
The square root phenomenon in planar graphs

Dániel Marx1

1Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary

CS Theory Seminar
The Hebrew University of Jerusalem

May 22, 2013
Jerusalem, Israel

1



Main message

Are NP-hard problems easier on planar graphs?

Yes, usually.

By how much?

Often by exactly a square root factor.

2



Overview

Chapter 1:
Subexponential algorithms using treewidth.

Chapter 2:
Grid minors and bidimensionality.

Chapter 3:
Finding bounded-treewidth solutions.

3



Better exponential algorithms

Most NP-hard problems (e.g., 3-Coloring, Independent Set,
Hamiltonian Cycle, Steiner Tree, etc.) remain NP-hard on
planar graphs,1 so what do we mean by “easier”?

The running time is still exponential, but significantly smaller:

2O(n) ⇒ 2O(
√

n)

nO(k) ⇒ nO(
√

k)

2O(k) · nO(1) ⇒ 2O(
√

k) · nO(1)

1Notable exception: Max Cut is in P for planar graphs.
4



Better exponential algorithms

Most NP-hard problems (e.g., 3-Coloring, Independent Set,
Hamiltonian Cycle, Steiner Tree, etc.) remain NP-hard on
planar graphs,1 so what do we mean by “easier”?

The running time is still exponential, but significantly smaller:

2O(n) ⇒ 2O(
√

n)

nO(k) ⇒ nO(
√

k)

2O(k) · nO(1) ⇒ 2O(
√

k) · nO(1)

1Notable exception: Max Cut is in P for planar graphs.
4



Chapter 1: Subexponential algorithms using treewidth

Treewidth is a measure of “how treelike the graph is.”

We need only the following basic facts:
1 If a graph G has treewidth k , then many classical NP-hard

problems can be solved in time 2O(k) · nO(1) or
2O(k log k) · nO(1) on G .

2 A planar graph on n vertices has treewidth O(
√

n).
3 Excluded Grid Theorem: a planar graph of treewidth k

contains a Ω(k)× Ω(k) grid minor.

5



Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

6



Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

b, e, f

b, c, f

a, b, c

c, d , f

d , f , g

g , h

6



Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , ha, b, c

b, c, f

c, d , f

d , f , g

b, e, f

6



Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.
Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , ha, b, c

b, c, f

c, d , f

d , f , g

b, e, f

6



Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.
Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

Each bag is a separator.

6



Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.
Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

hgfe

a

b c d

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

A subtree communicates with the outside world
only via the root of the subtree.

6



Finding tree decompositions

Various algorithms for finding optimal or approximate tree
decompositions if treewidth is w :

optimal decomposition in time 2O(w3) · n [Bodlaender 1996].
4-approximate decomposition in time 2O(w) · n2

[Robertson and Seymour].
5-approximate decomposition in time 2O(w) · n
[Bodlaender et al. 2013].
O(
√

logw)-approximation in polynomial time
[Feige, Hajiaghayi, Lee 2008].

As we are mostly interested in algorithms with running time
2O(w) · nO(1), we may assume that we have a decomposition.

7



3-Coloring and tree decompositions

Theorem
Given a tree decomposition of width w , 3-Coloring can be
solved in time O(3w · wO(1) · n).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

For every node x and coloring c : Bx →
{1, 2, 3}, we compute the Boolean value
E [x , c], which is true if and only if c can
be extended to a proper 3-coloring of Vx .

Claim:
We can determine E [x , c] if all the values are
known for the children of x .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

bcf=T bcf=F
bcf=T bcf=F
. . . . . .

8



Subexponential algorithm for 3-Coloring

Theorem
3-Coloring can be solved in time 2O(w) · nO(1) on graphs of
treewidth w .

Theorem [Robertson and Seymour]

A planar graph on n vertices has treewidth O(
√

n).

Corollary

3-Coloring can be solved in time 2O(
√

n) on planar graphs.

textbook algorithm + combinatorial bound
⇓

subexponential algorithm

9



Lower bounds

Corollary

3-Coloring can be solved in time 2O(
√

n) on planar graphs.

Two natural questions:
Can we achieve this running time on general graphs?
Can we achieve even better running time (e.g., 2O( 3√n)) on
planar graphs?

P 6= NP is not a sufficiently strong hypothesis: it is compatible with
3SAT being solvable in time 2O(n1/1000) or even in time nO(log n).

We need a stronger hypothesis!

10



Lower bounds

Corollary

3-Coloring can be solved in time 2O(
√

n) on planar graphs.

Two natural questions:
Can we achieve this running time on general graphs?
Can we achieve even better running time (e.g., 2O( 3√n)) on
planar graphs?

P 6= NP is not a sufficiently strong hypothesis: it is compatible with
3SAT being solvable in time 2O(n1/1000) or even in time nO(log n).

We need a stronger hypothesis!

10



Exponential Time Hypothesis (ETH)

Hypothesis introduced by Impagliazzo, Paturi, and Zane:

Exponential Time Hypothesis (ETH)

There is no 2o(n)-time algorithm for n-variable 3SAT.

Note: current best algorithm is 1.30704n [Hertli 2011].

Note: an n-variable 3SAT formula can have Ω(n3) clauses.

Sparsification Lemma [Impagliazzo, Paturi, Zane 2001]

There is a 2o(n)-time algorithm for n-variable 3SAT.
m

There is a 2o(m)-time algorithm for m-clause 3SAT.

11



Exponential Time Hypothesis (ETH)

Hypothesis introduced by Impagliazzo, Paturi, and Zane:

Exponential Time Hypothesis (ETH)

There is no 2o(n)-time algorithm for n-variable 3SAT.

Note: current best algorithm is 1.30704n [Hertli 2011].

Note: an n-variable 3SAT formula can have Ω(n3) clauses.

Sparsification Lemma [Impagliazzo, Paturi, Zane 2001]

There is a 2o(n)-time algorithm for n-variable 3SAT.
m

There is a 2o(m)-time algorithm for m-clause 3SAT.

11



Lower bounds based on ETH

Exponential Time Hypothesis (ETH)

There is no 2o(m)-time algorithm for m-clause 3SAT.

The textbook reduction from 3SAT to 3-Coloring:

3SAT formula φ
n variables
m clauses

⇒
Graph G

O(m) vertices
O(m) edges

Corollary

Assuming ETH, there is no 2o(n) algorithm for 3-Coloring on an
n-vertex graph G .

12



Lower bounds based on ETH
What about 3-Coloring on planar graphs?

The textbook reduction from 3-Coloring to Planar
3-Coloring uses a “crossover gadget” with 4 external connectors:

In every 3-coloring of the gadget, opposite external connectors
have the same color.
Every coloring of the external connectors where the opposite
vertices have the same color can be extended to the whole
gadgets.
If two edges cross, replace them with a crossover gadget.

13



Lower bounds based on ETH
What about 3-Coloring on planar graphs?

The textbook reduction from 3-Coloring to Planar
3-Coloring uses a “crossover gadget” with 4 external connectors:

In every 3-coloring of the gadget, opposite external connectors
have the same color.
Every coloring of the external connectors where the opposite
vertices have the same color can be extended to the whole
gadgets.
If two edges cross, replace them with a crossover gadget.

13



Lower bounds based on ETH
What about 3-Coloring on planar graphs?

The textbook reduction from 3-Coloring to Planar
3-Coloring uses a “crossover gadget” with 4 external connectors:

In every 3-coloring of the gadget, opposite external connectors
have the same color.
Every coloring of the external connectors where the opposite
vertices have the same color can be extended to the whole
gadgets.
If two edges cross, replace them with a crossover gadget.

13



Lower bounds based on ETH

The reduction from 3-Coloring to Planar 3-Coloring
introduces O(1) new edge/vertices for each crossing.
A graph with m edges can be drawn with O(m2) crossings.

3SAT formula φ
n variables
m clauses

⇒
Graph G

O(m) vertices
O(m) edges

⇒
Planar graph G ′

O(m2) vertices
O(m2) edges

Corollary

Assuming ETH, there is a no 2o(
√

n) algorithm for 3-Coloring on
an n-vertex planar graph G .

(Essentially observed by [Cai and Juedes 2001]

14



Summary of Chapter 1

Streamlined way of obtaining tight upper and lower bounds for
planar problems.

Upper bound:
Standard bounded-treewidth algorithm + treewidth bound on
planar graphs give 2O(

√
n) time subexponential algorithms.

Lower bound:
Textbook NP-hardness proof with quadratic blow up + ETH
rule out 2o(

√
n) algorithms.

Works for Hamiltonian Cycle, Vertex Cover,
Independent Set, Feedback Vertex Set, Dominating
Set, Steiner Tree, . . .

15



Chapter 2: Grid minors and bidimensionality

More refined analysis of the running time: we express the running
time as a function of input size n and a parameter k .

Definition
A problem is fixed-parameter tractable (FPT) parameterized by
k if it can be solved in time f (k) · nO(1) for some computable
function f .

Examples of FPT problems:
Finding a vertex cover of size k .
Finding a feedback vertex set of size k .
Finding a path of length k .
Finding k vertex-disjoint triangles.

Note: these four problems have 2O(k) · nO(1) time algorithms, which
is best possible on general graphs.

16



Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

17



Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

u1 v1

17



Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

u1 v1

e2 = u2v2

17



Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

u1 v1

e2 = u2v2

u2 v2

17



Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

u1 v1

e2 = u2v2

u2 v2
≤ k

Height of the search tree ≤ k ⇒ at most 2k leaves ⇒ 2k · nO(1)

time algorithm.

17



W[1]-hardness

Negative evidence similar to NP-completeness. If a problem is
W[1]-hard, then the problem is not FPT unless FPT=W[1].

Some W[1]-hard problems:
Finding a clique/independent set of size k .
Finding a dominating set of size k .
Finding k pairwise disjoint sets.
. . .

For these problems, the exponent of n has to depend on k (the
running time is typically nO(k)).

18



Subexponential parameterized algorithms

What kind of upper/lower bounds we have for f (k)?
For most problems, we cannot expect a 2o(k) · nO(1) time
algorithm on general graphs (as this would imply a 2o(n)

algorithm).

For most problems, we cannot expect a 2o(
√

k) · nO(1) time
algorithm on planar graphs (as this would imply a 2o(

√
n)

algorithm).

However, 2O(
√

k) · nO(1) algorithms do exist for several
problems on planar graphs, even for some W[1]-hard problems.
Quick proofs via grid minors and bidimensionality.
[Demaine, Fomin, Hajiaghayi, Thilikos 2004]

19



Minors

Definition
Graph H is a minor of G (H ≤ G ) if H can be obtained from G by
deleting edges, deleting vertices, and contracting edges.

deleting uv

vu w

u v
contracting uv

Note: minimum vertex cover size of H is at most the minimum
vertex cover size of G .

20



Planar Excluded Grid Theorem

Theorem [Robertson, Seymour, Thomas 1994]

Every planar graph with treewidth at least 4k has a k × k grid
minor.

Note: for general graphs, we need treewidth at least k4k4(k+2) for
a k × k grid minor [Diestel et al. 1999].

21



Bidimensionality for Vertex Cover
Observation: If the treewidth of a planar graph G is at least 4

√
2k

⇒ It has a
√
2k ×

√
2k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a matching of size k
⇒ The minimum vertex cover size of the grid is at least k
⇒ The minimum vertex cover size of G is at least k .

We use this observation to solve Vertex Cover on planar graphs:

22



Bidimensionality for Vertex Cover
Observation: If the treewidth of a planar graph G is at least 4

√
2k

⇒ It has a
√
2k ×

√
2k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a matching of size k
⇒ The minimum vertex cover size of the grid is at least k
⇒ The minimum vertex cover size of G is at least k .

We use this observation to solve Vertex Cover on planar graphs:

Set w := 4
√
2k .

Find a 4-approximate tree
decomposition.

If treewidth is at least w : we
answer “vertex cover is ≥ k .”
If we get a tree decomposition of
width 4w , then we can solve the
problem in time
2O(w) · nO(1) = 2O(

√
k) · nO(1).

22



Bidimensionality
Definition
A graph invariant x(G ) is minor-bidimensional if

x(G ′) ≤ x(G ) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Examples: minimum vertex cover, length of the longest path,
feedback vertex set are minor-bidimensional.

23



Bidimensionality
Definition
A graph invariant x(G ) is minor-bidimensional if

x(G ′) ≤ x(G ) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Examples: minimum vertex cover, length of the longest path,
feedback vertex set are minor-bidimensional.

23



Bidimensionality
Definition
A graph invariant x(G ) is minor-bidimensional if

x(G ′) ≤ x(G ) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Examples: minimum vertex cover, length of the longest path,
feedback vertex set are minor-bidimensional.

23



Summary of Chapter 2

Tight bounds for minor-bidimensional planar problems.

Upper bound:
Standard bounded-treewidth algorithm + planar excluded grid
theorem give 2O(

√
k) · nO(1) time FPT algorithms.

Lower bound:
Textbook NP-hardness proof with quadratic blow up + ETH
rule out 2o(

√
n) time algorithms ⇒ no 2o(

√
k) · nO(1) time

algorithm.

Variant of theory works for contraction-bidimensional problems,
e.g., Independent Set, Dominating Set.

24



Chapter 3: Finding bounded treewidth solutions
So far the way we have used treewidth is to find something (e.g.,
Hamiltonian cycle) in a large bounded-treewidth graph:

If the problem can be formulated as finding a graph of treewidth
O(
√

k), then we get an nO(
√

k) time algorithm.

25



Chapter 3: Finding bounded treewidth solutions
So far the way we have used treewidth is to find something (e.g.,
Hamiltonian cycle) in a large bounded-treewidth graph:

If the problem can be formulated as finding a graph of treewidth
O(
√

k), then we get an nO(
√

k) time algorithm.

25



Chapter 3: Finding bounded treewidth solutions
But we can also find small bounded-treewidth graphs in an arbitrary
large graph.

G

H

Theorem [Alon, Yuster, Zwick 1994]

Given a graph H and weighted graph G , we can find a minimum
weight subgraph of G isomorphic to H in time 2O(|V (H)|) · nO(tw(H)).

If the problem can be formulated as finding a graph of treewidth
O(
√

k), then we get an nO(
√

k) time algorithm.

25



Chapter 3: Finding bounded treewidth solutions
But we can also find small bounded-treewidth graphs in an arbitrary
large graph.

G

H

Theorem [Alon, Yuster, Zwick 1994]

Given a graph H and weighted graph G , we can find a minimum
weight subgraph of G isomorphic to H in time 2O(|V (H)|) · nO(tw(H)).

If the problem can be formulated as finding a graph of treewidth
O(
√

k), then we get an nO(
√

k) time algorithm.

25



Examples

Three examples:
Planar k-Terminal Cut
Improvement from nO(k) to 2O(k) · nO(

√
k).

Planar Strongly Connected Subgraph
Improvement from nO(k) to 2O(k log k) · nO(

√
k).

TSP with shortest path metric of a planar graph
Improvement from 2O(k) · nO(1) to 2O(

√
k log k) · nO(1).

26



A classical problem

s − t Cut
Input: A graph G , an integer p, vertices s and t

Output: A set S of at most p edges such that removing S sep-
arates s and t.

Theorem [Ford and Fulkerson 1956]

A minimum s − t cut can be found in polynomial time.

What about separating more than two terminals?

27



More than two terminals
Multiway Cut (aka k-Terminal Cut)

Input: A graph G , an integer p, and a set T of k terminals
Output: A set S of at most p edges such that removing S sep-

arates any two vertices of T

Theorem [Dalhaus et al. 1994]

NP-hard already for k = 3.

28



More than two terminals
Multiway Cut (aka k-Terminal Cut)

Input: A graph G , an integer p, and a set T of k terminals
Output: A set S of at most p edges such that removing S sep-

arates any two vertices of T

Theorem [Dalhaus et al. 1994] [Hartvigsen 1998] [Bentz 2012]

Planar k-Terminal Cut can be solved in time nO(k).

Theorem [Klein and M. 2012]

Planar k-Terminal Cut can be solved in time 2O(k) · nO(
√

k).
28



Dual graph
The first step of the algorithms is to look at the solution in the
dual graph:

Recall:

Primal graph Dual graph
vertices ⇔ faces

faces ⇔ vertices
edges ⇔ edges

We slightly transform the problem in such a way that the terminals are
represented by vertices in the dual graph (instead of faces).

29



Dual graph
The first step of the algorithms is to look at the solution in the
dual graph:

Recall:

Primal graph Dual graph
vertices ⇔ faces

faces ⇔ vertices
edges ⇔ edges

We slightly transform the problem in such a way that the terminals are
represented by vertices in the dual graph (instead of faces).

29



Dual graph
The first step of the algorithms is to look at the solution in the
dual graph:

Recall:

Primal graph Dual graph
vertices ⇔ faces

faces ⇔ vertices
edges ⇔ edges

We slightly transform the problem in such a way that the terminals are
represented by vertices in the dual graph (instead of faces).

29



Finding the dual solution

Main ideas of [Dalhaus et al. 1994] [Hartvigsen 1998] [Bentz 2012]:
1 The dual solution has O(k) branch vertices.
2 Guess the location of branch vertices (nO(k) guesses).
3 Deep magic to find the paths connecting the branch vertices

(shortest paths are not necessarily good!)

30



Finding the dual solution

Idea for nO(
√

k) time algorithm:
Guess the graph H representing the branch vertices.
Build a weighted complete graph G representing the distances
in the planar graph.

Find in time nO(tw(H)) = nO(
√

k) a minimum weight copy of H
in G .

Problem: How to ensure that the solution separates the terminals?
30



The Steiner tree
We find a minimum cost Steiner tree T of the terminals in the
dual and cut open the graph along the tree.
(Steiner tree: 3k · nO(1) time by [Dreyfus-Wagner 1972] or 2k · nO(1)

time by [Björklund 2007])

31



The Steiner tree
We find a minimum cost Steiner tree T of the terminals in the
dual and cut open the graph along the tree.
(Steiner tree: 3k · nO(1) time by [Dreyfus-Wagner 1972] or 2k · nO(1)

time by [Björklund 2007])

31



The Steiner tree
We find a minimum cost Steiner tree T of the terminals in the
dual and cut open the graph along the tree.
(Steiner tree: 3k · nO(1) time by [Dreyfus-Wagner 1972] or 2k · nO(1)

time by [Björklund 2007])

31



The Steiner tree
We find a minimum cost Steiner tree T of the terminals in the
dual and cut open the graph along the tree.
(Steiner tree: 3k · nO(1) time by [Dreyfus-Wagner 1972] or 2k · nO(1)

time by [Björklund 2007])

31



The Steiner tree
We find a minimum cost Steiner tree T of the terminals in the
dual and cut open the graph along the tree.
(Steiner tree: 3k · nO(1) time by [Dreyfus-Wagner 1972] or 2k · nO(1)

time by [Björklund 2007])

31



The Steiner tree
We find a minimum cost Steiner tree T of the terminals in the
dual and cut open the graph along the tree.
(Steiner tree: 3k · nO(1) time by [Dreyfus-Wagner 1972] or 2k · nO(1)

time by [Björklund 2007])

Key idea: the paths of the dual solution between the branch
points/crossing points can be assumed to be shortest paths.

31



Topology
Key idea: the paths of the dual solution between the branch
points/crossing points can be assumed to be shortest paths.

1

2

3
4

5

Thus a solution can be completely described by the location of
these points and which of them are connected.
A “topology” just describes the connections without the locations.

32



Lower bounds

Theorem [Klein and M. 2012]

Planar k-Terminal Cut can be solved in time 2O(k) · nO(
√

k).

Natural questions:

Is there an f (k) · no(
√

k) time algorithm?
Is there an f (k) · nO(1) time algorithm (i.e., is it
fixed-parameter tractable)?

The previous lower bound technology is of no help here: showing
that there is no 2o(

√
n) time algorithm does not answer the

question.
Lower bounds:

Theorem [M. 2012]

Planar k-Terminal Cut is W[1]-hard and has no f (k) · no(
√

k)

time algorithm (assuming ETH).

33



Lower bounds

Theorem [Klein and M. 2012]

Planar k-Terminal Cut can be solved in time 2O(k) · nO(
√

k).

Natural questions:

Is there an f (k) · no(
√

k) time algorithm?
Is there an f (k) · nO(1) time algorithm (i.e., is it
fixed-parameter tractable)?

The previous lower bound technology is of no help here: showing
that there is no 2o(

√
n) time algorithm does not answer the

question.
Lower bounds:

Theorem [M. 2012]

Planar k-Terminal Cut is W[1]-hard and has no f (k) · no(
√

k)

time algorithm (assuming ETH).

33



W[1]-hardness

Definition
A parameterized reduction from problem A to B maps an
instance (x , k) of A to instance (x ′, k ′) of B such that

(x , k) ∈ A ⇐⇒ (x ′, k ′) ∈ B ,
k ′ ≤ g(k) for some computable function g .
(x ′, k ′) can be computed in time f (k) · |x |O(1).

Easy: If there is a parameterized reduction from problem A to
problem B and B is FPT, then A is FPT as well.

Definition
A problem P is W[1]-hard if there is a parameterized reduction
from k-Clique to P .

34



W[1]-hardness

Definition
A parameterized reduction from problem A to B maps an
instance (x , k) of A to instance (x ′, k ′) of B such that

(x , k) ∈ A ⇐⇒ (x ′, k ′) ∈ B ,
k ′ ≤ g(k) for some computable function g .
(x ′, k ′) can be computed in time f (k) · |x |O(1).

Easy: If there is a parameterized reduction from problem A to
problem B and B is FPT, then A is FPT as well.

Definition
A problem P is W[1]-hard if there is a parameterized reduction
from k-Clique to P .

34



W[1]-hardness vs. NP-hardness

W[1]-hardness proofs are more delicate than NP-hardness proofs:
we need to control the new parameter.

Example: k-Independent Set can be reduced to k ′-Vertex
Cover with k ′ := n − k . But this is not a parameterized
reduction.

NP-hardness proof
Reduction from some graph problem. We build n vertex gadgets of
constant size and m edge gadgets of constant size.

W[1]-hardness proof
Reduction from k-Clique. We build k large vertex gadgets, each
having n states (and/or

(k
2

)
large edge gadgets with m states).

35



W[1]-hardness vs. NP-hardness

W[1]-hardness proofs are more delicate than NP-hardness proofs:
we need to control the new parameter.

Example: k-Independent Set can be reduced to k ′-Vertex
Cover with k ′ := n − k . But this is not a parameterized
reduction.

NP-hardness proof
Reduction from some graph problem. We build n vertex gadgets of
constant size and m edge gadgets of constant size.

W[1]-hardness proof
Reduction from k-Clique. We build k large vertex gadgets, each
having n states (and/or

(k
2

)
large edge gadgets with m states).

35



Planar problems

Another difference: Most problems remain NP-hard on planar
graphs, but become FPT.

Algorithmic techniques for planar problems:
Baker’s shifting technique + treewidth
Bidimensionality
Protrusions

Very few W[1]-hardness results so far for planar problems.

36



Tight bounds

Theorem [Chen et al. 2004]

Assuming ETH, there is no f (k) · no(k) algorithm for k-Clique for
any computable function f .

Transfering to other problems:
If there is a parameterized reduction from k-Clique to problem A
mapping (x , k) to (x ′, g(k)), then an f (k) · no(g−1(k)) algorithm for
problem A gives an f (k) · no(k) algorithm for k-Clique,
contradicting ETH.

Bottom line:
To rule out f (k) · no(

√
k) algorithms, we need a parameterized

reduction that blows up the parameter at most quadratically.

37



Tight bounds

Theorem [Chen et al. 2004]

Assuming ETH, there is no f (k) · no(k) algorithm for k-Clique for
any computable function f .

Transfering to other problems:

k-Clique
(x , k)

⇒ Problem A
(x ′, g(k))

f (k) · no(k)

algorithm
⇐ f (k) · no(g−1(k))

algorithm

Bottom line:
To rule out f (k) · no(

√
k) algorithms, we need a parameterized

reduction that blows up the parameter at most quadratically.

37



Grid Tiling
Grid Tiling
Input: A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for

each cell.
Find: A pair si ,j ∈ Si ,j for each cell such that

Horizontal neighbors agree in the first component.
Vertical neighbors agree in the second component.

(1,1)
(1,3)
(4,2)

(1,5)
(4,1)
(3,5)

(1,1)
(4,2)
(3,3)

(2,2)
(4,1)

(1,3)
(2,1)

(2,2)
(3,2)

(3,1)
(3,2)
(3,3)

(1,1)
(3,1)

(3,2)
(3,5)

k = 3, D = 5
38



Grid Tiling
Grid Tiling
Input: A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for

each cell.
Find: A pair si ,j ∈ Si ,j for each cell such that

Horizontal neighbors agree in the first component.
Vertical neighbors agree in the second component.

(1,1)
(1,3)
(4,2)

(1,5)
(4,1)
(3,5)

(1,1)
(4,2)
(3,3)

(2,2)
(4,1)

(1,3)
(2,1)

(2,2)
(3,2)

(3,1)
(3,2)
(3,3)

(1,1)
(3,1)

(3,2)
(3,5)

k = 3, D = 5
38



Grid Tiling is W[1]-hard

Reduction from k-Clique

Definition of the sets:

For i = j : (x , y) ∈ Si ,j ⇐⇒ x = y
For i 6= j : (x , y) ∈ Si ,j ⇐⇒ x and y are adjacent.

(vi , vi )

Each diagonal cell defines a value vi . . .
39



Grid Tiling is W[1]-hard

Reduction from k-Clique

Definition of the sets:

For i = j : (x , y) ∈ Si ,j ⇐⇒ x = y
For i 6= j : (x , y) ∈ Si ,j ⇐⇒ x and y are adjacent.

(., vi )

(vi , .) (vi , vi ) (vi , .) (vi , .) (vi , .)

(., vi )

(., vi )

(., vi )

. . . which appears on a “cross”
39



Grid Tiling is W[1]-hard

Reduction from k-Clique

Definition of the sets:

For i = j : (x , y) ∈ Si ,j ⇐⇒ x = y
For i 6= j : (x , y) ∈ Si ,j ⇐⇒ x and y are adjacent.

(., vi )

(vi , .) (vi , vi ) (vi , .) (vi , .) (vi , .)

(., vi )

(., vi ) (vj , vj)

(., vi )

vi and vj are adjacent for every 1 ≤ i < j ≤ k .
39



Grid Tiling is W[1]-hard

Reduction from k-Clique

Definition of the sets:

For i = j : (x , y) ∈ Si ,j ⇐⇒ x = y
For i 6= j : (x , y) ∈ Si ,j ⇐⇒ x and y are adjacent.

(., vi ) (., vj)

(vi , .) (vi , vi ) (vi , .) (vi , vj) (vi , .)

(., vi ) (., vj)

(vj , .) (vj , vi ) (vj , .) (vj , vj) (vj , .)

(., vi ) (., vj)

vi and vj are adjacent for every 1 ≤ i < j ≤ k .
39



The gadget
For every set Si ,j , we construct a gadget such that

for every (x , y) ∈ Si ,j , there is a minimum multiway cut that
represents (x , y).
every minimum multiway cut represents some (x , y) ∈ Si ,j .

Main part of the proof: constructing these gadgets.
UL u1 u2 u3 u4 u5 UR

r1
r2
r3
r4
r5

DL d1 d2 d3 d4 d5 DR

`1

`2

`3

`4

`5

The gadget.

40



The gadget
For every set Si ,j , we construct a gadget such that

for every (x , y) ∈ Si ,j , there is a minimum multiway cut that
represents (x , y).
every minimum multiway cut represents some (x , y) ∈ Si ,j .

Main part of the proof: constructing these gadgets.
UL u1 u2 u3 u4 u5 UR

r1
r2
r3
r4
r5

DL d1 d2 d3 d4 d5 DR

`1

`2

`3

`4

`5

A cut representing (2,4).

40



The gadget
For every set Si ,j , we construct a gadget such that

for every (x , y) ∈ Si ,j , there is a minimum multiway cut that
represents (x , y).
every minimum multiway cut represents some (x , y) ∈ Si ,j .

Main part of the proof: constructing these gadgets.
UL u1 u2 u3 u4 u5 UR

r1
r2
r3
r4
r5

DL d1 d2 d3 d4 d5 DR

`1

`2

`3

`4

`5

A cut not representing any pair.

40



Putting together the gadgets

41



Putting together the gadgets

Oops!

41



Putting together the gadgets

41



Planar Multiway Cut

Upper bound:
Looking at the dual + cutting open a Steiner tree + guessing
a topology + finding a graph of treewidth O(

√
k).

Lower bound:
ETH + reduction from Grid Tiling + tricky gadget
construction rule out f (k) · no(

√
k) time algorithms.

42



Strongly Connected Subgraph
Undirected graphs:
Steiner Tree: Find a minimum weight connected subgraph that
contains all k terminals.

Theorem [Dreyfus-Wagner 1972]

Steiner Tree can be solved in time 2O(k) · nO(1).

Directed graphs:
Strongly Connected Subgraph: Find a minimum weight
strongly connected subgraph that contains all k terminals.

Theorem [Guo, Niedermeier, Suchý 2011]

Strongly Connected Subgraph on general directed graphs is
W[1]-hard parameterized by k .

Theorem [Feldman and Ruhl 2006]

Strongly Connected Subgraph can be solved in time nO(k)

on general directed graphs.

43



Strongly Connected Subgraph
Undirected graphs:
Steiner Tree: Find a minimum weight connected subgraph that
contains all k terminals.

Theorem [Dreyfus-Wagner 1972]

Steiner Tree can be solved in time 2O(k) · nO(1).

Directed graphs:
Strongly Connected Subgraph: Find a minimum weight
strongly connected subgraph that contains all k terminals.

Theorem [Guo, Niedermeier, Suchý 2011]

Strongly Connected Subgraph on general directed graphs is
W[1]-hard parameterized by k .

Theorem [Feldman and Ruhl 2006]

Strongly Connected Subgraph can be solved in time nO(k)

on general directed graphs.
43



Strongly Connected Subgraph on planar graphs
Theorem [Feldman and Ruhl 2006]

Strongly Connected Subgraph can be solved in time nO(k)

on general directed graphs.

Natural questions:
Is there an f (k) · no(k) time algorithm on planar graphs?
Is there an f (k) · nO(1) time algorithm (i.e., is it
fixed-parameter tractable) on planar graphs?

Theorem [Chitnis, Hajiaghayi, M.]

Strongly Connected Subgraph can be solved in time
2O(k log k) · nO(

√
k) on planar directed graphs.

Theorem [Chitnis, Hajiaghayi, M.]

Strongly Connected Subgraph has no f (k) · no(
√

k) time
algorithm on planar directed graphs (assuming ETH).

44



Strongly Connected Subgraph on planar graphs
Theorem [Feldman and Ruhl 2006]

Strongly Connected Subgraph can be solved in time nO(k)

on general directed graphs.

Natural questions:
Is there an f (k) · no(k) time algorithm on planar graphs?
Is there an f (k) · nO(1) time algorithm (i.e., is it
fixed-parameter tractable) on planar graphs?

Theorem [Chitnis, Hajiaghayi, M.]

Strongly Connected Subgraph can be solved in time
2O(k log k) · nO(

√
k) on planar directed graphs.

Theorem [Chitnis, Hajiaghayi, M.]

Strongly Connected Subgraph has no f (k) · no(
√

k) time
algorithm on planar directed graphs (assuming ETH).

44



Optimum solutions

Closely looking at the nO(k) algorithm of [Feldman and Ruhl 2006]
shows that an optimum solution consists of directed paths and
“bidirectional strips”:

With some work, we can bound the number paths/strips by O(k).

45



Algorithm

[Ignore the bidirectional strips for simplicity]

We guess the topology of the solution (2O(k log k) possibilities).
Treewidth of the topology is O(

√
k).

We can find the best realization of this topology (matching
the location of the terminals) in time nO(

√
k).

46



Algorithm

[Ignore the bidirectional strips for simplicity]

We guess the topology of the solution (2O(k log k) possibilities).
Treewidth of the topology is O(

√
k).

We can find the best realization of this topology (matching
the location of the terminals) in time nO(

√
k).

46



Lower bound
Theorem [Chitnis, Hajiaghayi, M.]

Strongly Connected Subgraph has no f (k) · no(
√

k) time
algorithm on planar directed graphs (assuming ETH).

The proof is by reduction from Grid Tiling and complicated
construction of gadgets.

47



TSP
TSP

Input: A set T of cities and a distance function d on T
Output: A tour on T with minimum total distance

Theorem [Held and Karp]

TSP with k cities can be solved in time 2k · nO(1).

Dynamic programming:
Let x(v ,T ′) be the minimum length of path from vstart to v
visiting all the cities T ′ ⊆ T .

48



TSP on planar graphs
Assume that the distance function d is generated by a (weighted)
planar graph and T is a subset of vertices.

49



TSP on planar graphs
Assume that the distance function d is generated by a (weighted)
planar graph and T is a subset of vertices.

Can be solved in time 2O(
√

n).
Can be solved in time 2k · nO(1).
Can we solve it in time 2O(

√
k) · nO(1)?

49



TSP on planar graphs
Assume that the distance function d is generated by a (weighted)
planar graph and T is a subset of vertices.

Theorem [Klein and M.]
TSP with a distance function d generated by a planar graph can be
solved in time 2O(

√
k) ·W O(1), where W is the maximum distance

in d .

Note: We do not have to know the graph, only the function d .
49



TSP and treewidth
We wanted to formulate the problem as finding a low
treewidth subgraph.
A cycle has treewidth 2, is this of any help?

Problem:
We have to remember the subset of cities visited by the partial tour
(2k possibilities).

50



c-change TSP

c-change operation: removing c steps of the tour and
connecting the resulting c paths in some other way.
A solution is c-OPT if no c-change can improve it.
We can find a c-OPT solution in kO(c) ·W time, where W is
maximum distance in d .

51



c-change TSP

c-change operation: removing c steps of the tour and
connecting the resulting c paths in some other way.
A solution is c-OPT if no c-change can improve it.
We can find a c-OPT solution in kO(c) ·W time, where W is
maximum distance in d .

51



c-change TSP

c-change operation: removing c steps of the tour and
connecting the resulting c paths in some other way.
A solution is c-OPT if no c-change can improve it.
We can find a c-OPT solution in kO(c) ·W time, where W is
maximum distance in d .

51



The crossing graph
Consider a optimum solution and a 4-OPT solution:
[assume that the two tours do not share edges, etc.]

Lemma
The crossing graph of an optimum solution and a 4-OPT solution
has O(k) vertices and has treewidth O(

√
k).

52



The crossing graph

Lemma
The crossing graph of an optimum solution and a 4-OPT solution
has O(k) vertices and has treewidth O(

√
k).

The crossing graph has separators of size O(
√

k).
In each component, the set of cities visited by the optimum
solution is nice: it is the same as what O(

√
k) segments of the

4-OPT tour visited (kO(
√

k) possibilities).

53



Summary of Chapter 3

Parameterized problems where bidimensionality does not work.
Upper bounds:
Algorithms based on finding a bounded-treewidth subgraph.
Treewidth bound is problem-specific:

k-Terminal Cut: dual solution has O(k) branch vertices.
Planar Strongly Connected Subgraph: solution
consists of O(k) paths/strips.
TSP with a planar graph metric: the crossing graph of an
optimum solution and a 4-OPT solution has size O(k).

Lower bounds:
To rule out f (k) · no(

√
k) time algorithms, we have to prove

W[1]-hardness by reduction from Grid Tiling.

54



Conclusions

Chapter 1: Subexponential algorithms using treewidth.
Algorithms: standard treewidth algorithms.
Lower bounds: textbook NP-completeness proofs + ETH.

Chapter 2: Grid minors and bidimensionality.
Algorithms: standard treewidth algorithms + excluded grid
theorem.
Lower bounds: textbook NP-completeness proofs + ETH.

Chapter 3: Finding bounded treewidth solutions.
Algorithms: the solution can be represented by a graph of
treewidth O(

√
k).

Lower bounds: grid-like W[1]-hardness proofs to rule out
f (k) · no(

√
k) algorithms.

55



Conclusions

A robust understanding of why certain problems can be solved
in time 2O(

√
n) etc. on planar graphs and why the square root

is best possible.

Going beyond the basic toolbox requires new problem-specific
algorithmic techniques and hardness proofs with tricky gadget
constructions.
The lower bound technology on planar graphs cannot give a
lower bound without a square root factor. Does this mean that
there are matching algorithms for other problems as well?

2O(
√

k) · nO(1) time algorithm for Steiner Tree with k
terminals in a planar graph?
2O(

√
k) · nO(1) time algorithm for finding a cycle of length

exactly k in a planar graph?
. . .

56



Conclusions

A robust understanding of why certain problems can be solved
in time 2O(

√
n) etc. on planar graphs and why the square root

is best possible.
Going beyond the basic toolbox requires new problem-specific
algorithmic techniques and hardness proofs with tricky gadget
constructions.

The lower bound technology on planar graphs cannot give a
lower bound without a square root factor. Does this mean that
there are matching algorithms for other problems as well?

2O(
√

k) · nO(1) time algorithm for Steiner Tree with k
terminals in a planar graph?
2O(

√
k) · nO(1) time algorithm for finding a cycle of length

exactly k in a planar graph?
. . .

56



Conclusions

A robust understanding of why certain problems can be solved
in time 2O(

√
n) etc. on planar graphs and why the square root

is best possible.
Going beyond the basic toolbox requires new problem-specific
algorithmic techniques and hardness proofs with tricky gadget
constructions.
The lower bound technology on planar graphs cannot give a
lower bound without a square root factor. Does this mean that
there are matching algorithms for other problems as well?

2O(
√

k) · nO(1) time algorithm for Steiner Tree with k
terminals in a planar graph?
2O(

√
k) · nO(1) time algorithm for finding a cycle of length

exactly k in a planar graph?
. . .

56


