A Tight Lower Bound for Planar Multiway Cut with Fixed Number of Terminals

Dániel Marx¹

¹Computer and Automation Research Institute, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

> ICALP 2012 Warwick, UK July 13, 2012

A classical problem

s-t Cut

Input: A graph G, an integer p, vertices s and tOutput: A set S of at most p edges such that removing S separates s and t.

Fact

A minimum s - t cut can be found in polynomial time.

What about separating more than two terminals?

More than two terminals

Multiway CutInput:A graph G, an integer p, and a set T of terminalsOutput:A set S of at most p edges such that removing S separates any two vertices of T

Note: Also called Multiterminal Cut or *k*-Terminal Cut.

Theorem [Dalhaus et al. 1994] NP-hard already for |T| = 3.

Planar graphs

Theorem [Dalhaus et al. 1994] [Hartvigsen 1998] [Bentz 2012] *k*-Terminal Cut can be solved in time $n^{O(k)}$ on planar graphs.

Can we improve the dependence on the number k of terminals?

- Is there a c^k · n^{O(1)} algorithm? (Asked by [Dalhaus et al. 1994])
- Is the problem fixed-parameter tractable? (Appears in the open problem list of [Downey-Fellows 1999])

[A problem is **fixed-parameter tractable (FPT)** parameterized by k if it can be solved in time $f(k) \cdot n^{O(1)}$ for some computable function f(k) depending only on k.]

Results

Main result 1

k-Terminal Cut on planar graphs is W[1]-hard parameterized by the number k of terminals.

Lower bound on the exponent:

Main result 2

Assuming ETH, k-Terminal Cut on planar graphs cannot be solved in time $f(k) \cdot n^{o(\sqrt{k})}$ for any computable function f(k).

[Exponential Time Hypothesis (ETH): *n*-variable 3-Sat cannot be solved in time $2^{o(n)}$.]

Bound on the exponent is tight:

Next talk [Klein and M.]

k-Terminal Cut on planar graphs can be solved in time $c^k \cdot n^{O(\sqrt{k})}$

Results

Main result 1

k-Terminal Cut on planar graphs is W[1]-hard parameterized by the number k of terminals.

Lower bound on the exponent:

Main result 2

Assuming ETH, k-Terminal Cut on planar graphs cannot be solved in time $f(k) \cdot n^{o(\sqrt{k})}$ for any computable function f(k).

[Exponential Time Hypothesis (ETH): *n*-variable 3-Sat cannot be solved in time $2^{o(n)}$.]

Bound on the exponent is tight:

Next talk [Klein and M.]

k-Terminal Cut on planar graphs can be solved in time $c^k \cdot n^{O(\sqrt{k})}$

Results

Main result 1

k-Terminal Cut on planar graphs is W[1]-hard parameterized by the number k of terminals.

Lower bound on the exponent:

Main result 2

Assuming ETH, k-Terminal Cut on planar graphs cannot be solved in time $f(k) \cdot n^{o(\sqrt{k})}$ for any computable function f(k).

[Exponential Time Hypothesis (ETH): *n*-variable 3-Sat cannot be solved in time $2^{o(n)}$.]

Bound on the exponent is tight:

Next talk [Klein and M.]

k-Terminal Cut on planar graphs can be solved in time $c^k \cdot n^{O(\sqrt{k})}$.

W[1]-hardness

Definition

A parameterized reduction from problem A to B maps an instance (x, k) of A to instance (x', k') of B such that

- $(x,k) \in A \iff (x',k') \in B$,
- $k' \leq g(k)$ for some computable function g.
- (x', k') can be computed in time $f(k) \cdot |x|^{O(1)}$.

Easy: If there is a parameterized reduction from problem A to problem B and B is FPT, then A is FPT as well.

Definition

A problem P is **W[1]-hard** if there is a parameterized reduction from k-Clique to P.

W[1]-hardness

Definition

A parameterized reduction from problem A to B maps an instance (x, k) of A to instance (x', k') of B such that

- $(x,k) \in A \iff (x',k') \in B$,
- $k' \leq g(k)$ for some computable function g.
- (x', k') can be computed in time $f(k) \cdot |x|^{O(1)}$.

Easy: If there is a parameterized reduction from problem A to problem B and B is FPT, then A is FPT as well.

Definition

A problem P is **W[1]-hard** if there is a parameterized reduction from k-Clique to P.

W[1]-hardness vs. NP-hardness

W[1]-hardness proofs are more delicate than NP-hardness proofs: we need to control the new parameter.

Example: *k*-Independent Set can be reduced to k'-Vertex Cover with k' := n - k. But this is **not** a parameterized reduction.

NP-hardness proof

Reduction from some graph problem. We build n vertex gadgets of constant size and m edge gadgets of constant size.

W[1]-hardness proof

Reduction from *k*-Clique. We build *k* large vertex gadgets, each having *n* states (and/or $\binom{k}{2}$ large edge gadgets with *m* states).

Another difference: Most problems remain NP-hard on planar graphs, but become FPT.

Algorithmic techniques for planar problems:

- Baker's shifting technique + treewidth
- Bidimensionality
- Protrusions

Very few W[1]-hardness results so far for planar problems.

Tight bounds

Theorem [Chen et al. 2004]

Assuming ETH, there is no $f(k) \cdot n^{o(k)}$ algorithm for k-Clique for any computable function f.

Transfering to other problems:

If there is a parameterized reduction from k-Clique to problem A mapping (x, k) to (x', g(k)), then an $f(k) \cdot n^{o(g^{-1}(k))}$ algorithm for problem A gives an $f(k) \cdot n^{o(k)}$ algorithm for k-Clique, contradicting ETH.

Bottom line:

To rule out $f(k) \cdot n^{o(\sqrt{k})}$ algorithms, we need a parameterized reduction that blows up the parameter at most quadratically.

Tight bounds

Theorem [Chen et al. 2004]

Assuming ETH, there is no $f(k) \cdot n^{o(k)}$ algorithm for k-Clique for any computable function f.

Transfering to other problems:

Bottom line:

To rule out $f(k) \cdot n^{o(\sqrt{k})}$ algorithms, we need a parameterized reduction that blows up the parameter at most quadratically.

Grid Tiling

Grid Tiling

- Input: A $k \times k$ matrix and a set of pairs $S_{i,j} \subseteq [D] \times [D]$ for each cell.
- *Find:* A pair $s_{i,j} \in S_{i,j}$ for each cell such that
 - Horizontal neighbors agree in the first component.
 - Vertical neighbors agree in the second component.

$(1,1) \\ (1,3) \\ (4,2)$	(1,5) (4,1) (3,5)	(1,1)(4,2)(3,3)	
(2,2) (4,1)	(1,3) (2,1)	(2,2) (3,2)	
(3,1) (3,2) (3,3)	(1,1) (3,1)	(3,2) (3,5)	
k = 3, D = 5			

Grid Tiling

Grid Tiling

- Input: A $k \times k$ matrix and a set of pairs $S_{i,j} \subseteq [D] \times [D]$ for each cell.
- *Find:* A pair $s_{i,j} \in S_{i,j}$ for each cell such that
 - Horizontal neighbors agree in the first component.
 - Vertical neighbors agree in the second component.

(1,1)	(1,5)	(1,1)	
(1,3)	(4,1)	(4,2)	
(4,2)	(3,5)	(3,3)	
<mark>(2,2)</mark>	(1,3)	<mark>(2,2)</mark>	
(4,1)	(2,1)	(3,2)	
(3,1) (3,2) (3,3)	(1,1) (3,1)	<mark>(3,2)</mark> (3,5)	
k = 3, D = 5			

Reduction from *k*-Clique

Definition of the sets:

- For i = j: $(x, y) \in S_{i,j} \iff x = y$
- For $i \neq j$: $(x, y) \in S_{i,j} \iff x$ and y are adjacent.

Each diagonal cell defines a value $v_i \dots$

Reduction from *k*-Clique

Definition of the sets:

- For i = j: $(x, y) \in S_{i,j} \iff x = y$
- For $i \neq j$: $(x, y) \in S_{i,j} \iff x$ and y are adjacent.

... which appears on a "cross"

Reduction from *k*-Clique

Definition of the sets:

- For i = j: $(x, y) \in S_{i,j} \iff x = y$
- For $i \neq j$: $(x, y) \in S_{i,j} \iff x$ and y are adjacent.

Reduction from *k*-Clique

Definition of the sets:

- For i = j: $(x, y) \in S_{i,j} \iff x = y$
- For $i \neq j$: $(x, y) \in S_{i,j} \iff x$ and y are adjacent.

The gadget

For every set $S_{i,j}$, we construct a gadget such that

- for every $(x, y) \in S_{i,j}$, there is a minimum multiway cut that represents (x, y).
- every minimum cut represents some $(x, y) \in S_{i,j}$.

Main part of the proof: constructing these gadgets.

The gadget

For every set $S_{i,j}$, we construct a gadget such that

- for every $(x, y) \in S_{i,j}$, there is a minimum multiway cut that represents (x, y).
- every minimum cut represents some $(x, y) \in S_{i,j}$.

Main part of the proof: constructing these gadgets.

A cut representing (2,4).

The gadget

For every set $S_{i,j}$, we construct a gadget such that

- for every $(x, y) \in S_{i,j}$, there is a minimum multiway cut that represents (x, y).
- every minimum cut represents some $(x, y) \in S_{i,j}$.

Main part of the proof: constructing these gadgets.

A cut not representing any pair.

Putting together the gadgets

Putting together the gadgets

Putting together the gadgets

Constructing the gadget

This is what we would like to have:

- We set up the weight of the grid edges such that every cheap cut is like this.
- Furthermore, we add something in the cells that ensures that the intersection of the horizontal and the vertical cut has to be a special cell.

Constructing the gadget

This is what we would like to have:

- We set up the weight of the grid edges such that every cheap cut is like this.
- Furthermore, we add something in the cells that ensures that the intersection of the horizontal and the vertical cut has to be a special cell.

Constructing the gadget

This is what we would like to have:

- We set up the weight of the grid edges such that every cheap cut is like this.
- Furthermore, we add something in the cells that ensures that the intersection of the horizontal and the vertical cut has to be a special cell.

- We set up the weight of the grid edges such that every cheap cut is like this.
- We add something in the cells that ensures that the choice of the vertical cut determines the choice of the horizontal cuts.

- We set up the weight of the grid edges such that every cheap cut is like this.
- We add something in the cells that ensures that the choice of the vertical cut determines the choice of the horizontal cuts.

- We set up the weight of the grid edges such that every cheap cut is like this.
- We add something in the cells that ensures that the choice of the vertical cut determines the choice of the horizontal cuts.

Two different type of cells

special cell

1

normal cell

They behave similarly with respect to horizontal cuts...

normal cell


```
special cell
4
```

They behave similarly with respect to vertical cuts...

normal cell

special cell 4

... but they differ on 3-way cuts.

ormal cell <mark>6</mark>

special cell 5

Conclusions

- Main result: assuming ETH, there is no $f(k) \cdot n^{o(\sqrt{k})}$ time algorithm for planar k-terminal Multiway cut.
- (Almost) matches the $c^k \cdot n^{O(\sqrt{k})}$ time algorithm (next talk).
- Reduction from Grid Tiling (should be useful for other planar W[1]-hardness proofs).
- Main part: constructing the gadgets.