Fixed-parameter algorithms for minimum cost edge-connectivity augmentation

<u>Dániel Marx¹</u> László A. Végh²

¹Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

²Department of Management, London School of Economics, London, UK

40th International Colloquium on Automata, Languages and Programming (ICALP 2013) Riga, Latvia July 8, 2013

Problem

Input:

Graph G = (V, E), connectivity target k, a cost function for each new edge that can be added to the graph. **Output:** Minimum cost set F of new edges so that

G + F is k-edge-connected.

Problem

Input:

Graph G = (V, E), connectivity target k, a cost function for each new edge that can be added to the graph. **Output:** Minimum cost set F of new edges so that G + F is k-edge-connected.

Variants

 Special case k = 1: Minimum cost spanning tree, polynomial-time solvable [Borůvka 1926].

Variants

- Special case k = 1: Minimum cost spanning tree, polynomial-time solvable [Borůvka 1926].
- Uniform case:

Adding an arbitrary new edge has unit cost. Polynomial-time solvable for arbitrary k [Watanabe, Nakamura 1987].

Variants

- Special case k = 1: Minimum cost spanning tree, polynomial-time solvable [Borůvka 1926].
- Uniform case:

Adding an arbitrary new edge has unit cost. Polynomial-time solvable for arbitrary k [Watanabe, Nakamura 1987].

• Minimum cardinality case:

Every cost is 1 or ∞ . We wish to add a minimum number of new edges from a given set of links E^* .

Variants

• Special case k = 1: Minimum cost spanning :

Minimum cost spanning tree, polynomial-time solvable [Borůvka 1926].

• Uniform case:

Adding an arbitrary new edge has unit cost. Polynomial-time solvable for arbitrary k [Watanabe, Nakamura 1987].

• Minimum cardinality case:

Every cost is 1 or ∞ . We wish to add a minimum number of new edges from a given set of links E^* . NP complete for $k \ge 2$.

NP-completeness

Proposition

Minimum cardinality edge-connectivity augmentation is NP-complete already for k = 2.

NP-completeness

Proposition

Minimum cardinality edge-connectivity augmentation is NP-complete already for k = 2.

Proof.

For an arbitrary link graph (V, E^*) and starting graph (V, \emptyset) , there exists an augmentation with |V| links in $E^* \Leftrightarrow$ (V, E^*) contains a Hamiltonian cycle.

Related results

- Polynomial algorithms for variants of the uniform case, e.g. [Watanabe, Nakamura 1987], [Frank 1992],...
- Approximation algorithms for the minimum cost variant e.g. [Agrawal, Klein, Ravi 1995], [Goemans, Williamson 1995], [Jain 2001],...

Important special case

Augmenting connectivity by one: we assume that the input graph is already (k - 1)-edge-connected.

Fixed-parameter tractability

Main definition

A parameterized problem is **fixed-parameter tractable (FPT)** with some parameter k if there is an $f(k)n^c$ time algorithm for some constant c and function f depending only on k.

Main goal of parameterized complexity: to find FPT problems.

Main definition

A parameterized problem is **fixed-parameter tractable (FPT)** with some parameter k if there is an $f(k)n^c$ time algorithm for some constant c and function f depending only on k.

Main goal of parameterized complexity: to find FPT problems.

Examples of NP-hard problems that are FPT:

- Finding a vertex cover of size *k*.
- Finding a path of length *k*.
- Finding *k* disjoint triangles.
- Drawing the graph in the plane with k edge crossings.
- Finding disjoint paths that connect k pairs of points.

• . . .

Fixed-parameter tractability

Kernelization

A particularly nice way of proving fixed-parameter tractability:

Definition

A polynomial kernel is a polynomial-time reduction creating an equivalent instance whose size is polynomial in the parameter k.

Intuitively, a polynomial kernel means that the problem can be solved by preprocessing + brute force:

- Compute the equivalent instance whose size is polynomial in k.
- Use whatever method available to solve the kernel in time exponential in its size.

Fixed-parameter tractability of connectivity augmentation

What is the right parameter?

• k: connectivity target

The problem is NP complete for any fixed $k \ge 2$.

p: the maximum number of augmenting edges allowed.
 Trivial n^{O(p)} algorithms, but fixed-parameter tractability is a challenging question!

Fixed-parameter tractability of connectivity augmentation

What is the right parameter?

• k: connectivity target

The problem is NP complete for any fixed $k \ge 2$.

p: the maximum number of augmenting edges allowed.
 Trivial n^{O(p)} algorithms, but fixed-parameter tractability is a challenging question!

Previous results

- [Nagamochi 2003]: Minimum cardinality edge-connectivity augmentation from 1 to 2 is FPT with parameter *p*.
- [Guo, Uhlman 2010]: Minimum cardinality edge-connectivity augmentation from 1 to 2 has a kernel on $O(p^2)$ nodes, $O(p^2)$ edges; also for node-connectivity.

Main result

MINIMUM COST EDGE-CONNECTIVITY AUGMENTATION BY ONE

- Input:
 - $k \in \mathbb{Z}_+$: connectivity target
 - $(V, E \cup E^*)$, E: edges, E^* : links.
 - G = (V, E) is (k 1)-edge connected.
 - $c: E^* \to \mathbb{R}_+$: cost
 - $p \in \mathbb{Z}_+$: maximum number of allowed links
- Output:

Minimum cost $F \subseteq E^*$ s.t. $(V, E \cup F)$ is *k*-edge-connected and $|F| \leq p$.

Theorem

MINIMUM COST EDGE-CONNECTIVITY AUGMENTATION BY ONE admits a kernel of $O(p^4)$ nodes, $O(p^4)$ edges and $O(p^4)$ links, with all costs integers of $O(p^8 \log p)$ bits.

Overview

Key steps

- Formulate a slightly more general weighted problem.
- Observation: the problem can be formulated as covering every minimum cut with an edge.
- *k* = 2, 3:
 - Reduce to trees/cactus graphs via contractions.
 - Reduce to metric instances.
 - Kernelization for metric instances.
- k ≥ 4: reduce to k = 2 or k = 3 via cactus representation of minimum cuts.
- Reduce cost sizes by simultaneous Diophantine approximation.

A more general problem

WEIGHTED MINIMUM COST EDGE-CONNECTIVITY AUGMENTATION BY ONE

• Input:

- $k \in \mathbb{Z}_+$: connectivity target.
- $(V, E \cup E^*)$, E: edges, E^* : links.
- G = (V, E) is (k 1)-edge connected.
- $c: E^* \to \mathbb{R}_+$: cost, $w: E^* \to \mathbb{Z}_+$: weight.
- $p \in \mathbb{Z}_+$: maximum total weight of allowed links.
- Output:

Minimum cost $F \subseteq E^*$ s.t. $(V, E \cup F)$ is *k*-edge-connected and $w(F) \leq p$.

Theorem

WEIGHTED MINIMUM COST EDGE-CONNECTIVITY AUGMENTATION BY ONE admits a kernel of O(p) nodes, O(p)edges and $O(p^3)$ links, with all costs integers of $O(p^6 \log p)$ bits.

Proposition

We can contract all 2-connected blocks to obtain an equivalent instance.

Proposition

We can contract all 2-connected blocks to obtain an equivalent instance.

Proposition

We can contract all 2-connected blocks to obtain an equivalent instance.

Proposition

We can contract all 2-connected blocks to obtain an equivalent instance.

Proposition

We may assume that the input G = (V, E) is a tree.

Definition

The link f is a shadow of e if the path in E between the endpoints of f is a subset of that for e, and $w(e) \le w(f)$.

Definition

The link f is a shadow of e if the path in E between the endpoints of f is a subset of that for e, and $w(e) \le w(f)$.

Intuition

Link e is better than f: it provides more connectivity (however, its cost might be larger)

Definition

The instance is metric, if

(i) $c(f) \le c(e)$ holds whenever the link f is a shadow of link e.

(ii) For e = (u, v), f = (v, z) and h = (u, z) with $w(h) \ge w(e) + w(f)$, we must have $c(h) \le c(e) + c(f)$.

Definition

The instance is *metric*, if
(i) c(f) ≤ c(e) holds whenever the link f is a shadow of link e.

(ii) For e = (u, v), f = (v, z) and h = (u, z) with $w(h) \ge w(e) + w(f)$, we must have $c(h) \le c(e) + c(f)$.

Intuition

- (i) If c(e) < c(f), then replacing f by e can only make the solution better.
- (ii) If c(e) + c(f) < c(h), then substituting h by e and f can only make the solution better.

k = 2 — Metric completion

Lemma

Every instance can be replaced by an equivalent metric instance via a simple metric completion algorithm.

Remark: The metric completion is the reason for considering the weighted version of the problem.

k = 2 — Metric completion

Lemma

Every instance can be replaced by an equivalent metric instance via a simple metric completion algorithm.

Remark: The metric completion is the reason for considering the weighted version of the problem.

- Every leaf in G must have an incident link added.
- If the (# leaves > 2p), then the problem is infeasible.
- Otherwise, it follows that

 $(\# leaves) + (\# branching nodes) \le 4p - 2.$

- Every leaf in G must have an incident link added.
- If the (# leaves > 2p), then the problem is infeasible.
- Otherwise, it follows that

 $(\# leaves) + (\# branching nodes) \le 4p - 2.$

- Key lemma: For every metric instance, there exists an optimal solution with every link incident to leaves and branching nodes only.
- We obtain a kernel on $\leq 4p 2$ nodes by replacing every path of degree 2 nodes by a single edge.

Key lemma

Key lemma

Key lemma

Key lemma

k > 3 — Reduction to $k \in \{2,3\}$

Cactus graph: every 2-connected block is a cycle.

k = 3 is similar to k = 2, but on a cactus graph instead of a tree.

k > 3 — Reduction to $k \in \{2, 3\}$

Cactus graph: every 2-connected block is a cycle.

k = 3 is similar to k = 2, but on a cactus graph instead of a tree.

k > 3 can be reduced to k = 3:

Theorem [Dinitz, Karzanov, Lomonosov 1976]

For every graph G = (V, E), there exists a mapping of $\varphi : V \to U$ to the node set of a cactus H = (U, L) s.t. there is a 1-1 correspondence between the minimum cuts.

Reducing the size of the cost

Technical issue about kernels for minimum cost problems:

- The cost *c* in the input can consist of arbitrary real numbers, thus the kernel consists of a graph with $O(p^4)$ edges and the $O(p^4)$ real numbers for the $O(p^4)$ links.
- The kernel should contain numbers of bounded bitsize only.

Reducing the size of the cost

Technical issue about kernels for minimum cost problems:

- The cost *c* in the input can consist of arbitrary real numbers, thus the kernel consists of a graph with $O(p^4)$ edges and the $O(p^4)$ real numbers for the $O(p^4)$ links.
- The kernel should contain numbers of bounded bitsize only.
- We can use [Frank, Tardos, 1987] on simultaneous Diophantine approximation to replace the costs by integers of $O(p^6 \log p)$ bits.
 - We want that a solution is optimum with the new costs iff it is optimum with the original cost.
 - What we need is that the cost of any two sets of at most *p* edges have the same relation in the original and new costs.
- This technique should be essential for other kernelization problems involving costs!

Further results and open questions

- Node-connectivity: We prove that WEIGHTED MINIMUM COST NODE-CONNECTIVITY AUGMENTATION FROM 1 TO 2 admits a kernel.
- Node-connectivity in any other setting: OPEN.

Further results and open questions

- Node-connectivity: We prove that WEIGHTED MINIMUM COST NODE-CONNECTIVITY AUGMENTATION FROM 1 TO 2 admits a kernel.
- Node-connectivity in any other setting: OPEN.
- Augmenting arbitrary input graph to 2-edge-connectivity: We give an FPT algorithm that has a branching step, but existence of a polynomial kernel is OPEN.
- Augmenting arbitrary input graph to *k*-edge-connectivity: OPEN.

Further results and open questions

- Node-connectivity: We prove that WEIGHTED MINIMUM COST NODE-CONNECTIVITY AUGMENTATION FROM 1 TO 2 admits a kernel.
- Node-connectivity in any other setting: OPEN.
- Augmenting arbitrary input graph to 2-edge-connectivity: We give an FPT algorithm that has a branching step, but existence of a polynomial kernel is OPEN.
- Augmenting arbitrary input graph to *k*-edge-connectivity: OPEN.
- Directed graph, hypergraphs, nonuniform connectivity requirements: a whole world of connectivity-augmentation problems mostly unexplored from the viewpoint of fixed-parameter tractability!