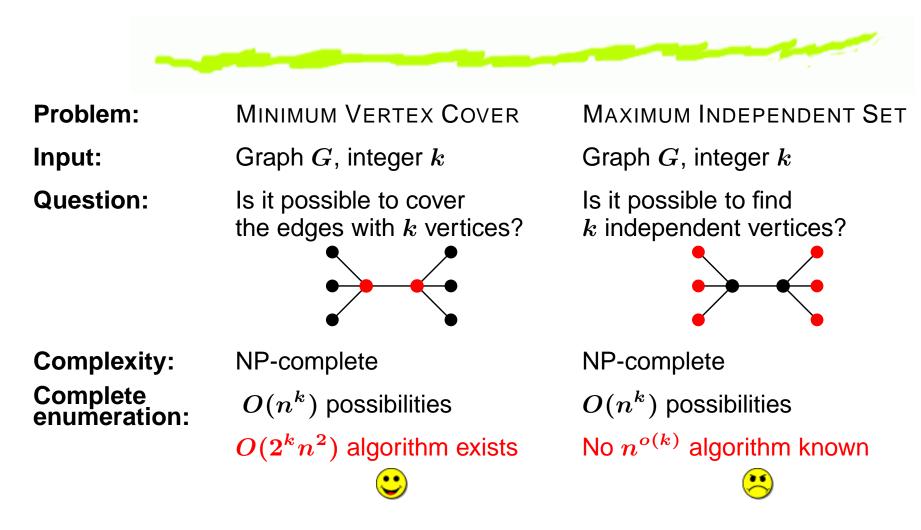
Parameterized complexity



Parameterized complexity



Parameterized complexity



Parameterized problems

A problem is **fixed-parameter tractable (FPT)** with parameter k if it has an $f(k) \cdot n^c$ time algorithm, where c is independent of k.

For a large number of NP-hard problems, the parameterized version is fixed-parameter tractable. For many other problems, we have evidence that they are not FPT (W[1]-hardness).

Fixed-parameter tractable problems:

- **6** MINIMUM VERTEX COVER
- 6 LONGEST PATH
- **6** DISJOINT TRIANGLES
- 6 GRAPH GENUS
- 6 ...

W[1]-hard problems:

- MAXIMUM INDEPENDENT SET
- MINIMUM DOMINATING SET
- 5 LONGEST COMMON SUBSEQUENCE
- 6 Set Packing
- 6.

Definition: A set system \mathcal{M} over E is a **matroid** if

- (1) $\emptyset \in \mathcal{M}$.
- (2) If $X \in M$ and $Y \subseteq X$, then $Y \in \mathcal{M}$.
- (3) If $X, Y \in M$ and |X| > |Y|, then $\exists e \in X$ such that $Y \cup \{e\} \in \mathcal{M}$.

Example: $M = \{\emptyset, 1, 2, 3, 12, 13\}$ is a matroid. **Example:** $M = \{\emptyset, 1, 2, 12, 3\}$ is not a matroid.

If $x \in \mathcal{M}$, then we say that X is **independent** in matroid \mathcal{M} .

Matroids—Examples

Cycle matroid: Given a graph G, let \mathcal{M} contain those subsets $E' \subseteq E$ that are acyclic. \mathcal{M} is a matroid.

Partition matroid: Let E_1, \ldots, E_k be a partition of E, and let a_1, \ldots, a_k be integers. Let $X \in \mathcal{M}$ if and only if $|X \cap E_i| \leq a_i$ for every i. Then \mathcal{M} is a matroid.

Linear matroid: Let *A* be matrix and let *E* be the set of column vectors in *A*. The subsets $E' \subseteq E$ that are linearly independent form a matroid.

The matrix A is the **representation** of the linear matroid.

Matroids—Examples

Cycle matroid: Given a graph G, let \mathcal{M} contain those subsets $E' \subseteq E$ that are acyclic. \mathcal{M} is a matroid.

Partition matroid: Let E_1, \ldots, E_k be a partition of E, and let a_1, \ldots, a_k be integers. Let $X \in \mathcal{M}$ if and only if $|X \cap E_i| \leq a_i$ for every i. Then \mathcal{M} is a matroid.

Linear matroid: Let *A* be matrix and let *E* be the set of column vectors in *A*. The subsets $E' \subseteq E$ that are linearly independent form a matroid.

The matrix A is the **representation** of the linear matroid.

Fact: If the elements have weights, then the greedy algorithm finds an independent set of maximum weight.

Given two matroids \mathcal{M}_1 and \mathcal{M}_2 , the **intersection** $\mathcal{M}_1 \wedge \mathcal{M}_2$ contains those sets that are independent in both matroids.

Fact: [Edmonds] It is possible to find in polynomial time a set of maximum size in $\mathcal{M}_1 \wedge \mathcal{M}_2$ (if \mathcal{M}_1 and \mathcal{M}_2 are given by an independence oracle).

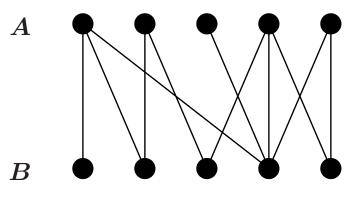
 $\mathcal{M}_1 \wedge \mathcal{M}_2$ is not necessarily a matroid!

Bipartite matching

Bipartite matching can be solved with matroid intersection.

We define two partition matroids on the edge set of G(A, B; E):

- 6 $E' \in \mathcal{M}_1$ if E' contains at most one edge incident to each $v \in A$.
- 6 $E' \in \mathcal{M}_2$ if E' contains at most one edge incident to each $v \in B$.

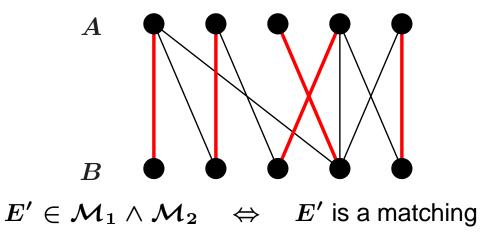


Bipartite matching

Bipartite matching can be solved with matroid intersection.

We define two partition matroids on the edge set of G(A, B; E):

- 6 $E' \in \mathcal{M}_1$ if E' contains at most one edge incident to each $v \in A$.
- 6 $E' \in \mathcal{M}_2$ if E' contains at most one edge incident to each $v \in B$.

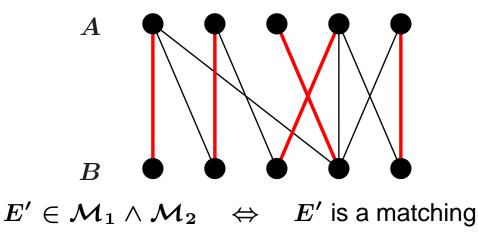


Bipartite matching

Bipartite matching can be solved with matroid intersection.

We define two partition matroids on the edge set of G(A, B; E):

- 6 $E' \in \mathcal{M}_1$ if E' contains at most one edge incident to each $v \in A$.
- 6 $E' \in \mathcal{M}_2$ if E' contains at most one edge incident to each $v \in B$.



Fact: Finding a set of maximum size in the intersection of 3 matroids is NP-hard (reduction from 3-dimensional matching).

Assume that E is partitioned into pairs and \mathcal{M} is a matroid over E.

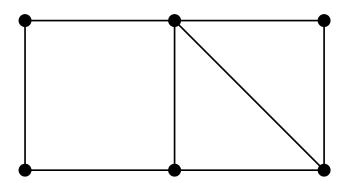
Task: Find an independent set of \mathcal{M} that is the union of k pairs.

Can be used to solve (nonbipartite) matching.

Assume that E is partitioned into pairs and \mathcal{M} is a matroid over E.

Task: Find an independent set of \mathcal{M} that is the union of k pairs.

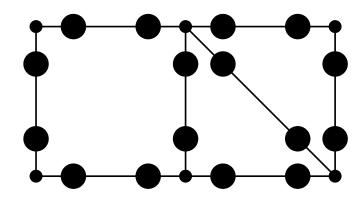
Can be used to solve (nonbipartite) matching.



Assume that E is partitioned into pairs and \mathcal{M} is a matroid over E.

Task: Find an independent set of \mathcal{M} that is the union of k pairs.

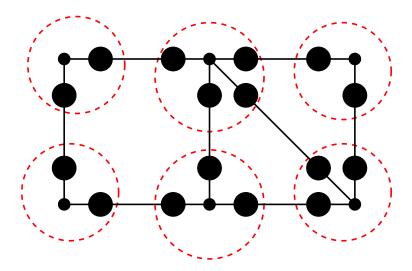
Can be used to solve (nonbipartite) matching.



Assume that E is partitioned into pairs and \mathcal{M} is a matroid over E.

Task: Find an independent set of \mathcal{M} that is the union of k pairs.

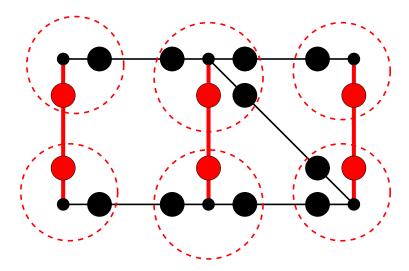
Can be used to solve (nonbipartite) matching.



Assume that E is partitioned into pairs and \mathcal{M} is a matroid over E.

Task: Find an independent set of \mathcal{M} that is the union of k pairs.

Can be used to solve (nonbipartite) matching.



Fact: Matroid parity is NP-hard.

Fact: [Lovász] Matroid parity is polynomial-time solvable if \mathcal{M} is given by a linear representation.

Fact: If we have triples instead of pairs, then the problem is NP-hard even for linear matroids (reduction from 3-dimensional matching).

Fact: Matroid parity is NP-hard.

Fact: [Lovász] Matroid parity is polynomial-time solvable if \mathcal{M} is given by a linear representation.

Fact: If we have triples instead of pairs, then the problem is NP-hard even for linear matroids (reduction from 3-dimensional matching).

Main result: Let \mathcal{M} be a linear matroid over E, given by a representation A. If E is partitioned into blocks of size ℓ , then it can be decided in randomized time $f(k, \ell) \cdot n^{O(1)}$ whether \mathcal{M} has an independent set that is the union of k blocks.

That is, the problem is (randomized) fixed-parameter tractable with parameters k and ℓ .

Inspired by Monien's algorithm for finding paths of length k.

Let S_i be the set of all independent sets in M that arise as the union of i blocks.

- $6 \quad \text{Set } \mathcal{S}_0 := \{ \emptyset \}.$
- 6 Assume that S_i is determined. For every $S \in S_i$ and every block B, if S and B are disjoint and $S \cup B$ is independent in \mathcal{M} , then add $S \cup B$ to S_{i+1} .
- 6 Check whether S_k is empty or not.

Inspired by Monien's algorithm for finding paths of length k.

Let S_i be the set of all independent sets in \mathcal{M} that arise as the union of i blocks.

- $6 \quad \text{Set } \mathcal{S}_0 := \{ \emptyset \}.$
- 6 Assume that S_i is determined. For every $S \in S_i$ and every block B, if S and B are disjoint and $S \cup B$ is independent in \mathcal{M} , then add $S \cup B$ to S_{i+1} .
- 6 Check whether S_k is empty or not.

Problem: The size of S_i can be n^k — running time is not fpt!

Inspired by Monien's algorithm for finding paths of length k.

Let S_i be the set of all independent sets in M that arise as the union of i blocks.

- $6 \quad \text{Set } \mathcal{S}_0 := \{ \emptyset \}.$
- 6 Assume that S_i is determined. For every $S \in S_i$ and every block B, if S and B are disjoint and $S \cup B$ is independent in \mathcal{M} , then add $S \cup B$ to S_{i+1} .
- 6 Check whether S_k is empty or not.

Problem: The size of S_i can be n^k — running time is not fpt!

Solution: Retain only a small part of S_i , and throw away all the other sets. (But be careful!)

Representative systems

Definition: A subsystem $S_i^* \subseteq S_i$ is *r*-representative if whenever some member of S_i can be extended with *r* new blocks, then S_i^* has a member that can be extended with the same blocks.

Representative systems

Definition: A subsystem $S_i^* \subseteq S_i$ is *r*-representative if whenever some member of S_i can be extended with *r* new blocks, then S_i^* has a member that can be extended with the same blocks.

Formal definition: A subsystem $S_i^* \subseteq S_i$ is *r*-representative if for every *X* that is the union of *r* blocks

$$\exists S \in \mathcal{S}_i : S \cap X = \emptyset, S \cup X \in \mathcal{M} \ \Downarrow$$
 $\exists S' \in \mathcal{S}_i^* : S' \cap X = \emptyset, S' \cup X \in \mathcal{M}.$

Instead of the set S_i , it is sufficient to have a (k - i)-representative subsystem.

Representative systems

How small representative system can we find?

Lemma: S_i has a (k - i)-representative subsystem of size at most $\binom{k\ell}{i\ell}$.

Proof is based on the following generalization of Bollobás' Inequality:

Lemma: [Lovász 1977] lf A_1, \ldots, A_n are *a*-dimensional subspaces, B_1, \ldots, B_n are *b*-dimensional subspaces of a space of dimension a + b and (1) $A_j \cap B_{j'} = \emptyset$ for j = j', (2) $A_j \cap B_{j'} \neq \emptyset$ for $j \neq j'$, holds, then $n \leq \binom{x+y}{x}$.

Truncation

Definition: The *t*-truncation of a matroid \mathcal{M} is a matroid \mathcal{M}' such that $S \in \mathcal{M}'$ iff $S \in \mathcal{M}$ and $|S| \leq t$.

The answer does not change if we replace \mathcal{M} with the $k\ell$ -truncation \mathcal{M}' .

For technical reasons, we have to use the truncated matroid \mathcal{M}' in the algorithm.

A representation of \mathcal{M}' can be obtained in randomized polynomial time from a representation of \mathcal{M} (we need the Schwartz-Zippel Lemma here).

- 6 Compute a representation A' of the $k\ell$ -truncation.
- 6 For every $S \in S_i^*$ and every block B, if S and B are disjoint and $S \cup B$ is independent in \mathcal{M} , then add $S \cup B$ to S_{i+1}^* .
- 6 Reduce the size of S_i^* to $\binom{k\ell}{i\ell}$.
- 6 Check whether S_k is empty or not.

As the size of S_i^* can be bounded by $f(k, \ell)$, the running time is $f(k, \ell) \cdot n^{O(1)}$.

Applications

- 6 Matroid intersection.
- 6 Packing problems.
- 6 A terminal location problem.

Reminder: Finding a set of maximum size in the intersection of 2 matroids is polynomial-time solvable, but becomes NP-hard for the intersection of 3 matroids.

Can we find an independent set of size k in fpt-time?

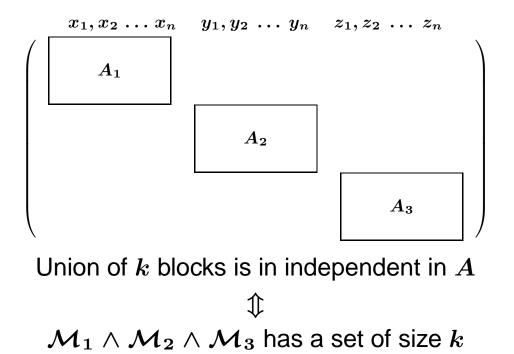
Reminder: Finding a set of maximum size in the intersection of 2 matroids is polynomial-time solvable, but becomes NP-hard for the intersection of 3 matroids.

Can we find an independent set of size k in fpt-time?

Theorem: Given ℓ matroids with representations A_1, \ldots, A_ℓ , we can determine in randomized time $f(k, \ell) \cdot n^{O(1)}$ whether the intersection contains a set of size k.

Theorem: Given ℓ matroids with representations A_1, \ldots, A_ℓ , we can determine in randomized time $f(k, \ell) \cdot n^{O(1)}$ whether the intersection contains a set of size k.

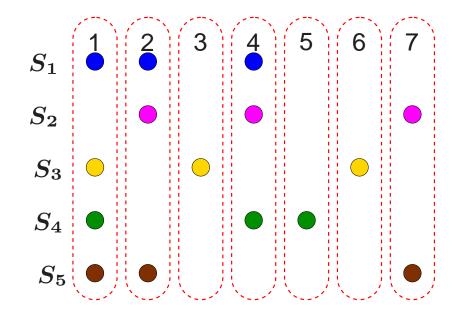
Consider the matrix A with the partition $\{x_1, y_1, z_1\}, \ldots, \{x_n, y_n, z_n\}$:



Disjoint subsets

Let $S_1, \ldots, S_n \subseteq E$ be subsets of size ℓ . **Task:** Find *k* pairwise disjoint subsets.

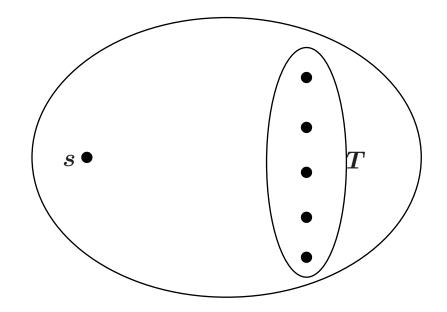
Example: $(\ell = 3)$ Let $S_1 = \{1, 2, 4\}, S_2 = \{2, 4, 7\}, S_3 = \{1, 3, 6\}, S_4 = \{1, 4, 5\}, S_5 = \{1, 2, 7\}$. Consider the following partition matroid (at most one element in each class):



union of k triples is independent \Leftrightarrow there are k disjoint triples

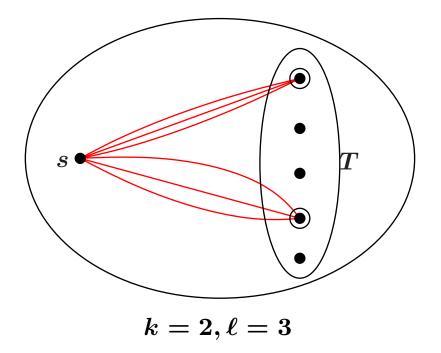
Let D be a directed graph with a source vertex s and a subset T of vertices.

Task: Select *k* terminals $t_1, \ldots, t_k \in T$, and ℓ paths from *s* to each t_i such that these $k \cdot \ell$ paths are pairwise internally vertex disjoint.



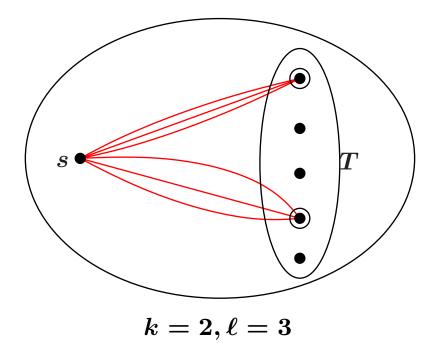
Let D be a directed graph with a source vertex s and a subset T of vertices.

Task: Select *k* terminals $t_1, \ldots, t_k \in T$, and ℓ paths from *s* to each t_i such that these $k \cdot \ell$ paths are pairwise internally vertex disjoint.



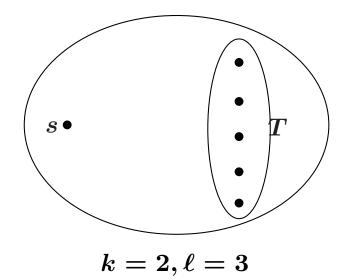
Let D be a directed graph with a source vertex s and a subset T of vertices.

Task: Select *k* terminals $t_1, \ldots, t_k \in T$, and ℓ paths from *s* to each t_i such that these $k \cdot \ell$ paths are pairwise internally vertex disjoint.

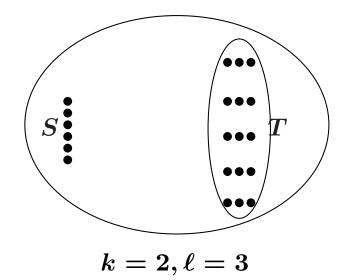


Theorem: The problem can be solved in randomized time $f(k, \ell) \cdot n^{O(1)}$.

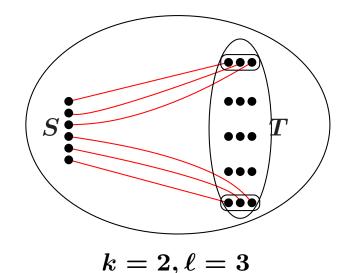
A technical trick: replace each $t \in T$ with ℓ copies, and replace s with a set S of $k \cdot \ell$ copies.



A technical trick: replace each $t \in T$ with ℓ copies, and replace s with a set S of $k \cdot \ell$ copies.

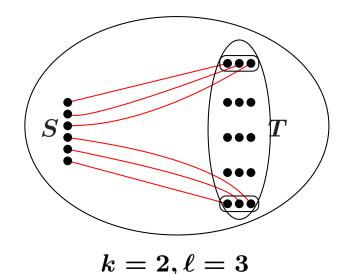


A technical trick: replace each $t \in T$ with ℓ copies, and replace s with a set S of $k \cdot \ell$ copies.



Now if a terminal *t* is selected, then we should connect the ℓ copies of *t* with ℓ different vertices of *S*.

A technical trick: replace each $t \in T$ with ℓ copies, and replace s with a set S of $k \cdot \ell$ copies.



Now if a terminal *t* is selected, then we should connect the ℓ copies of *t* with ℓ different vertices of *S*.

Fact: [Perfect] Let D be a directed graph and S a subset of vertices. Those subsets X that can be reached from S by disjoint paths form a matroid.

Conclusions

- 6 Randomized fixed-parameter tractability of a general matroid problem.
- Operations on representations.
- 6 Applications.