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Why randomized?

A guaranteed error probability of 10−100 is as good as a
deterministic algorithm.
(Probability of hardware failure is larger!)
Randomized algorithms can be more efficient and/or
conceptually simpler.
Can be the first step towards a deterministic algorithm.
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Fixed-parameter tractability

Definition
A parameterized problem is fixed-parameter tractable (FPT) if it
can be solved in time f (k) · nO(1) for some computable function f .

Main goal of parameterized complexity: to find FPT problems.

Examples of NP-hard problems that are FPT:
Finding a vertex cover of size k .
Finding a path of length k .
Finding k disjoint triangles.
Drawing the graph in the plane with k edge crossings.
Finding disjoint paths that connect k pairs of points.
. . .
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Polynomial-time vs. FPT randomization

Definition
A parameterized problem is fixed-parameter tractable (FPT) if it
can be solved in time f (k) · nO(1) for some computable function f .

Polynomial-time randomized algorithms

Randomized selection to pick a typical, unproblematic,
average element/subset.
Success probability is constant or at most polynomially small.

Randomized FPT algorithms
Randomized selection to satisfy a bounded number of
(unknown) constraints.
Success probability might be exponentially small.
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Randomization

There are two main ways randomization appears:
Algebraic techniques

Schwartz-Zippel Lemma
Linear matroids

Combinatorial techniques.
This talk.
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Randomization as reduction

Problem A
(what we want to

solve)

Randomized magic
Problem B

(what we can solve)
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Color Coding

k-Path
Input: A graph G , integer k .
Find: A simple path of length k .

Note: The problem is clearly NP-hard, as it contains the
Hamiltonian Path problem.

Theorem [Alon, Yuster, Zwick 1994]

k-Path can be solved in time 2O(k) · nO(1).
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Color Coding

Assign colors from [k] to vertices V (G ) uniformly and
independently at random.

Check if there is a path colored 1− 2− · · · − k ; output “YES”
or “NO”.

If there is no k-path: no path colored 1− 2− · · · − k exists ⇒
“NO”.
If there is a k-path: the probability that such a path is colored
1− 2− · · · − k is k−k thus the algorithm outputs “YES” with
at least that probability.
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Error probability

Useful fact
If the probability of success is at least p, then the probability that
the algorithm does not say “YES” after 1/p repetitions is at most

(1− p)1/p <
(
e−p)1/p = 1/e ≈ 0.38

Thus if p > k−k , then error probability is at most 1/e after kk

repetitions.
Repeating the whole algorithm a constant number of times
can make the error probability an arbitrary small constant.
For example, by trying 100 · kk random colorings, the
probability of a wrong answer is at most 1/e100.
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Finding a path colored 1− 2− · · · − k
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Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to
class k .
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Color Coding

k-PATH

Color Coding
success probability:

k−k
Finding a

1− 2− · · · − k
colored path

polynomial-time
solvable
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Improved Color Coding
Assign colors from [k] to vertices V (G ) uniformly and
independently at random.
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Check if there is a colorful path where each color appears
exactly once on the vertices; output “YES” or “NO”.
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Improved Color Coding
Assign colors from [k] to vertices V (G ) uniformly and
independently at random.
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Check if there is a colorful path where each color appears
exactly once on the vertices; output “YES” or “NO”.

If there is no k-path: no colorful path exists ⇒ “NO”.
If there is a k-path: the probability that it is colorful is

k!
kk >

( k
e )

k

kk = e−k ,

thus the algorithm outputs “YES” with at least that probability.
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Improved Color Coding
Assign colors from [k] to vertices V (G ) uniformly and
independently at random.
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Repeating the algorithm 100ek times decreases the error
probability to e−100.

How to find a colorful path?
Try all permutations (k! · nO(1) time)
Dynamic programming (2k · nO(1) time)

12



Finding a colorful path
Subproblems:
We introduce 2k · |V (G )| Boolean variables:

x(v ,C ) = TRUE for some v ∈ V (G ) and C ⊆ [k]
m

There is a path P ending at v such that each color in
C appears on P exactly once and no other color

appears.

Answer:
There is a colorful path ⇐⇒ x(v , [k]) = TRUE for some vertex v .

Initialization & Recurrence:
Exercise.
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Improved Color Coding

k-PATH

Color Coding
success probability:

e−k

Finding a
colorful path

Solvable in time
2k · nO(1)
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Derandomization

Definition
A family H of functions [n]→ [k] is a k-perfect family of hash
functions if for every S ⊆ [n] with |S | = k , there is an h ∈ H such
that h(x) 6= h(y) for any x , y ∈ S , x 6= y .

Theorem [Alon, Yuster, Zwick 1994]

There is a k-perfect family of functions [n]→ [k] having size
2O(k) log n (and can be constructed in time polynomial in the size
of the family).

Instead of trying O(ek) random colorings, we go through a
k-perfect family H of functions V (G )→ [k].

If there is a solution S
⇒ The vertices of S are colorful for at least one h ∈ H
⇒ Algorithm outputs “YES”.
⇒ k-Path can be solved in deterministic time 2O(k) · nO(1).
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Derandomized Color Coding

k-PATH

k-perfect family
2O(k) log n functions

Finding a
colorful path

Solvable in time
2k · nO(1)
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Bounded-degree graphs

Meta theorems exist for bounded-degree graphs, but randomization
is usually simpler.

Dense k-vertex Subgraph
Input: A graph G , integers k , m.
Find: A set of k vertices inducing ≥ m edges.

Note: on general graphs, the problem is W[1]-hard parameterized
by k , as it contains k-Clique.

Theorem [Cai, Chan, Chan 2006]

Dense k-vertex Subgraph can be solved in randomized time
2k(d+1) · nO(1) on graphs with maximum degree d .
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Dense k-vertex Subgraph
Remove each vertex with probability 1/2 independently.

18



Dense k-vertex Subgraph
Remove each vertex with probability 1/2 independently.

With probability 2−k no vertex of the solution is removed.
With probability 2−kd every neighbor of the solution is
removed.
⇒ We have to find a solution that is the union of connected
components!
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Dense k-vertex Subgraph
Remove each vertex with probability 1/2 independently.

k1 vertices

m1 edges
. . .

k2 vertices

m2 edges

k3 vertices

m3 edges

ki vertices

mi edges

Select connected components with
at most k vertices and
at least m edges.

What problem is this?
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Dense k-vertex Subgraph

Select connected components with
at most k vertices and
at least m edges.

This is exactly KNAPSACK!
(I.e., pick objects of total weight at most S and value at least V .)

We can interpret
number of vertices = weight of the items
number of edges = value of the items

If the weights are integers, then DP solves the problem in time
polynomial in the number of objects and the maximum weight.
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Dense k-vertex Subgraph

DENSE
k-VERTEX
SUBGRAPH

Random deletions
success probability:

2−k(d+1)

KNAPSACK

Polynomial time
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Balanced Separation

Useful problem for recursion:

Balanced Separation
Input: A graph G , integers k , q.
Find: A set S of at most k vertices such that G \ S has

at least two components of size at least q each.

Theorem [Chitnis et al. 2012]

Balanced Separation can be solved in randomized time
2O(q+k) · nO(1).
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Balanced Separation

C1 C2S

Remove each vertex with probability 1/2 independently.

With probability 2−k every vertex of the solution is removed.
With probability 2−q no vertex of T1 is removed.
With probability 2−q no vertex of T2 is removed.
⇒ The reduced graph G ′ has two components of size ≥ q that
can be separated in the original graph G by k vertices.
For any pair of large components of G ′, we find a minimum
s − t cut in G .
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Balanced Separation

BALANCED
SEPARATION

Random deletions
success probability:

2−(k+2q)

MINIMUM s − t
CUT

Polynomial time
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Randomized sampling of important separators

A new technique used by several results:
Multicut [M. and Razgon STOC 2011]

Clustering problems [Lokshtanov and M. ICALP 2011]

Directed Multiway Cut
[Chitnis, Hajiaghayi, M. SODA 2012]

Directed Multicut in DAGs
[Kratsch, Pilipczuk, Pilipczuk, Wahlström ICALP 2012]

Directed Subset Feedback Vertex Set
[Chitnis, Cygan, Hajiaghayi, M. ICALP 2012]

Parity Multiway Cut [Lokshtanov, Ramanujan ICALP 2012]

. . . more work in progress.
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Clustering

We want to partition objects into clusters subject to certain
requirements (typically: related objects are clustered together,
bounds on the number or size of the clusters etc.)

(p, q)-clustering

Input: A graph G , integers p, q.
Find: A partition (V1, . . . ,Vm) of V (G ) such that for every i

|Vi | ≤ p and
d(Vi ) ≤ q.

d(Vi ): number of edges leaving Vi .

Theorem [Lokshtanov and M. 2011]

(p, q)-clustering can be solved in time 2O(q) · nO(1).
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A sufficient and necessary condition

Good cluster: size at most p and at most q edges leaving it.

Necessary condition:
Every vertex is contained in a good cluster.

But surprisingly, this is also a sufficient condition!

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.
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Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

X Y

d(X ) + d(Y ) ≥ d(X \ Y ) + d(Y \ X )

⇒ either d(X ) ≥ d(X \ Y ) or d(Y ) ≥ d(Y \ X ) holds.
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Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.
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d(X ) + d(Y ) ≥ d(X \ Y ) + d(Y \ X )

If d(X ) ≥ d(X \ Y ), replace X with X \ Y ,
strictly decreasing the total size of the clusters.
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A sufficient and necessary condition

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

X Y \ X

d(X ) + d(Y ) ≥ d(X \ Y ) + d(Y \ X )

If d(Y ) ≥ d(Y \ X ), replace Y with Y \ X ,
strictly decreasing the total size of the clusters. QED �
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Finding a good cluster

We have seen:

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

All we have to do is to check if a given vertex v is in a good
cluster. Trivial to do in time nO(q).

We prove next:

Lemma
We can check in time 2O(q) · nO(1) if v is in a good cluster.
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Important sets
Definition
Fix a distinguished vertex v in a graph G . A set X ⊆ V (G ) is an
important set if

v 6∈ X ,
there is no set X ⊂ X ′ with v 6∈ X and d(X ′) ≤ d(X ).

v

Theorem [Chen, Liu, Lu 2007]

The number of important sets of boundary size at most k
containing a vertex x is at most 4k . Furthermore, they can be
enumerated in time 4k · nO(1).
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Pushing argument

Lemma
If C is a good cluster of minimum size containing v , then every
component of G \ C is an important set.

v

Thus C can be obtained by removing at most q important sets from
V (G ) (but there are nO(q) possibilities, we cannot try all of them).
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Random sampling
Let X be the set of all important sets of boundary size at
most q in G .
Let X ′ ⊆ X contain each set with probability 1

2 independently.
Let Z =

⋃
X∈X ′ X .

Let B be the set of vertices in C with neighbors outside C .

Lemma
Let C be a good cluster of minimum size containing v . With
probability 2−2O(q)

, Z covers G \ C and is disjoint from B .

v
B
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Random sampling

Lemma
Let C be a good cluster of minimum size containing v . With
probability 2−2O(q)

, Z covers G \ C and is disjoint from B .

Two events:
(E1) Z covers G \ C .

Each of the at most q components is an important set
⇒ all of them are selected by probability at least 2−q.

(E2) Z is disjoint from B .
Each vertex of B is in at most 4q members of X
⇒ all of them are selected by probability at least 2−q4q

.
The two events are independent (involve different sets of X ), thus
the claimed probability follows.
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Finding good clusters
Let C be a good cluster of minimum size containing v and assume

G \ C is covered by Z , and
Z is disjoint from B (hence no edge going out of C is
contained in Z ).

v

Z

G \ Z

Where is the good cluster C in the figure?

Observe: Components of Z are either fully in the cluster or fully
outside the cluster. What is this problem?
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Finding good clusters
Let C be a good cluster of minimum size containing v and assume

G \ C is covered by Z , and
Z is disjoint from B (hence no edge going out of C is
contained in Z ).

v

Z

G \ Z

KNAPSACK!
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Summary of algorithm

(p, q)-clustering

Input: A graph G , integers p, q.
Find: A partition (V1, . . . ,Vm) of V (G ) such that for every i

|Vi | ≤ p and
d(Vi ) ≤ q.

It is sufficient to check for each vertex v if it is in a good
cluster.
Enumerate all the important sets.
Let Z be the union of random important sets.
The solution is obtained by extending G \ Z with some of the
components of G [Z ].
Knapsack.
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(p, q)-clustering

With a slightly different probability distribution, one can
reduce the error probability to 2−O(q).
Derandomization is possible using standard techniques, but
nontrivial to obtain 2O(q) running time.
Other variants: maximum degree in the cluster is at most p,
etc.
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(p, q)-clustering

(p, q)-
CLUSTERING

Random set Z
success probability:

2−O(k)

KNAPSACK

Polynomial time
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Cut and count

A very powerful technique for many problems on graphs of
bounded-treewidth.

Classical result:

Theorem
Given a tree decomposition of width k , Hamiltonian Cycle can
be solved in time kO(k) · nO(1) = 2O(k log k) · nO(1).

Very recently:

Theorem [Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij,
Wojtaszczyk 2011]

Given a tree decomposition of width k , Hamiltonian Cycle can
be solved in time 4k · nO(1).
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Isolation Lemma

Isolation Lemma [Mulmuley, Vazirani, Vazirani 1987]
Let F be a nonempty family of subsets of U and assign a weight
w(u) ∈ [N] to each u ∈ U uniformly and independently at random.
The probability that there is a unique S ∈ F having minimum
weight is at least

1− |U|
N

.

Let U = E (G ) and F be the set of all Hamiltonian cycles.
By setting N := |V (G )|O(1), we can assume that there is a
unique minimum weight Hamiltonian cycle.
If N is polynomial in the input size, we can guess this
minimum weight.
So we are looking for a Hamiltonian cycle of weight exactly
C , under the assumption that there is a unique such cycle.
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Cycle covers
Cycle cover: A subgraph having degree exactly two at each
vertex.

A Hamiltonian cycle is a cycle cover, but a cycle cover can
have more than one component.
Colored cycle cover: each component is colored black or
white.
A cycle cover with k components gives rise to 2k colored cycle
covers.

If there is no weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 0 mod 4.
If there is a unique weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 2 mod 4.
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Cut and Count

Assign random weights ≤ 2|E (G )| to the edges.
If there is a Hamiltonian cycle, then with probability 1/2, there
is a C such that there is a unique weight-C Hamiltionian
cycle.
Try all possible C .
Count the number of weight-C colored cycle covers: can be
done in time 4k · nO(1) if a tree decomposition of width k is
given.
Answer YES if this number is 2 mod 4.
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Cut and Count

HAMILTONIAN
CYCLE

Random weights
success probability:

1/2 Counting
weighted

colored cycle
covers

4k · nO(1) time
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Conclusions

Randomization gives elegant solution to many problems.
Derandomization is sometimes possible (but less elegant).
Small (but f (k)) success probability is good for us.
Reducing the problem we want to solve to a problem that is
easier to solve.
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