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Parameterized complexity

Problem: MINIMUM VERTEX COVER MAXIMUM INDEPENDENT SET

Input: Graph G, integer k Graph G, integer k

Question: Is it possible to cover
the edges with k vertices?

Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete
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Problem: MINIMUM VERTEX COVER MAXIMUM INDEPENDENT SET

Input: Graph G, integer k Graph G, integer k

Question: Is it possible to cover
the edges with k vertices?

Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete
Complete O(nk) possibilities O(nk) possibilitiesenumeration:

O(2kn2) algorithm exists No no(k) algorithm known
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Parameterized problems

A problem is fixed-parameter tractable (FPT) with parameter k if it has an

f(k) · nc time algorithm, where c is independent of k.

For a large number of NP-hard problems, the parameterized version is

fixed-parameter tractable. For many other problems, we have evidence that
they are not FPT (W[1]-hardness).

Fixed-parameter tractable problems:

MINIMUM VERTEX COVER

LONGEST PATH

DISJOINT TRIANGLES

GRAPH GENUS

. . .

W[1]-hard problems:

MAXIMUM INDEPENDENT SET

MINIMUM DOMINATING SET

LONGEST COMMON

SUBSEQUENCE

SET PACKING

. . .
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Matroids

Definition: A set system M over E is a matroid if

(1) ∅ ∈ M.

(2) If X ∈ M and Y ⊆ X , then Y ∈ M.

(3) If X, Y ∈ M and |X | > |Y |, then ∃e ∈ X such that Y ∪ {e} ∈ M.

Example: M = {∅, 1, 2, 3, 12, 13} is a matroid.

Example: M = {∅, 1, 2, 12, 3} is not a matroid.

If x ∈ M, then we say that X is independent in matroid M.
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Matroids—Examples

Cycle matroid: Given a graph G, let M contain those subsets E′ ⊆ E that

are acyclic. M is a matroid.

Partition matroid: Let E1, . . . , Ek be a partition of E, and let a1, . . . , ak be
integers. Let X ∈ M if and only if |X ∩ Ei| ≤ ai for every i. Then M is a

matroid.

Linear matroid: Let A be matrix and let E be the set of column vectors in A.

The subsets E′ ⊆ E that are linearly independent form a matroid.

The matrix A is the representation of the linear matroid.
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Matroids—Examples

Cycle matroid: Given a graph G, let M contain those subsets E′ ⊆ E that

are acyclic. M is a matroid.

Partition matroid: Let E1, . . . , Ek be a partition of E, and let a1, . . . , ak be
integers. Let X ∈ M if and only if |X ∩ Ei| ≤ ai for every i. Then M is a

matroid.

Linear matroid: Let A be matrix and let E be the set of column vectors in A.

The subsets E′ ⊆ E that are linearly independent form a matroid.

The matrix A is the representation of the linear matroid.

Fact: If the elements have weights, then the greedy algorithm finds an
independent set of maximum weight.

A parameterized view on matroid optimization problems – p.6/22



Matroid intersection

Given two matroids M1 and M2, the intersection M1 ∧ M2 contains

those sets that are independent in both matroids.

Fact: [Edmonds] It is possible to find in polynomial time a set of maximum size

in M1 ∧ M2 (if M1 and M2 are given by an independence oracle).

M1 ∧ M2 is not necessarily a matroid!
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Bipartite matching

Bipartite matching can be solved with matroid intersection.

We define two partition matroids on the edge set of G(A, B; E):

E′ ∈ M1 if E′ contains at most one edge incident to each v ∈ A.

E′ ∈ M2 if E′ contains at most one edge incident to each v ∈ B.

A

B
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E′ ∈ M1 if E′ contains at most one edge incident to each v ∈ A.

E′ ∈ M2 if E′ contains at most one edge incident to each v ∈ B.

B
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E′ ∈ M1 ∧ M2 ⇔ E′ is a matching
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Bipartite matching

Bipartite matching can be solved with matroid intersection.

We define two partition matroids on the edge set of G(A, B; E):

E′ ∈ M1 if E′ contains at most one edge incident to each v ∈ A.

E′ ∈ M2 if E′ contains at most one edge incident to each v ∈ B.

B

A

E′ ∈ M1 ∧ M2 ⇔ E′ is a matching

Fact: Finding a set of maximum size in the intersection of 3 matroids is

NP-hard (reduction from 3-dimensional matching).
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Matroid parity

Assume that E is partitioned into pairs and M is a matroid over E.

Task: Find an independent set of M that is the union of k pairs.

Can be used to solve (nonbipartite) matching.
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Can be used to solve (nonbipartite) matching.

Replace each edge with a pair of elements, M is a partition matroid where the
classes correspond to the vertices, and at most one element can be selected

from each class.
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Matroid parity

Fact: Matroid parity is NP-hard.

Fact: [Lovász] Matroid parity is polynomial-time solvable if M is given by a

linear representation.

Fact: If we have triples instead of pairs, then the problem is NP-hard even for
linear matroids (reduction from 3-dimensional matching).
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Matroid parity

Fact: Matroid parity is NP-hard.

Fact: [Lovász] Matroid parity is polynomial-time solvable if M is given by a

linear representation.

Fact: If we have triples instead of pairs, then the problem is NP-hard even for
linear matroids (reduction from 3-dimensional matching).

Main result: Let M be a linear matroid over E, given by a representa-

tion A. If E is partitioned into blocks of size ℓ, then it can be decided in
randomized time f(k, ℓ) · nO(1) whether M has an independent set

that is the union of k blocks.

That is, the problem is (randomized) fixed-parameter tractable with parameters

k and ℓ.
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The algorithm

Inspired by Monien’s algorithm for finding paths of length k.

Let Si be the set of all independent sets in M that arise as the union of i

blocks.

Set S0 := {∅}.

Assume that Si is determined. For every S ∈ Si and every block B, if S

and B are disjoint and S ∪ B is independent in M, then add S ∪ B to
Si+1.

Check whether Sk is empty or not.
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The algorithm

Inspired by Monien’s algorithm for finding paths of length k.

Let Si be the set of all independent sets in M that arise as the union of i

blocks.

Set S0 := {∅}.

Assume that Si is determined. For every S ∈ Si and every block B, if S

and B are disjoint and S ∪ B is independent in M, then add S ∪ B to
Si+1.

Check whether Sk is empty or not.

Problem: The size of Si can be nk — running time is not fpt!

Solution: Retain only a small part of Si , and throw away all the other sets. (But

be careful!)
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Representative systems

Definition: A subsystem S∗

i ⊆ Si is r-representative if whenever some
member of Si can be extended with r new blocks, then S∗

i has a member that

can be extended with the same blocks.
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Representative systems

Definition: A subsystem S∗

i ⊆ Si is r-representative if whenever some
member of Si can be extended with r new blocks, then S∗

i has a member that

can be extended with the same blocks.

Formal definition: A subsystem S∗

i ⊆ Si is r-representative if for every X

that is the union of r blocks

∃S ∈ Si : S ∩ X = ∅, S ∪ X ∈ M

⇓

∃S′ ∈ S∗

i : S′ ∩ X = ∅, S′ ∪ X ∈ M.

Instead of the set Si , it is sufficient to have a (k − i)-representative
subsystem.
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Representative systems

How small representative system can we find?

Lemma: Si has a (k − i)-representative subsystem of size at most
(

kℓ

iℓ

)

.

Proof is based on the following generalization of Bollobás’ Inequality:

Lemma: [Lovász 1977] If A1, . . . , An are a-dimensional subspaces,
B1, . . . , Bn are b-dimensional subspaces of a space of dimension a + b and

(1) Aj ∩ Bj′ = ∅ for j = j′,

(2) Aj ∩ Bj′ 6= ∅ for j 6= j′,

holds, then n ≤
(

x+y

x

)

.
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Truncation

Definition: The t-truncation of a matroid M is a matroid M′ such that

S ∈ M′ iff S ∈ M and |S| ≤ t.

The answer does not change if we replace M with the kℓ-truncation M′.

For technical reasons, we have to use the truncated matroid M′ in the

algorithm.

A representation of M′ can be obtained in randomized polynomial time from a

representation of M (we need the Schwartz-Zippel Lemma here).
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The algorithm

Compute a representation A′ of the kℓ-truncation.

Set S∗

0 := ∅.

For every S ∈ S∗

i and every block B, if S and B are disjoint and S ∪ B is
independent in M, then add S ∪ B to S∗

i+1.

Reduce the size of S∗

i to
(

kℓ

iℓ

)

.

Check whether Sk is empty or not.

As the size of S∗

i can be bounded by f(k, ℓ), the running time is
f(k, ℓ) · nO(1).
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Applications

Matroid intersection.

Packing problems.

A terminal location problem.
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Matroid intersection

Reminder: Finding a set of maximum size in the intersection of 2 matroids is

polynomial-time solvable, but becomes NP-hard for the intersection of 3
matroids.

Can we find an independent set of size k in fpt-time?
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Matroid intersection

Reminder: Finding a set of maximum size in the intersection of 2 matroids is

polynomial-time solvable, but becomes NP-hard for the intersection of 3
matroids.

Can we find an independent set of size k in fpt-time?

Theorem: Given ℓ matroids with representations A1, . . . , Aℓ, we can deter-

mine in randomized time f(k, ℓ) ·nO(1) whether the intersection contains a set

of size k.
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Matroid intersection

Theorem: Given ℓ matroids with representations A1, . . . , Aℓ, we can

determine in randomized time f(k, ℓ) · nO(1) whether the intersection
contains a set of size k.

Consider the matrix A with the partition {x1, y1, z1}, . . . , {xn , yn , zn}:

x1, x2 . . . xn y1, y2 . . . yn z1, z2 . . . zn






























A1

A2

A3































Union of k blocks is in independent in A

m

M1 ∧ M2 ∧ M3 has a set of size k
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Disjoint subsets

Let S1, . . . , Sn ⊆ E be subsets of size ℓ.

Task: Find k pairwise disjoint subsets.

Example: (ℓ = 3) Let S1 = {1, 2, 4}, S2 = {2, 4, 7}, S3 = {1, 3, 6}, S4 =

{1, 4, 5}, S5 = {1, 2, 7}. Consider the following partition matroid (at most
one element in each class):

1

S5

S4

S3

S2

S1

765432

union of k triples is independent ⇔ there are k disjoint triples
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Reliable terminals

Let D be a directed graph with a source vertex s and a subset T of vertices.

Task: Select k terminals t1, . . . , tk ∈ T , and ℓ paths from s to each ti such
that these k · ℓ paths are pairwise internally vertex disjoint.

s T
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Reliable terminals

Let D be a directed graph with a source vertex s and a subset T of vertices.

Task: Select k terminals t1, . . . , tk ∈ T , and ℓ paths from s to each ti such
that these k · ℓ paths are pairwise internally vertex disjoint.

s T

k = 2, ℓ = 3

Theorem: The problem can be solved in randomized time f(k, ℓ) · nO(1).
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Reliable terminals

A technical trick: replace each t ∈ T with ℓ copies, and replace s with a set S

of k · ℓ copies.

s T

k = 2, ℓ = 3
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Reliable terminals

A technical trick: replace each t ∈ T with ℓ copies, and replace s with a set S

of k · ℓ copies.

S T

k = 2, ℓ = 3

Now if a terminal t is selected, then we should connect the ℓ copies of t with ℓ

different vertices of S.
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Reliable terminals

A technical trick: replace each t ∈ T with ℓ copies, and replace s with a set S

of k · ℓ copies.

S T

k = 2, ℓ = 3

Now if a terminal t is selected, then we should connect the ℓ copies of t with ℓ

different vertices of S.

Fact: [Perfect] Let D be a directed graph and S a subset of vertices. Those

subsets X that can be reached from S by disjoint paths form a matroid.
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Conclusions

Randomized fixed-parameter tractability of a general matroid problem.

Operations on representations.

Applications.

A parameterized view on matroid optimization problems – p.22/22


	Overview
	Parameterized complexity
	Parameterized problems
	Matroids
	Matroids---Examples
	Matroid intersection
	Bipartite matching
	Matroid parity
	Matroid parity
	The algorithm
	Representative systems
	Representative systems
	Truncation
	The algorithm
	Applications
	Matroid intersection
	Matroid intersection
	Disjoint subsets
	Reliable terminals
	Reliable terminals
	Conclusions

