
Fixed-parameter algorithms for minimum cost
edge-connectivity augmentation

Dániel Marx1 László A. Végh2

1Institute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI) Budapest, Hungary

2Department of Management, London School of Economics, London, UK

40th International Colloquium on Automata, Languages and
Programming (ICALP 2013)

Riga, Latvia
July 8, 2013

1

The edge-connectivity augmentation problem

k = 2

Problem
Input:
Graph G = (V ,E), connectivity target k ,
a cost function for each new edge
that can be added to the graph.
Output:
Minimum cost set F of new edges so that
G + F is k-edge-connected.

2

The edge-connectivity augmentation problem

k = 2

Problem
Input:
Graph G = (V ,E), connectivity target k ,
a cost function for each new edge
that can be added to the graph.
Output:
Minimum cost set F of new edges so that
G + F is k-edge-connected.

2

The edge-connectivity augmentation problem

Variants
Special case k = 1:
Minimum cost spanning tree, polynomial-time solvable
[Borůvka 1926].

Uniform case:
Adding an arbitrary new edge has unit cost. Polynomial-time
solvable for arbitrary k [Watanabe, Nakamura 1987].
Minimum cardinality case:
Every cost is 1 or ∞. We wish to add a minimum number of
new edges from a given set of links E ∗.
NP complete for k ≥ 2.

3

The edge-connectivity augmentation problem

Variants
Special case k = 1:
Minimum cost spanning tree, polynomial-time solvable
[Borůvka 1926].
Uniform case:
Adding an arbitrary new edge has unit cost. Polynomial-time
solvable for arbitrary k [Watanabe, Nakamura 1987].

Minimum cardinality case:
Every cost is 1 or ∞. We wish to add a minimum number of
new edges from a given set of links E ∗.
NP complete for k ≥ 2.

3

The edge-connectivity augmentation problem

Variants
Special case k = 1:
Minimum cost spanning tree, polynomial-time solvable
[Borůvka 1926].
Uniform case:
Adding an arbitrary new edge has unit cost. Polynomial-time
solvable for arbitrary k [Watanabe, Nakamura 1987].
Minimum cardinality case:
Every cost is 1 or ∞. We wish to add a minimum number of
new edges from a given set of links E ∗.

NP complete for k ≥ 2.

3

The edge-connectivity augmentation problem

Variants
Special case k = 1:
Minimum cost spanning tree, polynomial-time solvable
[Borůvka 1926].
Uniform case:
Adding an arbitrary new edge has unit cost. Polynomial-time
solvable for arbitrary k [Watanabe, Nakamura 1987].
Minimum cardinality case:
Every cost is 1 or ∞. We wish to add a minimum number of
new edges from a given set of links E ∗.
NP complete for k ≥ 2.

3

NP-completeness

Proposition
Minimum cardinality edge-connectivity
augmentation is NP-complete already
for k = 2.

Proof.
For an arbitrary link graph (V ,E ∗) and
starting graph (V , ∅), there exists an
augmentation with |V | links in E ∗ ⇔
(V ,E ∗) contains a Hamiltonian
cycle.

4

NP-completeness

Proposition
Minimum cardinality edge-connectivity
augmentation is NP-complete already
for k = 2.

Proof.
For an arbitrary link graph (V ,E ∗) and
starting graph (V , ∅), there exists an
augmentation with |V | links in E ∗ ⇔
(V ,E ∗) contains a Hamiltonian
cycle.

4

The edge-connectivity augmentation problem

Related results
Polynomial algorithms for variants of the uniform case, e.g.
[Watanabe, Nakamura 1987], [Frank 1992],...
Approximation algorithms for the minimum cost variant e.g.
[Agrawal, Klein, Ravi 1995], [Goemans, Williamson 1995],
[Jain 2001],...

Important special case
Augmenting connectivity by one: we assume that the input graph is
already (k − 1)-edge-connected.

5

Fixed-parameter tractability

Main definition
A parameterized problem is fixed-parameter tractable (FPT)
with some parameter k if there is an f (k)nc time algorithm for
some constant c and function f depending only on k .

Main goal of parameterized complexity: to find FPT problems.

Examples of NP-hard problems that are FPT:
Finding a vertex cover of size k .
Finding a path of length k .
Finding k disjoint triangles.
Drawing the graph in the plane with k edge crossings.
Finding disjoint paths that connect k pairs of points.
. . .

6

Fixed-parameter tractability

Main definition
A parameterized problem is fixed-parameter tractable (FPT)
with some parameter k if there is an f (k)nc time algorithm for
some constant c and function f depending only on k .

Main goal of parameterized complexity: to find FPT problems.

Examples of NP-hard problems that are FPT:
Finding a vertex cover of size k .
Finding a path of length k .
Finding k disjoint triangles.
Drawing the graph in the plane with k edge crossings.
Finding disjoint paths that connect k pairs of points.
. . .

6

Fixed-parameter tractability

Treewidth Iterative compression

Graph minors
Color coding

Kernelization

Branching

7

Kernelization

A particularly nice way of proving fixed-parameter tractability:

Definition
A polynomial kernel is a polynomial-time reduction creating an
equivalent instance whose size is polynomial in the parameter k .

Intuitively, a polynomial kernel means that the problem can be
solved by preprocessing + brute force:

Compute the equivalent instance whose size is polynomial in k .
Use whatever method available to solve the kernel in time
exponential in its size.

8

Fixed-parameter tractability of connectivity augmentation

What is the right parameter?
k : connectivity target
The problem is NP complete for any fixed k ≥ 2.
p: the maximum number of augmenting edges allowed.
Trivial nO(p) algorithms, but fixed-parameter tractability is a
challenging question!

Previous results
[Nagamochi 2003]: Minimum cardinality edge-connectivity
augmentation from 1 to 2 is FPT with parameter p.
[Guo, Uhlman 2010]: Minimum cardinality edge-connectivity
augmentation from 1 to 2 has a kernel on O(p2) nodes, O(p2)
edges; also for node-connectivity.

9

Fixed-parameter tractability of connectivity augmentation

What is the right parameter?
k : connectivity target
The problem is NP complete for any fixed k ≥ 2.
p: the maximum number of augmenting edges allowed.
Trivial nO(p) algorithms, but fixed-parameter tractability is a
challenging question!

Previous results
[Nagamochi 2003]: Minimum cardinality edge-connectivity
augmentation from 1 to 2 is FPT with parameter p.
[Guo, Uhlman 2010]: Minimum cardinality edge-connectivity
augmentation from 1 to 2 has a kernel on O(p2) nodes, O(p2)
edges; also for node-connectivity.

9

Main result

Minimum cost edge-connectivity augmentation
by one

Input:
k ∈ Z+: connectivity target
(V ,E ∪ E∗), E : edges, E∗: links.
G = (V ,E) is (k − 1)-edge connected.
c : E∗ → R+: cost
p ∈ Z+: maximum number of allowed links

Output:
Minimum cost F ⊆ E ∗ s.t. (V ,E ∪ F) is k-edge-connected
and |F | ≤ p.

Theorem
Minimum Cost Edge-Connectivity Augmentation by
One admits a kernel of O(p4) nodes, O(p4) edges and O(p4)
links, with all costs integers of O(p8 log p) bits.

10

Overview

Key steps
Formulate a slightly more general weighted problem.
Observation: the problem can be formulated as covering every
minimum cut with an edge.
k = 2, 3:

Reduce to trees/cactus graphs via contractions.
Reduce to metric instances.
Kernelization for metric instances.

k ≥ 4: reduce to k = 2 or k = 3 via cactus representation of
minimum cuts.
Reduce cost sizes by simultaneous Diophantine approximation.

11

A more general problem

Weighted minimum cost edge-connectivity
augmentation by one

Input:
k ∈ Z+: connectivity target.
(V ,E ∪ E∗), E : edges, E∗: links.
G = (V ,E) is (k − 1)-edge connected.
c : E∗ → R+: cost, w : E∗ → Z+: weight.
p ∈ Z+: maximum total weight of allowed links.

Output:
Minimum cost F ⊆ E ∗ s.t. (V ,E ∪ F) is k-edge-connected
and w(F) ≤ p.

Theorem
Weighted Minimum Cost Edge-Connectivity
Augmentation by One admits a kernel of O(p) nodes, O(p)
edges and O(p3) links, with all costs integers of O(p6 log p) bits.

12

k = 2 — Reduction step 1: Contraction

Proposition
We can contract all 2-connected blocks to obtain an equivalent
instance.

⇒

Proposition
We may assume that the input G = (V ,E) is a tree.

13

k = 2 — Reduction step 1: Contraction

Proposition
We can contract all 2-connected blocks to obtain an equivalent
instance.

⇒

Proposition
We may assume that the input G = (V ,E) is a tree.

13

k = 2 — Reduction step 1: Contraction

Proposition
We can contract all 2-connected blocks to obtain an equivalent
instance.

⇒

Proposition
We may assume that the input G = (V ,E) is a tree.

13

k = 2 — Reduction step 1: Contraction

Proposition
We can contract all 2-connected blocks to obtain an equivalent
instance.

⇒

Proposition
We may assume that the input G = (V ,E) is a tree.

13

k = 2 — Metric instances

w : weight, c : cost.

w(f) = 2

w(e) = 1

c(f) = 5

c(e) = 6

Definition
The link f is a shadow of e if the path
in E between the endpoints of f is a
subset of that for e, and w(e) ≤ w(f).

Intuition
Link e is better than f : it provides more
connectivity (however, its cost might be
larger)

14

k = 2 — Metric instances

w : weight, c : cost.

w(f) = 2

w(e) = 1

c(f) = 5

c(e) = 6

Definition
The link f is a shadow of e if the path
in E between the endpoints of f is a
subset of that for e, and w(e) ≤ w(f).

Intuition
Link e is better than f : it provides more
connectivity (however, its cost might be
larger)

14

k = 2 — Metric instances

w : weight, c : cost.

w(e) = 1

c(e) = 6

u

v

z

w(f) = 1

c(f) = 4

c(h) = 8

w(h) = 2

Definition
The instance is metric, if
(i) c(f) ≤ c(e) holds whenever the

link f is a shadow of link e.
(ii) For e = (u, v), f = (v , z) and

h = (u, z) with
w(h) ≥ w(e) + w(f), we must
have c(h) ≤ c(e) + c(f).

Intuition
(i) If c(e) < c(f), then replacing f by e can only make the

solution better.
(ii) If c(e) + c(f) < c(h), then substituting h by e and f can only

make the solution better.

15

k = 2 — Metric instances

w : weight, c : cost.

w(e) = 1

c(e) = 6

u

v

z

w(f) = 1

c(f) = 4

c(h) = 8

w(h) = 2

Definition
The instance is metric, if
(i) c(f) ≤ c(e) holds whenever the

link f is a shadow of link e.
(ii) For e = (u, v), f = (v , z) and

h = (u, z) with
w(h) ≥ w(e) + w(f), we must
have c(h) ≤ c(e) + c(f).

Intuition
(i) If c(e) < c(f), then replacing f by e can only make the

solution better.
(ii) If c(e) + c(f) < c(h), then substituting h by e and f can only

make the solution better.

15

k = 2 — Metric completion

w : weight, c : cost.

w(e) = 1

c(e) = 6

u

v

z

w(f) = 1

c(f) = 4

Lemma
Every instance can be replaced by an equivalent metric instance via
a simple metric completion algorithm.

Remark: The metric completion is the reason for considering the
weighted version of the problem.

16

k = 2 — Metric completion

w : weight, c : cost.

w(e) = 1

c(e) = 6

u

v

z

w(f) = 1

c(f) = 4

c(h) = 4 + 6

w(h) = 1 + 1

Lemma
Every instance can be replaced by an equivalent metric instance via
a simple metric completion algorithm.

Remark: The metric completion is the reason for considering the
weighted version of the problem.

16

k = 2 — Kernelization of metric instances

Every leaf in G must have an incident link added.
If the (# leaves > 2p), then the problem is infeasible.
Otherwise, it follows that

(#leaves) + (# branching nodes) ≤ 4p − 2.

Key lemma: For every metric instance, there exists an optimal
solution with every link incident to leaves and branching nodes
only.
We obtain a kernel on ≤ 4p − 2 nodes by replacing every path
of degree 2 nodes by a single edge.

17

k = 2 — Kernelization of metric instances

Every leaf in G must have an incident link added.
If the (# leaves > 2p), then the problem is infeasible.
Otherwise, it follows that

(#leaves) + (# branching nodes) ≤ 4p − 2.

Key lemma: For every metric instance, there exists an optimal
solution with every link incident to leaves and branching nodes
only.
We obtain a kernel on ≤ 4p − 2 nodes by replacing every path
of degree 2 nodes by a single edge.

17

k = 2 — Kernelization of metric instances

Key lemma
For every metric instance, there exists an optimal solution with
every link incident to leaves and branching nodes only.

u

v

z

18

k = 2 — Kernelization of metric instances

Key lemma
For every metric instance, there exists an optimal solution with
every link incident to leaves and branching nodes only.

u

v

z

18

k = 2 — Kernelization of metric instances

Key lemma
For every metric instance, there exists an optimal solution with
every link incident to leaves and branching nodes only.

u

v

z

18

k = 2 — Kernelization of metric instances

Key lemma
For every metric instance, there exists an optimal solution with
every link incident to leaves and branching nodes only.

u

v

z

18

k > 3 — Reduction to k ∈ {2, 3}
Cactus graph: every 2-connected block is a cycle.

k = 3 is similar to k = 2, but on a cactus graph instead of a tree.

k > 3 can be reduced to k = 3:

Theorem [Dinitz, Karzanov, Lomonosov 1976]

For every graph G = (V ,E), there exists a mapping of ϕ : V → U
to the node set of a cactus H = (U, L) s.t. there is a 1-1
correspondence between the minimum cuts.

19

k > 3 — Reduction to k ∈ {2, 3}
Cactus graph: every 2-connected block is a cycle.

k = 3 is similar to k = 2, but on a cactus graph instead of a tree.

k > 3 can be reduced to k = 3:

Theorem [Dinitz, Karzanov, Lomonosov 1976]

For every graph G = (V ,E), there exists a mapping of ϕ : V → U
to the node set of a cactus H = (U, L) s.t. there is a 1-1
correspondence between the minimum cuts.

19

Reducing the size of the cost

Technical issue about kernels for minimum cost problems:

The cost c in the input can consist of arbitrary real numbers,
thus the kernel consists of a graph with O(p4) edges and the
O(p4) real numbers for the O(p4) links.
The kernel should contain numbers of bounded bitsize only.

We can use [Frank, Tardos, 1987] on simultaneous Diophantine
approximation to replace the costs by integers of O(p6 log p)
bits.

We want that a solution is optimum with the new costs iff it is
optimum with the original cost.
What we need is that the cost of any two sets of at most p
edges have the same relation in the original and new costs.

This technique should be essential for other kernelization
problems involving costs!

20

Reducing the size of the cost

Technical issue about kernels for minimum cost problems:

The cost c in the input can consist of arbitrary real numbers,
thus the kernel consists of a graph with O(p4) edges and the
O(p4) real numbers for the O(p4) links.
The kernel should contain numbers of bounded bitsize only.
We can use [Frank, Tardos, 1987] on simultaneous Diophantine
approximation to replace the costs by integers of O(p6 log p)
bits.

We want that a solution is optimum with the new costs iff it is
optimum with the original cost.
What we need is that the cost of any two sets of at most p
edges have the same relation in the original and new costs.

This technique should be essential for other kernelization
problems involving costs!

20

Further results and open questions

Node-connectivity: We prove that Weighted Minimum
Cost Node-Connectivity Augmentation from 1 to
2 admits a kernel.
Node-connectivity in any other setting: OPEN.

Augmenting arbitrary input graph to 2-edge-connectivity: We
give an FPT algorithm that has a branching step, but
existence of a polynomial kernel is OPEN.
Augmenting arbitrary input graph to k-edge-connectivity:
OPEN.
Directed graph, hypergraphs, nonuniform connectivity
requirements: a whole world of connectivity-augmentation
problems mostly unexplored from the viewpoint of
fixed-parameter tractability!

21

Further results and open questions

Node-connectivity: We prove that Weighted Minimum
Cost Node-Connectivity Augmentation from 1 to
2 admits a kernel.
Node-connectivity in any other setting: OPEN.
Augmenting arbitrary input graph to 2-edge-connectivity: We
give an FPT algorithm that has a branching step, but
existence of a polynomial kernel is OPEN.
Augmenting arbitrary input graph to k-edge-connectivity:
OPEN.

Directed graph, hypergraphs, nonuniform connectivity
requirements: a whole world of connectivity-augmentation
problems mostly unexplored from the viewpoint of
fixed-parameter tractability!

21

Further results and open questions

Node-connectivity: We prove that Weighted Minimum
Cost Node-Connectivity Augmentation from 1 to
2 admits a kernel.
Node-connectivity in any other setting: OPEN.
Augmenting arbitrary input graph to 2-edge-connectivity: We
give an FPT algorithm that has a branching step, but
existence of a polynomial kernel is OPEN.
Augmenting arbitrary input graph to k-edge-connectivity:
OPEN.
Directed graph, hypergraphs, nonuniform connectivity
requirements: a whole world of connectivity-augmentation
problems mostly unexplored from the viewpoint of
fixed-parameter tractability!

21

	Main Talk

