
Randomized techniques for parameterized
algorithms

Dániel Marx1

1Institute of Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary

13th Haifa Workshop on Interdisciplinary Applications of Graph
Theory, Combinatorics, and Algorithms

May 19, 2013
Haifa, Israel

1

Why randomized?

A guaranteed error probability of 10−100 is as good as a
deterministic algorithm.
(Probability of hardware failure is larger!)
Randomized algorithms can be more efficient and/or
conceptually simpler.
Can be the first step towards a deterministic algorithm.

2

Fixed-parameter tractability

Definition
A parameterized problem is fixed-parameter tractable (FPT) if it
can be solved in time f (k) · nO(1) for some computable function f .

Main goal of parameterized complexity: to find FPT problems.

Examples of NP-hard problems that are FPT:
Finding a vertex cover of size k .
Finding a path of length k .
Finding k disjoint triangles.
Drawing the graph in the plane with k edge crossings.
Finding disjoint paths that connect k pairs of points.
. . .

3

Polynomial-time vs. FPT randomization

Definition
A parameterized problem is fixed-parameter tractable (FPT) if it
can be solved in time f (k) · nO(1) for some computable function f .

Polynomial-time randomized algorithms

Randomized selection to pick a typical, unproblematic,
average element/subset.
Success probability is constant or at most polynomially small.

Randomized FPT algorithms
Randomized selection to satisfy a bounded number of
(unknown) constraints.
Success probability might be exponentially small.

4

Randomization

There are two main ways randomization appears:
Algebraic techniques

Schwartz-Zippel Lemma
Linear matroids

Combinatorial techniques.
This talk.

5

Randomization as reduction

Problem A
(what we want to

solve)

Randomized magic
Problem B

(what we can solve)

6

Color Coding

k-Path
Input: A graph G , integer k .
Find: A simple path of length k .

Note: The problem is clearly NP-hard, as it contains the
Hamiltonian Path problem.

Theorem [Alon, Yuster, Zwick 1994]

k-Path can be solved in time 2O(k) · nO(1).

7

Color Coding

Assign colors from [k] to vertices V (G) uniformly and
independently at random.

Check if there is a path colored 1− 2− · · · − k ; output “YES”
or “NO”.

If there is no k-path: no path colored 1− 2− · · · − k exists ⇒
“NO”.
If there is a k-path: the probability that such a path is colored
1− 2− · · · − k is k−k thus the algorithm outputs “YES” with
at least that probability.

8

Color Coding

Assign colors from [k] to vertices V (G) uniformly and
independently at random.

2

4544

3 3 2

21

Check if there is a path colored 1− 2− · · · − k ; output “YES”
or “NO”.

If there is no k-path: no path colored 1− 2− · · · − k exists ⇒
“NO”.
If there is a k-path: the probability that such a path is colored
1− 2− · · · − k is k−k thus the algorithm outputs “YES” with
at least that probability.

8

Color Coding

Assign colors from [k] to vertices V (G) uniformly and
independently at random.

2

44

3

54

3 2

21

Check if there is a path colored 1− 2− · · · − k ; output “YES”
or “NO”.

If there is no k-path: no path colored 1− 2− · · · − k exists ⇒
“NO”.
If there is a k-path: the probability that such a path is colored
1− 2− · · · − k is k−k thus the algorithm outputs “YES” with
at least that probability.

8

Error probability

Useful fact
If the probability of success is at least p, then the probability that
the algorithm does not say “YES” after 1/p repetitions is at most

(1− p)1/p <
(
e−p)1/p = 1/e ≈ 0.38

Thus if p > k−k , then error probability is at most 1/e after kk

repetitions.
Repeating the whole algorithm a constant number of times
can make the error probability an arbitrary small constant.
For example, by trying 100 · kk random colorings, the
probability of a wrong answer is at most 1/e100.

9

Error probability

Useful fact
If the probability of success is at least p, then the probability that
the algorithm does not say “YES” after 1/p repetitions is at most

(1− p)1/p <
(
e−p)1/p = 1/e ≈ 0.38

Thus if p > k−k , then error probability is at most 1/e after kk

repetitions.
Repeating the whole algorithm a constant number of times
can make the error probability an arbitrary small constant.
For example, by trying 100 · kk random colorings, the
probability of a wrong answer is at most 1/e100.

9

Finding a path colored 1− 2− · · · − k

2

2

5

5

5

5

4

3

3

3

3

2

22

1

1

1

1

4

4

4

Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to
class k .

10

Finding a path colored 1− 2− · · · − k

2

2

5

5

5

5

4

3

3

3

3

2

22

1

1

1

1

4

4

4

Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to
class k .

10

Finding a path colored 1− 2− · · · − k

2

2

5

5

5

5

4

3

3

3

3

2

22

1

1

1

1

4

4

4

Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to
class k .

10

Finding a path colored 1− 2− · · · − k

2

2

5

5

5

5

4

3

3

3

3

2

22

1

1

1

1

4

4

4

Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to
class k .

10

Finding a path colored 1− 2− · · · − k

2

2

5

5

5

5

4

3

3

3

3

2

22

1

1

1

1

4

4

4

Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to
class k .

10

Color Coding

k-PATH

Color Coding
success probability:

k−k
Finding a

1− 2− · · · − k
colored path

polynomial-time
solvable

11

Improved Color Coding
Assign colors from [k] to vertices V (G) uniformly and
independently at random.

2

4544

3 3 2

21

Check if there is a colorful path where each color appears
exactly once on the vertices; output “YES” or “NO”.

12

Improved Color Coding
Assign colors from [k] to vertices V (G) uniformly and
independently at random.

2

4544

3 3 2

21

Check if there is a colorful path where each color appears
exactly once on the vertices; output “YES” or “NO”.

If there is no k-path: no colorful path exists ⇒ “NO”.
If there is a k-path: the probability that it is colorful is

k!
kk >

(k
e)

k

kk = e−k ,

thus the algorithm outputs “YES” with at least that probability.

12

Improved Color Coding
Assign colors from [k] to vertices V (G) uniformly and
independently at random.

2

4544

3 3 2

21

Repeating the algorithm 100ek times decreases the error
probability to e−100.

How to find a colorful path?
Try all permutations (k! · nO(1) time)
Dynamic programming (2k · nO(1) time)

12

Finding a colorful path
Subproblems:
We introduce 2k · |V (G)| Boolean variables:

x(v ,C) = TRUE for some v ∈ V (G) and C ⊆ [k]
m

There is a path P ending at v such that each color in
C appears on P exactly once and no other color

appears.

Answer:
There is a colorful path ⇐⇒ x(v , [k]) = TRUE for some vertex v .

Initialization & Recurrence:
Exercise.

13

Improved Color Coding

k-PATH

Color Coding
success probability:

e−k

Finding a
colorful path

Solvable in time
2k · nO(1)

14

Derandomization

Definition
A family H of functions [n]→ [k] is a k-perfect family of hash
functions if for every S ⊆ [n] with |S | = k , there is an h ∈ H such
that h(x) 6= h(y) for any x , y ∈ S , x 6= y .

Theorem [Alon, Yuster, Zwick 1994]

There is a k-perfect family of functions [n]→ [k] having size
2O(k) log n (and can be constructed in time polynomial in the size
of the family).

Instead of trying O(ek) random colorings, we go through a
k-perfect family H of functions V (G)→ [k].

If there is a solution S
⇒ The vertices of S are colorful for at least one h ∈ H
⇒ Algorithm outputs “YES”.
⇒ k-Path can be solved in deterministic time 2O(k) · nO(1).

15

Derandomization

Definition
A family H of functions [n]→ [k] is a k-perfect family of hash
functions if for every S ⊆ [n] with |S | = k , there is an h ∈ H such
that h(x) 6= h(y) for any x , y ∈ S , x 6= y .

Theorem [Alon, Yuster, Zwick 1994]

There is a k-perfect family of functions [n]→ [k] having size
2O(k) log n (and can be constructed in time polynomial in the size
of the family).

Instead of trying O(ek) random colorings, we go through a
k-perfect family H of functions V (G)→ [k].

If there is a solution S
⇒ The vertices of S are colorful for at least one h ∈ H
⇒ Algorithm outputs “YES”.
⇒ k-Path can be solved in deterministic time 2O(k) · nO(1).

15

Derandomized Color Coding

k-PATH

k-perfect family
2O(k) log n functions

Finding a
colorful path

Solvable in time
2k · nO(1)

16

Bounded-degree graphs

Meta theorems exist for bounded-degree graphs, but randomization
is usually simpler.

Dense k-vertex Subgraph
Input: A graph G , integers k , m.
Find: A set of k vertices inducing ≥ m edges.

Note: on general graphs, the problem is W[1]-hard parameterized
by k , as it contains k-Clique.

Theorem [Cai, Chan, Chan 2006]

Dense k-vertex Subgraph can be solved in randomized time
2k(d+1) · nO(1) on graphs with maximum degree d .

17

Dense k-vertex Subgraph
Remove each vertex with probability 1/2 independently.

18

Dense k-vertex Subgraph
Remove each vertex with probability 1/2 independently.

With probability 2−k no vertex of the solution is removed.
With probability 2−kd every neighbor of the solution is
removed.
⇒ We have to find a solution that is the union of connected
components!

18

Dense k-vertex Subgraph
Remove each vertex with probability 1/2 independently.

With probability 2−k no vertex of the solution is removed.
With probability 2−kd every neighbor of the solution is
removed.
⇒ We have to find a solution that is the union of connected
components!

18

Dense k-vertex Subgraph
Remove each vertex with probability 1/2 independently.

k1 vertices

m1 edges
. . .

k2 vertices

m2 edges

k3 vertices

m3 edges

ki vertices

mi edges

Select connected components with
at most k vertices and
at least m edges.

What problem is this?

18

Dense k-vertex Subgraph
Remove each vertex with probability 1/2 independently.

k1 vertices

m1 edges
. . .

k2 vertices

m2 edges

k3 vertices

m3 edges

ki vertices

mi edges

Select connected components with
at most k vertices and
at least m edges.

What problem is this?

KNAPSACK!
18

Dense k-vertex Subgraph

Select connected components with
at most k vertices and
at least m edges.

This is exactly KNAPSACK!
(I.e., pick objects of total weight at most S and value at least V .)

We can interpret
number of vertices = weight of the items
number of edges = value of the items

If the weights are integers, then DP solves the problem in time
polynomial in the number of objects and the maximum weight.

19

Dense k-vertex Subgraph

DENSE
k-VERTEX
SUBGRAPH

Random deletions
success probability:

2−k(d+1)

KNAPSACK

Polynomial time

20

Balanced Separation

Useful problem for recursion:

Balanced Separation
Input: A graph G , integers k , q.
Find: A set S of at most k vertices such that G \ S has

at least two components of size at least q each.

Theorem [Chitnis et al. 2012]

Balanced Separation can be solved in randomized time
2O(q+k) · nO(1).

21

Balanced Separation

C1 C2S

Remove each vertex with probability 1/2 independently.

With probability 2−k every vertex of the solution is removed.
With probability 2−q no vertex of T1 is removed.
With probability 2−q no vertex of T2 is removed.
⇒ The reduced graph G ′ has two components of size ≥ q that
can be separated in the original graph G by k vertices.
For any pair of large components of G ′, we find a minimum
s − t cut in G .

22

Balanced Separation

C1 C2S
T1 T2

Remove each vertex with probability 1/2 independently.

With probability 2−k every vertex of the solution is removed.
With probability 2−q no vertex of T1 is removed.
With probability 2−q no vertex of T2 is removed.
⇒ The reduced graph G ′ has two components of size ≥ q that
can be separated in the original graph G by k vertices.
For any pair of large components of G ′, we find a minimum
s − t cut in G .

22

Balanced Separation

C1 C2S
T1 T2

Remove each vertex with probability 1/2 independently.
With probability 2−k every vertex of the solution is removed.
With probability 2−q no vertex of T1 is removed.
With probability 2−q no vertex of T2 is removed.

⇒ The reduced graph G ′ has two components of size ≥ q that
can be separated in the original graph G by k vertices.
For any pair of large components of G ′, we find a minimum
s − t cut in G .

22

Balanced Separation

C1 C2S
T1 T2

Remove each vertex with probability 1/2 independently.
With probability 2−k every vertex of the solution is removed.
With probability 2−q no vertex of T1 is removed.
With probability 2−q no vertex of T2 is removed.
⇒ The reduced graph G ′ has two components of size ≥ q that
can be separated in the original graph G by k vertices.
For any pair of large components of G ′, we find a minimum
s − t cut in G .

22

Balanced Separation

BALANCED
SEPARATION

Random deletions
success probability:

2−(k+2q)

MINIMUM s − t
CUT

Polynomial time

23

Randomized sampling of important separators

A new technique used by several results:
Multicut [M. and Razgon STOC 2011]

Clustering problems [Lokshtanov and M. ICALP 2011]

Directed Multiway Cut
[Chitnis, Hajiaghayi, M. SODA 2012]

Directed Multicut in DAGs
[Kratsch, Pilipczuk, Pilipczuk, Wahlström ICALP 2012]

Directed Subset Feedback Vertex Set
[Chitnis, Cygan, Hajiaghayi, M. ICALP 2012]

Parity Multiway Cut [Lokshtanov, Ramanujan ICALP 2012]

. . . more work in progress.

24

Clustering

We want to partition objects into clusters subject to certain
requirements (typically: related objects are clustered together,
bounds on the number or size of the clusters etc.)

(p, q)-clustering

Input: A graph G , integers p, q.
Find: A partition (V1, . . . ,Vm) of V (G) such that for every i

|Vi | ≤ p and
d(Vi) ≤ q.

d(Vi): number of edges leaving Vi .

Theorem [Lokshtanov and M. 2011]

(p, q)-clustering can be solved in time 2O(q) · nO(1).

25

A sufficient and necessary condition

Good cluster: size at most p and at most q edges leaving it.

Necessary condition:
Every vertex is contained in a good cluster.

But surprisingly, this is also a sufficient condition!

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

26

A sufficient and necessary condition

Good cluster: size at most p and at most q edges leaving it.

Necessary condition:
Every vertex is contained in a good cluster.

But surprisingly, this is also a sufficient condition!

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

26

A sufficient and necessary condition

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

X Y

27

A sufficient and necessary condition

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

X Y

d(X) + d(Y) ≥ d(X \ Y) + d(Y \ X)

⇒ either d(X) ≥ d(X \ Y) or d(Y) ≥ d(Y \ X) holds.

27

A sufficient and necessary condition

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

X \ Y Y

d(X) + d(Y) ≥ d(X \ Y) + d(Y \ X)

If d(X) ≥ d(X \ Y), replace X with X \ Y ,
strictly decreasing the total size of the clusters.

27

A sufficient and necessary condition

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

X Y \ X

d(X) + d(Y) ≥ d(X \ Y) + d(Y \ X)

If d(Y) ≥ d(Y \ X), replace Y with Y \ X ,
strictly decreasing the total size of the clusters. QED �

27

Finding a good cluster

We have seen:

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

All we have to do is to check if a given vertex v is in a good
cluster. Trivial to do in time nO(q).

We prove next:

Lemma
We can check in time 2O(q) · nO(1) if v is in a good cluster.

28

Finding a good cluster

We have seen:

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

All we have to do is to check if a given vertex v is in a good
cluster. Trivial to do in time nO(q).

We prove next:

Lemma
We can check in time 2O(q) · nO(1) if v is in a good cluster.

28

Important sets
Definition
Fix a distinguished vertex v in a graph G . A set X ⊆ V (G) is an
important set if

v 6∈ X ,
there is no set X ⊂ X ′ with v 6∈ X and d(X ′) ≤ d(X).

v

Theorem [Chen, Liu, Lu 2007]

The number of important sets of boundary size at most k
containing a vertex x is at most 4k . Furthermore, they can be
enumerated in time 4k · nO(1).

29

Important sets
Definition
Fix a distinguished vertex v in a graph G . A set X ⊆ V (G) is an
important set if

v 6∈ X ,
there is no set X ⊂ X ′ with v 6∈ X and d(X ′) ≤ d(X).

v

Theorem [Chen, Liu, Lu 2007]

The number of important sets of boundary size at most k
containing a vertex x is at most 4k . Furthermore, they can be
enumerated in time 4k · nO(1).

29

Important sets
Definition
Fix a distinguished vertex v in a graph G . A set X ⊆ V (G) is an
important set if

v 6∈ X ,
there is no set X ⊂ X ′ with v 6∈ X and d(X ′) ≤ d(X).

v

Theorem [Chen, Liu, Lu 2007]

The number of important sets of boundary size at most k
containing a vertex x is at most 4k . Furthermore, they can be
enumerated in time 4k · nO(1).

29

Important sets
Definition
Fix a distinguished vertex v in a graph G . A set X ⊆ V (G) is an
important set if

v 6∈ X ,
there is no set X ⊂ X ′ with v 6∈ X and d(X ′) ≤ d(X).

v

Theorem [Chen, Liu, Lu 2007]

The number of important sets of boundary size at most k
containing a vertex x is at most 4k . Furthermore, they can be
enumerated in time 4k · nO(1).

29

Important sets
Definition
Fix a distinguished vertex v in a graph G . A set X ⊆ V (G) is an
important set if

v 6∈ X ,
there is no set X ⊂ X ′ with v 6∈ X and d(X ′) ≤ d(X).

v

Theorem [Chen, Liu, Lu 2007]

The number of important sets of boundary size at most k
containing a vertex x is at most 4k . Furthermore, they can be
enumerated in time 4k · nO(1).

29

Important sets
Definition
Fix a distinguished vertex v in a graph G . A set X ⊆ V (G) is an
important set if

v 6∈ X ,
there is no set X ⊂ X ′ with v 6∈ X and d(X ′) ≤ d(X).

v

Theorem [Chen, Liu, Lu 2007]

The number of important sets of boundary size at most k
containing a vertex x is at most 4k . Furthermore, they can be
enumerated in time 4k · nO(1).

29

Pushing argument

Lemma
If C is a good cluster of minimum size containing v , then every
component of G \ C is an important set.

v

Thus C can be obtained by removing at most q important sets from
V (G) (but there are nO(q) possibilities, we cannot try all of them).

30

Pushing argument

Lemma
If C is a good cluster of minimum size containing v , then every
component of G \ C is an important set.

v

Thus C can be obtained by removing at most q important sets from
V (G) (but there are nO(q) possibilities, we cannot try all of them).

30

Pushing argument

Lemma
If C is a good cluster of minimum size containing v , then every
component of G \ C is an important set.

v

Thus C can be obtained by removing at most q important sets from
V (G) (but there are nO(q) possibilities, we cannot try all of them).

30

Pushing argument

Lemma
If C is a good cluster of minimum size containing v , then every
component of G \ C is an important set.

v

Thus C can be obtained by removing at most q important sets from
V (G) (but there are nO(q) possibilities, we cannot try all of them).

30

Pushing argument

Lemma
If C is a good cluster of minimum size containing v , then every
component of G \ C is an important set.

v

Thus C can be obtained by removing at most q important sets from
V (G) (but there are nO(q) possibilities, we cannot try all of them).

30

Pushing argument

Lemma
If C is a good cluster of minimum size containing v , then every
component of G \ C is an important set.

v

Thus C can be obtained by removing at most q important sets from
V (G) (but there are nO(q) possibilities, we cannot try all of them).

30

Random sampling
Let X be the set of all important sets of boundary size at
most q in G .
Let X ′ ⊆ X contain each set with probability 1

2 independently.
Let Z =

⋃
X∈X ′ X .

Let B be the set of vertices in C with neighbors outside C .

Lemma
Let C be a good cluster of minimum size containing v . With
probability 2−2O(q)

, Z covers G \ C and is disjoint from B .

v
B

31

Random sampling
Let X be the set of all important sets of boundary size at
most q in G .
Let X ′ ⊆ X contain each set with probability 1

2 independently.
Let Z =

⋃
X∈X ′ X .

Let B be the set of vertices in C with neighbors outside C .

Lemma
Let C be a good cluster of minimum size containing v . With
probability 2−2O(q)

, Z covers G \ C and is disjoint from B .

v
B

31

Random sampling

Lemma
Let C be a good cluster of minimum size containing v . With
probability 2−2O(q)

, Z covers G \ C and is disjoint from B .

Two events:
(E1) Z covers G \ C .

Each of the at most q components is an important set
⇒ all of them are selected by probability at least 2−q.

(E2) Z is disjoint from B .
Each vertex of B is in at most 4q members of X
⇒ all of them are selected by probability at least 2−q4q

.
The two events are independent (involve different sets of X), thus
the claimed probability follows.

32

Finding good clusters
Let C be a good cluster of minimum size containing v and assume

G \ C is covered by Z , and
Z is disjoint from B (hence no edge going out of C is
contained in Z).

v

Z

G \ Z

Where is the good cluster C in the figure?

Observe: Components of Z are either fully in the cluster or fully
outside the cluster. What is this problem?

33

Finding good clusters
Let C be a good cluster of minimum size containing v and assume

G \ C is covered by Z , and
Z is disjoint from B (hence no edge going out of C is
contained in Z).

v

Z

G \ Z

Where is the good cluster C in the figure?

Observe: Components of Z are either fully in the cluster or fully
outside the cluster. What is this problem? 33

Finding good clusters
Let C be a good cluster of minimum size containing v and assume

G \ C is covered by Z , and
Z is disjoint from B (hence no edge going out of C is
contained in Z).

v

Z

G \ Z

KNAPSACK!
33

Summary of algorithm

(p, q)-clustering

Input: A graph G , integers p, q.
Find: A partition (V1, . . . ,Vm) of V (G) such that for every i

|Vi | ≤ p and
d(Vi) ≤ q.

It is sufficient to check for each vertex v if it is in a good
cluster.
Enumerate all the important sets.
Let Z be the union of random important sets.
The solution is obtained by extending G \ Z with some of the
components of G [Z].
Knapsack.

34

(p, q)-clustering

With a slightly different probability distribution, one can
reduce the error probability to 2−O(q).
Derandomization is possible using standard techniques, but
nontrivial to obtain 2O(q) running time.
Other variants: maximum degree in the cluster is at most p,
etc.

35

(p, q)-clustering

(p, q)-
CLUSTERING

Random set Z
success probability:

2−O(k)

KNAPSACK

Polynomial time

36

Cut and count

A very powerful technique for many problems on graphs of
bounded-treewidth.

Classical result:

Theorem
Given a tree decomposition of width k , Hamiltonian Cycle can
be solved in time kO(k) · nO(1) = 2O(k log k) · nO(1).

Very recently:

Theorem [Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij,
Wojtaszczyk 2011]

Given a tree decomposition of width k , Hamiltonian Cycle can
be solved in time 4k · nO(1).

37

Cut and count

A very powerful technique for many problems on graphs of
bounded-treewidth.

Classical result:

Theorem
Given a tree decomposition of width k , Hamiltonian Cycle can
be solved in time kO(k) · nO(1) = 2O(k log k) · nO(1).

Very recently:

Theorem [Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij,
Wojtaszczyk 2011]

Given a tree decomposition of width k , Hamiltonian Cycle can
be solved in time 4k · nO(1).

37

Isolation Lemma

Isolation Lemma [Mulmuley, Vazirani, Vazirani 1987]
Let F be a nonempty family of subsets of U and assign a weight
w(u) ∈ [N] to each u ∈ U uniformly and independently at random.
The probability that there is a unique S ∈ F having minimum
weight is at least

1− |U|
N

.

Let U = E (G) and F be the set of all Hamiltonian cycles.
By setting N := |V (G)|O(1), we can assume that there is a
unique minimum weight Hamiltonian cycle.
If N is polynomial in the input size, we can guess this
minimum weight.
So we are looking for a Hamiltonian cycle of weight exactly
C , under the assumption that there is a unique such cycle.

38

Isolation Lemma

Isolation Lemma [Mulmuley, Vazirani, Vazirani 1987]
Let F be a nonempty family of subsets of U and assign a weight
w(u) ∈ [N] to each u ∈ U uniformly and independently at random.
The probability that there is a unique S ∈ F having minimum
weight is at least

1− |U|
N

.

Let U = E (G) and F be the set of all Hamiltonian cycles.
By setting N := |V (G)|O(1), we can assume that there is a
unique minimum weight Hamiltonian cycle.
If N is polynomial in the input size, we can guess this
minimum weight.
So we are looking for a Hamiltonian cycle of weight exactly
C , under the assumption that there is a unique such cycle.

38

Cycle covers
Cycle cover: A subgraph having degree exactly two at each
vertex.

A Hamiltonian cycle is a cycle cover, but a cycle cover can
have more than one component.
Colored cycle cover: each component is colored black or
white.
A cycle cover with k components gives rise to 2k colored cycle
covers.

If there is no weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 0 mod 4.
If there is a unique weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 2 mod 4.

39

Cycle covers
Cycle cover: A subgraph having degree exactly two at each
vertex.

A Hamiltonian cycle is a cycle cover, but a cycle cover can
have more than one component.

Colored cycle cover: each component is colored black or
white.
A cycle cover with k components gives rise to 2k colored cycle
covers.

If there is no weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 0 mod 4.
If there is a unique weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 2 mod 4.

39

Cycle covers
Cycle cover: A subgraph having degree exactly two at each
vertex.

A Hamiltonian cycle is a cycle cover, but a cycle cover can
have more than one component.
Colored cycle cover: each component is colored black or
white.

A cycle cover with k components gives rise to 2k colored cycle
covers.

If there is no weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 0 mod 4.
If there is a unique weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 2 mod 4.

39

Cycle covers
Cycle cover: A subgraph having degree exactly two at each
vertex.

A Hamiltonian cycle is a cycle cover, but a cycle cover can
have more than one component.
Colored cycle cover: each component is colored black or
white.

A cycle cover with k components gives rise to 2k colored cycle
covers.

If there is no weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 0 mod 4.
If there is a unique weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 2 mod 4.

39

Cycle covers
Cycle cover: A subgraph having degree exactly two at each
vertex.

A Hamiltonian cycle is a cycle cover, but a cycle cover can
have more than one component.
Colored cycle cover: each component is colored black or
white.
A cycle cover with k components gives rise to 2k colored cycle
covers.

If there is no weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 0 mod 4.
If there is a unique weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 2 mod 4.

39

Cycle covers
Cycle cover: A subgraph having degree exactly two at each
vertex.

A Hamiltonian cycle is a cycle cover, but a cycle cover can
have more than one component.
Colored cycle cover: each component is colored black or
white.
A cycle cover with k components gives rise to 2k colored cycle
covers.

If there is no weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 0 mod 4.
If there is a unique weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 2 mod 4.

39

Cycle covers
Cycle cover: A subgraph having degree exactly two at each
vertex.

A Hamiltonian cycle is a cycle cover, but a cycle cover can
have more than one component.
Colored cycle cover: each component is colored black or
white.
A cycle cover with k components gives rise to 2k colored cycle
covers.

If there is no weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 0 mod 4.
If there is a unique weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 2 mod 4.

39

Cut and Count

Assign random weights ≤ 2|E (G)| to the edges.
If there is a Hamiltonian cycle, then with probability 1/2, there
is a C such that there is a unique weight-C Hamiltionian
cycle.
Try all possible C .
Count the number of weight-C colored cycle covers: can be
done in time 4k · nO(1) if a tree decomposition of width k is
given.
Answer YES if this number is 2 mod 4.

40

Cut and Count

HAMILTONIAN
CYCLE

Random weights
success probability:

1/2 Counting
weighted

colored cycle
covers

4k · nO(1) time

41

Conclusions

Randomization gives elegant solution to many problems.
Derandomization is sometimes possible (but less elegant).
Small (but f (k)) success probability is good for us.
Reducing the problem we want to solve to a problem that is
easier to solve.

42

