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A classical problem

s − t Cut
Input: A graph G , an integer p, vertices s and t

Output: A set S of at most p edges such that removing S sep-
arates s and t.

Fact
A minimum s − t cut can be found in polynomial time.

What about separating more than two terminals?



More than two terminals

Multiway Cut

Input: A graph G , an integer p, and a set T of terminals
Output: A set S of at most p edges such that removing S sep-

arates any two vertices of T

Note: Also called Multiterminal Cut or k-Terminal Cut.

Theorem [Dalhaus et al. 1994]
NP-hard already for |T | = 3.



Planar graphs

Theorem [Dalhaus et al. 1994] [Hartvigsen 1998] [Bentz 2012]

k-Terminal Cut can be solved in time nO(k) on planar graphs.

Main result

k-Terminal Cut can be solved in time ck ·nO(
√

k) on planar graphs.

The improvement in the exponent is best possible:

Previous talk
Assuming ETH, k-Terminal Cut on planar graphs cannot be solved
in time f (k) · no(

√
k) for any computable function f (k).
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Recall:

Primal graph Dual graph
vertices ⇔ faces

faces ⇔ vertices
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We slightly transform the problem in such a way that the terminals are
represented by vertices in the dual graph (instead of faces).



Previous approaches

[Dalhaus et al. 1994] [Hartvigsen 1998] [Bentz 2012]

1 The dual solution has O(k) branch vertices.
2 Guess the location of branch vertices (nO(k) guesses).
3 Deep magic to find the paths connecting the branch vertices

(shortest paths are not necessarily good!)

New idea:

Fact

A planar graph with k vertices has treewidth O(
√

k).

The dual solution has treewidth O(
√

k), so instead of guessing,
let’s find the vertices in a dynamic programming on the tree
decomposition.

Problem: How to implement the deep magic in a DP?
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2-connectivity

In general, the dual solution is not 2-connected.

2-connected problem
Find a 2-connected dual solution that separates a subset X of
terminals from each other and from every other terminal.

A simple DP reduces the original problem to the 2-connected
problem.



2-connectivity

a(X ): cost of separating the terminals in X from each other.
b(X ): cost of separating X from each other and from every other
terminal with a solution that is 2-connected in the dual.

a(T ) = min
∅6=X⊆T

(b(X ) + a(T \ X ))
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The Steiner tree
We find a minimum cost Steiner tree T of the terminals in the
dual and cut open the graph along the tree.
( Steiner tree: 3k · nO(1) time by [Dreyfus-Wagner 1972] or
2k · nO(1) time by [Björklund 2007] )
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The Steiner tree
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dual and cut open the graph along the tree.
( Steiner tree: 3k · nO(1) time by [Dreyfus-Wagner 1972] or
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Key idea: the paths of the dual solution between the branch
points/crossing points can be assumed to be shortest paths.



Topology

Key idea: the paths of the dual solution between the branch
points/crossing points can be assumed to be shortest paths.
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Thus a solution can be completely described by the location of
these points and which of them are connected.
A “topology” just describes the connections without the locations.



A combinatorial lemma

Lemma
There is an optimum dual solution S that has O(k) branch vertices
and “crosses the tree” O(k) times.

Proof uses
the minimality of T ,
the minimality of S ,

the 2-connectivity of S ,
Euler’s formula.



A proof idea

Why this cannot happen?

There are no red-blue-red-blue faces:
If x < y , then we can get a better solution S .
If x > y , then we can get a better Steiner tree T .
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Realizing a topology
Lemma
Given a topology of size p, we can find a minimum cost realization
in time nO(

√
p).

p branch points/crossing points ⇒ treewidth is O(
√

p).
Fairly standard DP on the tree decomposition.
In each bag of the tree decomposition, we have to keep track
of the location of O(

√
p) points ⇒ nO(

√
p) possibilities.

We need that the crossing points and the terminals are in the
right order, but that is easy.
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Algorithm

For the 2-connected problem:
1 Find the Steiner tree T (2k · nO(1) time).
2 Cut along T .
3 Guess a “topology” of size O(k) (ck guesses).
4 Find a minimum cost realization of the topology using DP on

the tree decomposition (nO(
√

k) time).

For the general problem:
1 Solve 2k instances of the 2-connected problem.
2 Solved the general problem for every subset using DP.



Conclusions

A ck · nO(
√

k) time algorithm for k-terminal planar Multiway
Cut.
Is there an nO(

√
k) time algorithm?

Eventually boils down to the O(
√

n) treewidth bound on planar
graphs, but not just a trivial application of bidimensionality.
It seems hard to prove lower bounds better than Ω(

√
k) for

planar problems. There should be O(
√

k) algorithms for all
these problems!


