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112 · Dániel MarxIn general, solving onstraint satisfation problems is NP-hard if there are noadditional restritions on the instanes. The main goal of the researh on CSP isto identify tratable speial ases of the general problem. The theoretial literatureon CSP investigates two main types of restritions. The �rst type is to restrit theonstraint language, that is, the type of onstraints that is allowed. This diretioninludes the lassial work of Shaefer [Shaefer 1978℄ and its many generalizations(e.g., [Bulatov 2002; 2003; Bulatov et al. 2001; Feder and Vardi 1999; Jeavons et al.1997℄). The seond type is to restrit the struture indued by the onstraints onthe variables. The hypergraph of a CSP instane is de�ned to be a hypergraphon the variables of the instane suh that for eah onstraint c ∈ C there is ahyperedge ec that ontains all the variables that appear in c. If the hypergraph ofthe CSP instane has a very simple struture, then the instane is easy to solve.For example, it is well-known that a CSP instane I with hypergraph H an besolved in time ‖I‖O(tw(H)) [Freuder 1990℄, where tw(H) denotes the tree width of
H and ‖I‖ is the size of the representation of I in the input. Thus if we restritthe problem to instanes where the tree width of the hypergraph is bounded bysome onstant w, then the problem is polynomial-time solvable. It is the goal ofongoing researh to �nd other properties (besides bounded tree width) that makethe problem polynomial-time tratable. Formally, for a lass H of hypergraphs, letCSP(H) be the restrition of CSP where the hypergraph of the instane is assumedto be in H. Our goal is to �nd and ategorize lasses H suh that CSP(H) an besolved in polynomial time.If the onstraints have bounded arity (i.e., edge size in H is bounded by a on-stant), then the omplexity of CSP(H) is well understood:Theorem 1.1 [Grohe 2007; Grohe et al. 2001℄. Let CSP(H) be CSP re-strited to instanes whose underlying hypergraph is in H. If H is a reursively enu-merable lass of hypergraphs with bounded edge size, then (assuming FPT 6= W[1℄)CSP(H) is polynomial-time solvable

m
H has bounded tree width.The assumption FPT 6= W[1℄ is a standard hypothesis of parameterized omplexity.Thus in the bounded-arity ase bounded tree width is the only property of thehypergraph that an make the problem polynomial-time solvable. A sharpening ofTheorem 1.1 was proved in [Marx 2007℄, where almost tight lower bounds are givenon the time required to solve CSP(H) if H has unbound tree width.The situation is muh less understood in the unbounded arity ase, i.e., whenthere is no bound on the maximum edge size in H. First, the omplexity inthe unbounded-arity ase depends on how the onstraints are represented. In thebounded-arity ase, if eah onstraint ontains at most r variables (r being a �xedonstant), then every reasonable representation of a onstraint has size |D|O(r).Therefore, the size of di�erent representations an di�er only by a polynomial fa-tor. On the other hand, if there is no bound on the arity, then there an be expo-nential di�erene between the size of suint representations (e.g., formulas [Chenand Grohe 2006℄) and verbose representations (e.g., truth tables [Marx 2009℄). Therunning time of an algorithm is expressed as a funtion of the input size, heneACM Journal Name, Vol. 2, No. 3, 09 2001.



Approximating frational hypertree width · 113the omplexity of the problem an depend on how the input is represented: Longerrepresentation means that it is potentially easier to obtain a polynomial-time algo-rithm.The most well-studied representation of onstraints is listing all the tuples thatsatisfy the onstraint. In this ase, the size of the representation of a onstraintrelation is proportional to the number of satisfying tuples. This representation isvery natural in problems involving relational databases, where the onstraints aredatabase relations that are atually stored as a sequene of tuples. If we want touse results on CSP in a database-theoreti setting, then we have to onsider thisrepresentation.Unlike in the bounded-arity ase, if there is no bound on the number of variablesin a onstraint, then bounded tree width is not the right strutural riterion forthe tratability of the problem. It remains true that an instane with hypergraph
H an be solved in time ‖I‖O(tw(H)). However, there are lasses H of hypergraphswith unbounded tree width suh that CSP(H) is polynomial-time solvable. A verysimple example is the lass that ontains those hypergraphs where one of the edgesover all the verties. If the hypergraph H of a CSP instane belongs to this lass,then it is easy to solve: There is a onstraint that ontains every variable, thus allwe have to do is enumerating the satisfying tuples of this onstraint and hekingwhether there is a tuple among them that satis�es every other onstraint. This ideaan be generalized: If we restrit the problem to hypergraphs that an be overedby k edges (for some �xed onstant k), then CSP an be solved by enumeratingall the possible ombinations of satisfying tuples for k onstraints that over allthe variables. This observation motivated the de�nition of (generalized) hypertreewidth [Gottlob et al. 2002; Adler et al. 2007; Gottlob et al. 2005℄, whih is de�nedsimilarly to tree width, but instead of the requirement that eah bag ontains abounded number of verties, we require that eah bag an be overed by a boundednumber of edges (see Setion 2 for the preise de�nition). As shown in [Gottlobet al. 2002℄, CSP(H) is polynomial-time solvable if H has bounded (generalized)hypertree width.In [Grohe and Marx 2006℄, new tratable lasses H with unbounded hypertreewidth were identi�ed. It was shown, using Shearer's Lemma [Chung et al. 1986℄,that a CSP instane has only a polynomial number of solutions and they an beenumerated e�iently if the hypergraph of the instane has bounded frationaledge over number. Thus CSP(H) is polynomial-time solvable if H has boundedfrational edge over number. Frational hypertree width is de�ned analogously togeneralized hypertree width, but now we only require that eah bag has boundedfrational edge over number. As shown in [Grohe and Marx 2006℄, if H is a lass ofhypergraphs with bounded frational hypertree width, then CSP(H) an be solvedin polynomial time, if the input ontains a tree deomposition of the hypergraphof the instane with bounded frational hypertree width. However, it remained anopen question whether it is possible to �nd suh a tree deomposition in polynomialtime and whether CSP(H) (without any extra input) is polynomial-time solvablefor suh H.Our results. The main result of the paper is an algorithm that omputes ap-proximately optimal frational hypertree deompositions. More preisely, we showACM Journal Name, Vol. 2, No. 3, 09 2001.



114 · Dániel Marx
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Fig. 1. Hypergraph properties that make CSP polynomial-time solvable.that for every �xed w ≥ 1, there is a polynomial-time algorithm that, given ahypergraph H with frational hypertree width at most w, omputes a tree deom-position of H with frational hypertree width O(w3) (Theorem 4.1). Therefore, ifevery hypergraph in H has frational hypertree width at most w, then CSP(H) ispolynomial-time solvable: For every instane, we an ompute a tree deomposi-tion with frational hypertree width O(w3) and then use the algorithm of [Groheand Marx 2006℄. Thus our result makes bounded frational hypertree width thestritly most general known hypergraph property that allows CSP to be solved inpolynomial time. Figure 1 shows some of the known tratable hypergraph prop-erties (note that the elements of this Venn diagram are sets of hypergraphs; e.g.,the set �bounded tree width� ontains every set H of hypergraphs with boundedtree width). All the inlusions in the �gure are proper. The tratable lasses forCSP translate to tratable lasses for Boolean Conjuntive Queries and ConjuntiveQuery Containment [Kolaitis and Vardi 2000℄, thus bounded frational hypertreewidth is the most general known tratability riterion for those problems as well.Algorithms for �nding tree deompositions and haraterization theorems for(generalizations of) tree width often follow a ertain pattern. For example, thesame high-level idea is used for tree width [Flum and Grohe 2006, Setion 11.2℄,rank width [Oum and Seymour 2006; Oum 2005℄, hypertree width [Adler et al.2007℄, and branh width of matroids and submodular funtions [Oum and Seymour2007℄. Simplifying somewhat, this general pattern an be summarized the followingway: We deompose the problem into two parts by �nding a small balaned sepa-ration, then a tree deomposition for eah part is onstruted using the algorithmreursively, and �nally the tree deompositions for the parts are joined in an ap-propriate way to obtain a tree deomposition for the original problem. A balanedseparation of a subsetW is a partition (A,B) ofW and a set S separating A and B,suh that A and B are both �small� ompared to W (the exat de�nition of smalldepends on the atual type of tree deomposition we are looking for). Dependingon the approximation ratio and the running time we are trying to ahieve, the prob-lem of �nding a balaned separation is either redued to a sparsest ut problem or(using brute fore) it is redued to the problem of �nding a small (A,B)-separator,i.e., a set whose deletion disonnets A and B.ACM Journal Name, Vol. 2, No. 3, 09 2001.



Approximating frational hypertree width · 115Can we use a similar approah for onstruting frational hypertree deompo-sitions? With appropriate modi�ations, the reursive algorithm works for suhdeompositions as well (Setion 4). The ruial question is how to �nd a balanedseparation where S has small fration edge over number. Using brute fore in anot ompletely trivial way, the searh for a balaned separation an be redued to�nding an (A,B)-separator with small frational edge over number (Lemma 3.5).The main tehnial ontribution of the paper is an approximation algorithm for�nding suh separators: If there is an (A,B)-separator with frational edge overnumber at most w, then the algorithm �nds an (A,B)-separator with frationaledge over number O(w3) (Setion 3). The running time is polynomial for every�xed w.For other types of tree deompositions, the orresponding (A,B)-separation prob-lem an be solved using �ow tehniques, brute fore, or submodularity. None ofthese tehniques seem to be relevant when the goal is to minimize the frationaledge over number of the separator; we need ompletely di�erent tehniques. Themain idea is the following. Suppose we are looking for an (A,B)-separator S withfrational edge over number w < 2. As the frational edge over number is anupper bound on maximum independent set size, any two verties in S are adjaent,i.e., S indues a lique. The struture of separating liques is well understood:Every graph has a unique deomposition by lique separators [Tarjan 1985℄. Ouralgorithm for �nding a separator with small frational edge over number an bethought of as a generalization of �nding lique separators. A tempting way ofgeneralizing this idea for larger w would be to suppose that every separator withfrational edge over number at most w an be overed by f(w) liques for somefuntion f . However, this is not true: We might need an unbounded number ofliques (see Example 2.1). Nevertheless, we manage to transform the instane insuh a way that it an be assumed that the separator we are looking for an beovered by w liques. Then we loate these liques using a ombination of brutefore, lique separator deompositions, and linear programming.We �nish the paper by proving that it is NP-hard to deide whether the frationalhypertree width of a hypergraph is at most w (Setion 5). The hardness resultassumes that w is a value given in the input; the muh more interesting questionof whether the problem is NP-hard for some �xed w ≥ 1 remains open.2. PRELIMINARIESA hypergraph is a pair H = (V (H), E(H)), onsisting of a set V (H) of vertiesand a set E(H) of subsets of V (H), the hyperedges of H . We always assume thathypergraphs have no isolated verties, that is, for every v ∈ V (H) there exists atleast one e ∈ E(H) suh that v ∈ e. Let ‖H‖ := |V (H)| + |E(H)|, we will expressthe running time of the algorithms as a funtion of ‖H‖.For a hypergraph H and a set X ⊆ V (H), the subhypergraph of H indued by Xis the hypergraph H [X ] = (X, {e∩X | e ∈ E(H)}). We let H \X = H [V (H) \X ].The primal graph of a hypergraph H is the graph
H = (V (H),{{v, u} | v 6= u, there exists an

e ∈ E(H) suh that {v, u} ⊆ e}).ACM Journal Name, Vol. 2, No. 3, 09 2001.



116 · Dániel MarxA hypergraph H is onneted if H is onneted. A set C ⊆ V (H) is onneted (in
H) if the indued subhypergraph H [C] is onneted, and a onneted omponentof H is a maximal onneted subset of V (H). A sequene of verties of H is a pathof H if it is a path of H. A subset K ⊆ V (H) is a lique of H if K indues a liquein H .An edge over of a set S ⊆ V (H) is a set F ⊆ E(H) suh that for every v ∈ S,there is an e ∈ F with v ∈ e. The size of the smallest edge over of S, denoted by
ρH(S), is the edge over number of S. A frational edge over of S ⊆ V (H) is amapping γ : E(H) → [0, 1] suh that for every v ∈ S, we have∑

e∈E(H):v∈e γ(e) ≥ 1.The weight of the assignment γ is weight(γ) :=
∑

e∈E(H) γ(e). The frationaledge over number of S, denoted by ρ∗H(S), is the minimum of weight(γ) takenover every frational edge over of S. It is well known that ρ∗H(S) ≤ ρH(S) ≤
ρ∗H(S)(1 + ln |V (H)|); in fat, a simple greedy algorithm an be used to �nd anedge over of S with size at most ρ∗H(S)(1 + ln |V (H)|) (f. [Vazirani 2004℄). Notethat determining ρH(S) is NP-hard, while ρ∗H(S) an be determined in polynomialtime using linear programming. We de�ne ρ(H) and ρ∗(H) to be ρH(V (H)) and
ρ∗H(V (H)), respetively. If I is an independent set in S, then eah edge of afrational edge over an ontribute to the overing of at most one vertex of I, thuswe have |I| ≤ ρ∗H(S).Example 2.1. For n ≥ 1, let Hn be the following hypergraph: Hn has a vertex
vS for every subset S of {1, . . . , 3n} of ardinality n. Furthermore, for every i ∈
{1, . . . , 3n} the hypergraph Hn has a hyperedge ei = {vS | i ∈ S}. Observe thatthe frational edge over number ρ∗(Hn) is at most 3, beause the mapping ψ thatassigns 1/n to every hyperedge ei is a frational edge over of weight 3. Atually, itis easy to see that ρ∗(Hn) = 3. On the other hand, the edge over number annotbe bounded by a onstant. Every edge over has size at least 2n + 1: If ei1 , . . . ,
ein

are n edges not present in the edge over, then the vertex orresponding to theset {i1, . . . , in} is not overed by any edges of the over. The primal graph of Hn isthe omplement of the Kneser graph KG3n,n. The hromati number of KG3n,n isknown to be 3n− 2n+ 2 = n+ 2 [Lovász 1978; Matou²ek 2004℄. Thus the primalgraph of Hn annot be overed by less than n + 2 liques. This shows that thereis no funtion f(w) suh that every hypergraph H with ρ∗(H) ≤ w an be overedby at most f(w) liques.A tree deomposition T of a hypergraph H is a tuple (T, (Bt)t∈V (T )), where Tis a tree and (Bt)t∈V (T ) a family of subsets of V (H) suh that for eah e ∈ E(H)there is a node t ∈ V (T ) suh that e ⊆ Bt, and for eah v ∈ V (H) the set
{t ∈ V (T ) | v ∈ Bt} is onneted in T . The sets Bt are alled the bags of thedeomposition. We denote by |T| := |V (T )| the number of bags in T. The width ofa tree deomposition (T, (Bt)t∈V (T )) is max

{

|Bt|
∣

∣ t ∈ V (t)} − 1. The tree widthtw(H) of a hypergraph H is the minimum of the widths of all tree deompositionsof H . It is easy to see that tw(H) = tw(H) for all H .The generalized hypertree width of a deomposition (T, (Bt)t∈V (T )) is de�ned as
max

{

ρH(Bt)
∣

∣ t ∈ V (t)} and the generalized hypertree width of a hypergraph H ,denoted by ghw(H), is the minimum of the generalized hypertree widths of all treedeompositions of H . Frational hypertree width of a tree deomposition and ofACM Journal Name, Vol. 2, No. 3, 09 2001.



Approximating frational hypertree width · 117a hypergraph is de�ned analogously, by having ρ∗H(Bt) instead of ρH(Bt) in thede�nition. We denote by fhw(H) the frational hypertree width of H .3. FINDING APPROXIMATE SEPARATORSLet A,B ⊆ V (H) be two sets of verties. An (A,B)-separator is a set S ⊆ V (H)suh that there is no path onneting a vertex of A\S with a vertex of B \S in thehypergraph H \ S. In partiular, suh an S has to ontain every vertex of A ∩ B.The aim of this setion is to give an approximation algorithm for the problem of�nding an (A,B)-separator with minimum frational edge over number.We say that two nonadjaent verties u, v of H are w-attahed for some w ≥ 1if ρ∗H(N(v) ∩ N(u)) > w (here N(v) is the set of neighbors of v, not inluding
v itself). If u, v are w-attahed and S is an (A,B)-separator with ρ∗H(S) ≤ wovering neither u nor v, then u and v are in the same onneted omponent of
H \ S. This means that S remains an (A,B)-separator even if we add an edgebetween u and v. Thus adding edges between w-attahed verties does not hangethe problem signi�antly. More preisely, the following lemma shows that we anredue the problem to a situation where nonadjaent verties are not w-attahed.This property of the hypergraph will play an important role in the algorithm.Lemma 3.1. Let H be a hypergraph, A,B ⊆ V (H) sets of verties, and w ≥ 1a rational number. We an onstrut in time polynomial in ‖H‖ a hypergraph H+on the same set of verties suh that(1 ) If verties u and v are not adjaent in H+, then they are not w-attahed.(2 ) If S is an (A,B)-separator in H with ρ∗H(S) ≤ w, then S is an (A,B)-separatorin H+ with ρ∗

H+(S) ≤ w.(3 ) If S is an (A,B)-separator in H+, then S is an (A,B)-separator in H with
ρ∗H(S) ≤ 2ρ∗

H+(S).Proof. We onstrut a sequene of hypergraphs. Let H0 = H . Let (u, v) bean arbitrary pair of nonadjaent verties that are w-attahed in Hi−1. Hypergraph
Hi is the same as Hi−1 with an extra edge {u, v}. If there is no suh pair (u, v) in
Hi−1, then we stop the onstrution of the sequene. It is lear that the sequenehas polynomial length (as at most O(|V (H)|2) new edges an be added) and on-struting Hi from Hi−1 an be done in polynomial time. Let H+ = Hk be the lasthypergraph in the sequene. Statement 1 is immediate from the way the sequeneis onstruted.To prove Statement 2, suppose that S is an (A,B)-separator in H = H0. Sinethe edges of H are a subset of the edges of H+, we have ρ∗

H+(S) ≤ ρ∗H(S) ≤ w. Weprove by indution that S is an (A,B)-separator in every Hi. Suppose that this istrue for Hi−1, but there is a path P from a vertex of A to a vertex of B in Hi \ S.Let ei = uivi be the edge that was added to Hi−1 to obtain Hi. If P does not use
ei, then P is also a path in Hi−1, ontraditing the indution hypothesis that S isan (A,B)-separator in Hi−1. Thus P = P1uiviP2 for some subpaths P1 and P2 (byswapping ui and vi if neessary, we may assume that P reahes ui before vi). Bythe de�nition of ei,

ρ∗H(N(vi) ∩N(ui)) ≥ ρ∗Hi−1
(N(vi) ∩N(ui)) > w ≥ ρ∗H(S),ACM Journal Name, Vol. 2, No. 3, 09 2001.



118 · Dániel Marxwhih means that there is a vertex q ∈ (N(vi) ∩ N(ui)) \ S. The walk P1uiqviP2onnets a vertex of A and a vertex of B in Hi−1 \ S, ontraditing the indutionhypothesis.To prove Statement 3, observe �rst that the edges of H are a subset of the edgesof H+, thus if S is an (A,B)-separator in H+, then it is an (A,B)-separator in
H as well. Consider a frational edge over γ of S in H+ with weight(γ) = w′.Suppose that γ(e) = x for an edge e = {u, v} not present in H . In this ase, weset the weight of this edge to 0, and inrease by x the weight of two edges: anarbitrary edge eu ∈ E(H) that ontains u and an arbitrary edge ev ∈ E(H) thatontains v (suh edges exist, sine we assumed that there are no isolated verties inthe hypergraph). It is lear that the resulting weight assignment is also a frationaledge over. We repeat this step until the weight assignment is 0 on every edge notpresent in H . It is easy to see that the weight of the assignment inreases to atmost 2w′, thus ρ∗H(S) ≤ 2ρ∗

H+(S).The following result follows from the fat that a deomposition of a graph byseparating liques an be found in polynomial time [Whitesides 1981; Tarjan 1985℄(lique K is a separating lique of H if H \ K has not onneted). For the on-veniene of the reader, we give here a self-ontained proof of the main idea in theform we use.Lemma 3.2. Given a graph G, it is possible to onstrut in time polynomial in
‖G‖ a set C of at most |V (G)| onneted subsets suh that(1 ) if K is a lique of G, then K ⊆ C for some C ∈ C, and(2 ) if K is a lique of G and C ∈ C, then C \ K is ontained in a onnetedomponent of G \K.Proof. We onstrut a sequene of graphs as follows. Let G0 = G. Supposethat Gi−1 has an indued yle H of length at least 4; let vi, ui be two nonadjaentverties of H . We de�ne Gi to be the same as Gi−1, with an extra edge ei = viui.If Gi−1 has no suh yle H (i.e., Gi−1 is a hordal graph), then we stop theonstrution of the sequene. Let Gk be the last graph in the sequene. Let C bethe set of inlusionwise maximal liques of Gk. It is well known that hordal graph
Gk has at most |V (Gk)| = |V (G)| maximal liques (f. [Golumbi 1980℄).Every lique of G is a lique of Gk, thus Statement 1 is lear from the de�nitionof C. To prove Statement 2, for every C ∈ C and lique K of G, we show that C \Kis ontained in a onneted omponent of Gi \K for every 1 ≤ i ≤ k. This is learfor Gk, as C is a lique in Gk. Suppose that C \K is in a onneted omponent of
Gi \K but a, b ∈ C \K are in di�erent onneted omponents of Gi−1 \K. Let Pbe a path from a to b in Gi \K. Path P has to go through the edge ei = uivi usedin the de�nition of Gi, otherwise it would be a path in Gi−1 \K as well. Thus thepath P an be written as P = aP1uiviP2b (assuming without loss of generality that
P reahes ui before vi). There is an indued yle H in Gi−1 that ontains ui and
vi. Sine ui, vi 6∈ K and H \K is onneted (as K is a lique and H is an induedyle), there is a path R in Gi−1 \K that onnets ui and vi. Now aP1uiRviP2b isa walk from a to b in Gi−1 \K, a ontradition.For illustrative purposes, we show how Lemma 3.2 implies that all the minimalACM Journal Name, Vol. 2, No. 3, 09 2001.



Approximating frational hypertree width · 119separating liques an be enumerated in polynomial time (although we do not usethis result here).Corollary 3.3. Given a graph G, it is possible to enumerate all the inlusion-wise minimal separating liques of G in time polynomial in ‖G‖.Proof. Construt the sets C of Lemma 3.2 and onsider the hordal graph Gk.We laim that every minimal separating lique of G is a minimal separating lique of
Gk. Suppose that a lique K separates a and b in G, but there is a path P between
a and b in Gk \K. Eah edge e of P is a lique of size 2 in Gk, hene the endpointsof e are ontained in some set Ci ∈ C. This means that the two endpoints are in thesame onneted omponent of G \ K and it follows that every vertex of the path
P (inluding a and b) are in the same omponent, a ontradition. Thus if K is aminimal separating lique in G, then it is a separating lique in Gk. Furthermore,as Gk is a supergraph of G, minimality of K in G implies its minimality in Gk aswell. In a hordal graph, every minimal separating lique is the intersetion of twomaximal liques. Thus all the minimal separating liques an be enumerated bytaking the intersetion of every pair Ci, Cj ∈ C and heking whether it is really aminimal separating lique.Lemma 3.4. Let H be a hypergraph, A,B ⊆ V (H) two sets of verties, and
w ≥ 1 a rational number. There is an algorithm that, in time ‖H‖O(w), either�orretly onludes that there is no (A,B)-separator S with ρ∗H(S) ≤ w, or�produes an (A,B)-separator S′ with ρ∗H(S′) ≤ w3 + 4w.Proof. The algorithm �rst onstruts the hypergraph H+ of Lemma 3.1 andthen tries to �nd an (A,B)-separator in H+. By Lemma 3.1(2), if H has an
(A,B)-separator S with ρ∗H(S) ≤ w, then S is an (A,B)-separator in H+ as welland ρ∗

H+(S) ≤ w. In this ase, our algorithm detailed below will be able to �nd an
(A,B)-separator S′ in H+ with ρ∗

H+(S′) ≤ w3/2 + 2w. By Lemma 3.1(3), suh an
S′ is an (A,B)-separator in H with ρ∗H(S′) ≤ w3 + 4w.Suppose that there is an (A,B)-separator S in H+ with ρ∗

H+(S) ≤ w. In the restof the proof, we show how to �nd the required separator S′ if we know a maximumindependent set IS of S. Sine the frational edge over number of S is at most w,the size of IS is also at most w. Thus trying all possible sets IS adds a fator of
‖H+‖O(w) = ‖H‖O(w) to the running time.Denote by N(v) the neighbors of vertex v in H+. Suppose that IS = {v1, . . . , vk}(for some k ≤ w) is a maximum independent set of S. By the de�nition of H+, wehave ρ∗

H+(N(vi)∩N(vj)) ≤ w for every 1 ≤ i < j ≤ k. ThusX =
⋃

1≤i<j≤k(N(vi)∩

N(vj)) has frational edge over number at most (

k
2

)

w ≤ w3/2. In the rest of thealgorithm, we try to �nd a set Y with ρ∗
H+(Y ) ≤ 2w suh that S′ := X ∪ Y is an

(A,B)-separator in H+.Let Ni = (N(vi) ∪ {vi}) \X for i = 1, . . . , k. Let us note �rst that Ni ∩Nj = ∅if i 6= j: Verties vi and vj are not adjaent and every vertex of N(vi) ∩ N(vj) isin X . Sine v1, . . . , vk is a maximum independent set of S, eah vertex of S \X isin one of the Ni's. Observe that Ni ∩ S is not empty, sine it ontains vi (here weuse that vi annot be in X , sine it is not adjaent to any other vj). Furthermore,for every 1 ≤ i ≤ k, Ni ∩ S is a lique of Ni (this is a ruial point of the proof).ACM Journal Name, Vol. 2, No. 3, 09 2001.



120 · Dániel MarxTo see this, suppose that v′i, v′′i ∈ Ni ∩ S are nonadjaent verties; learly, it is notpossible that v′i = vi or v′′i = vi. Verties v′i and v′′i annot be adjaent to any vjwith i 6= j: that would imply that they are in N(vi) ∩N(vj) ⊆ X . Thus replaing
vi in IS with v′i and v′′i would give a stritly larger independent set, ontraditingthe maximality of IS .Let H be the primal graph of H+. For every 1 ≤ i ≤ k, let Ci,1, . . . , Ci,ci

be theonneted sets given by Lemma 3.2 for the graph H[Ni]. By the de�nition of thesesets, for every 1 ≤ i ≤ k there is a value 1 ≤ di ≤ ci suh that the lique Ni ∩ S isfully ontained in Ci,di
. Furthermore, the onneted set Ci,di

\ (Ni ∩ S) = Ci,di
\ Sis ontained in a onneted omponent of H[Ni \ (Ni ∩ S)] = H[Ni \ S], whihimplies that Ci,di

\ S is ontained in a onneted omponent of H \ S. Thus eitherevery vertex of Ci,di
\ S is reahable from A in H \ S, or none of these verties arereahable. Let us de�ne ai = 1 in the �rst ase and ai = 0 in the seond ase (if

Ci,di
⊆ S, then de�ne arbitrarily).We show that if the values di, ai (1 ≤ i ≤ k) orresponding to S are known, thenthe required separator S′ an be found. Thus we have to try all possibilities forthese values, whih adds a fator of |V (H)|O(w) · 2O(w) to the running time.Suppose that the values of di, ai are given. Let Z := X ∪

⋃k

i=1 Ci,di
; note that

S ⊆ Z. We say that a vertex u ∈ Ci,di
is a bad vertex if�ai = 0 and there is a path Pa from A to u with Pa ∩ Z = {u}, or�ai = 1 and there is a path Pb from B to u with Pb ∩ Z = {u}.(It is possible that Pa or Pb onsists of only the vertex u; in partiular, if u ∈ A∩B,then u is always a bad vertex.) Observe that S ontains every bad vertex u. Indeed,if u 6∈ S and there is a path Pa as above, then S ∩ Pa = ∅ (sine S ⊆ Z), thus u isreahable from A, ontraditing ai = 0. On the other hand, if u 6∈ S and there isa path Pb, then u is reahable from B, but ai = 1 implies that it is also reahablefrom A, ontraditing the fat that S is an (A,B)-separator.A pair u ∈ Ci,di

and v ∈ Cj,dj
is a bad pair if�there is a path P from u to v with P ∩ Z = {u, v} and ai 6= aj .In this ase, S has to ontain at least one of u and v: Otherwise P ∩ S = ∅ wouldmean that u and v are in the same onneted omponent of H+ \ S, implying

ai = aj . Thus every frational edge over of S is a solution of the following linearprogram:
min

∑

e∈E(H+)

xe

∑

e∈E(H+)
v∈e

xe ≥ 1 for every bad vertex v ∈ Z

∑

e∈E(H+)
u∈e

xe +
∑

e∈E(H+)
v∈e

xe ≥ 1 for every bad pair u, v ∈ Z

xe ≥ 0 for every e ∈ E(H+)Therefore, the optimum of the linear program is at most w. Let (xe)e∈E(H+) be asolution of the linear program with ost at most w. Let Y ontain those verties vACM Journal Name, Vol. 2, No. 3, 09 2001.



Approximating frational hypertree width · 121for whih ∑

e∈E(H+):v∈e xe ≥ 1/2; learly, ρ∗
H+(Y ) ≤ 2w. Thus de�ning S′ := X∪Ygives a set with ρ∗

H+(Y ) ≤ w3/2 + 2w. Observe that the linear program ensuresthat Y (and hene S′) ontains every bad vertex and at least one vertex from eahbad pair.We laim that S′ is an (A,B)-separator in H+. Suppose that there is a path Pfrom a ∈ A to b ∈ B in H+ \ S′. This path ontains at least one vertex of S (sine
S is an (A,B)-separator), hene it ontains at least one vertex of Z. Let p1, . . . ,
pr be the verties of P ∩ Z, ordered as the path is traversed from a to b. Sinethese verties annot be in X ⊆ S′, they are in ⋃k

i=1 Ci,di
. Suppose �rst that p1 isnot reahable from A in H+ \ S. This means that if Ni is the set that ontains p1,then ai = 0. It follows that p1 is a bad vertex (beause of the subpath of P thatonnets a with p1), hene p1 ∈ S′, a ontradition. Let 1 ≤ ℓ ≤ r be the largestvalue suh that pℓ is reahable from A in H+ \ S and suppose that pℓ is in Ni. If

ℓ = r, then pℓ is a bad vertex (beause of ai = 1 and the subpath of P onneting pℓand b), again a ontradition. Finally, if ℓ < r, then let Nj be the set that ontains
pℓ+1. The maximality of ℓ implies ai = 1 and aj = 0. Therefore, pℓ, pℓ+1 is a badpair (beause of the subpath of P onneting these two verties), and S′ ontainsat least one of these verties, a ontradition. Thus S′ is an (A,B)-separator in
H+ with ρ∗

H+(S′) ≤ w3/2 + 2w.In summary, the algorithm onsists of the following steps:(1) Construt the hypergraph H+ (Lemma 3.1).(2) Guess the independent set IS .(3) Construt the set X and de�ne the sets Ni.(4) Construt the sets Ci,j (Lemma 3.2).(5) Guess the values di, ai.(6) Construt Y using an optimum solution of the linear program.(7) Chek if S′ := X ∪ Y is an (A,B)-separator in H .As disussed above, if there is an (A,B)-separator S in H with ρ∗H(S) ≤ w, then itis possible to hoose IS and the values di, ai suh that the separator S′ omputedby the algorithm is an (A,B)-separator in H with ρ∗H(S′) ≤ w3 + 4w. Thus if wetry all possible ‖H‖O(w) ·‖H‖O(w) ·2O(w) guesses, then we will �nd suh a separator
S′ in this ase. On the other hand, if none of the guesses results in the requiredseparator S′, then we an orretly onlude that there is a no (A,B)-separator
S in H with ρ∗H(S) ≤ w. The running time of eah step (exept the guesses) ispolynomial, thus the total running time is ‖H‖O(w).In the tree deomposition algorithm of Setion 4, we have to �nd a balanedseparation of a set W : We need a partition (A,B) of W suh that (1) ρ∗H(A),
ρ∗H(B) are not too large and (2) there is an (A,B)-separator S suh that ρ∗H(S) isnot too large. As we shall see, it follows from the results of [Grohe and Marx 2006℄that suh a balaned separation always exists if H has bounded frational hypertreewidth. If we want to �nd suh a separation algorithmially, then the main problemis how to �nd the partition (A,B) of W : If (A,B) is given, then Lemma 3.4 an beused to �nd an (A,B)-separator whose frational edge over number is bounded.Trying all possible partitions of W is not feasible. Fortunately, for the appliationACM Journal Name, Vol. 2, No. 3, 09 2001.



122 · Dániel Marxin Lemma 3.5, we an assume that ρ∗H(W ) is bounded. Instead of trying all possiblepartitions of W (the number of suh partitions an be exponential in the numberof verties), it turns out that it is su�ient to try all possible partitions of an edgeover F of W (the number of suh partitions is exponential only in the size of F ).Lemma 3.5. Let H be a hypergraph with frational hypertree width at most wand let W ⊆ V (H) be a subset of verties with ρ∗H(W ) ≤ k. It is possible to�nd in time ‖H‖O(w+k) a partition (A,B) of W and an (A,B)-separator S with
ρ∗H(S) ≤ w3 + 4w suh that ρ∗H(A), ρ∗H(B) ≤ 2

3k + w.Proof. Sine the frational edge over number of W is at most k, the greedyalgorithm �nds an edge over F ⊆ E(H) ofW with |F | = O(k log |V (H)|) [Vazirani2004℄. Our algorithm tries every partition (FA, FB) of F , de�nes A := W ∩
⋃

FAand B := W \ A, and heks whether the algorithm of Lemma 3.4 produes an
(A,B)-separator S with ρ∗H(S) ≤ w3 + 4w. We show that if H has frationalhypertree width at most w, then at least one partition (FA, FB) results in a partition
(A,B) and a separator S satisfying the onditions. Trying every possible partition
(FA, FB) means trying 2O(k log |V (H)|) = ‖H‖O(k) possibilities and the algorithm ofLemma 3.4 needs ‖H‖O(w) time. Thus the total running time of the algorithm is
‖H‖O(k+w).By [Grohe and Marx 2006, Theorem 11, Lemma 12℄, there is a set S0 with
ρ∗H(S0) ≤ w suh that ρ∗H(C ∩ W ) ≤ k/2 for every onneted omponent C of
H \ S0; let C1, . . . , Cd be these onneted omponents. (If d = 0, then we aretrivially done.) De�ne Wi := W ∩ Ci and suppose that the onneted omponentsare ordered suh that ρ∗H(Wi) ≥ ρ∗H(Wj) if i < j. Sine eah edge an intersetat most one Wi, the frational edge over number of the union of some Wi's isexatly the sum of the orresponding frational edge over numbers. Let ℓ be thelargest integer (not greater than d) suh that ρ∗H(

⋃ℓ

i=1Wi) ≤ 2
3k. We show that

ρ∗H(
⋃d

i=ℓ+1Wi) ≤ 2
3k. Suppose that ℓ < d, otherwise there is nothing to show.Sine ρ∗H(W1) ≤ k/2, we have ℓ ≥ 1. We show that ρ∗H(

⋃ℓ
i=1Wi) ≥ k/3. This istrivially true if ρ∗(W1) ≥ k/3. If ρ∗(W1) < k/3, then we argue as follows. Thede�nition of ℓ implies that ρ∗H(

⋃ℓ+1
i=1 Wi) >

2
3k. Sine ρ∗H(Wℓ+1) ≤ ρ∗H(W1) ≤ k/3,it follows that ρ∗H(

⋃ℓ

i=1Wi) ≥ k/3. Sine there is no edge that intersets morethan one Wi, we have ρ∗H(
⋃d

i=1Wi) = ρ∗H(
⋃ℓ

i=1Wi) + ρ∗H(
⋃d

ℓ+1Wi). Therefore,
ρ∗H(

⋃d

i=1Wi) ≤ ρ∗H(W ) ≤ k implies ρ∗H(
⋃d

i=ℓ+1Wi) ≤
2
3k.Let FA be the edges of F fully ontained in S0 ∪

⋃ℓ

i=1 Ci and let FB := F \ FA;observe that the edges of FB interset ⋃d
i=ℓ+1 Ci. Let A := W ∩

⋃

FA and B :=

W \ A be de�ned as in the algorithm. Sine A ⊆ S0 ∪ (W ∩
⋃ℓ

i=1 Ci), we have
ρ∗H(A) ≤ ρ∗H(S0) + ρ∗H(

⋃ℓ

i=1Wi) ≤ w + 2
3k. Similarly, ρ∗H(B) ≤ w + 2

3k. Observethat S0 is an (A,B)-separator with ρ∗H(S0) ≤ w, thus the algorithm of Lemma 3.4produes an (A,B)-separator S with ρ∗H(S) ≤ w3 + 4w. Therefore, when thealgorithm onsiders this partiular partition (FA, FB), then it �nds the requiredpartition (A,B) and separator S.ACM Journal Name, Vol. 2, No. 3, 09 2001.



Approximating frational hypertree width · 1234. FINDING APPROXIMATE TREE DECOMPOSITIONSWe prove the main result of the paper in this setion: It is possible to approximatefrational hypertree width in a sense that is suitable for the appliations. That is,if a lass H of hypergraphs has bounded frational hypertree width, then there isa polynomial time algorithm produing a tree deomposition with bounded fra-tional hypertree width for any hypergraph in H. The algorithm uses the balanedseparation algorithm of Lemma 3.5.Theorem 4.1. Given a hypergraph H and a rational number w ≥ 1, it is possiblein time ‖H‖O(w3) to either�ompute a frational hypertree deomposition of H with width at most 7w3 +
31w + 7, or�orretly onlude that fhw(H) > w.Proof. We present an algorithm for a more general problem:Given a hypergraph H with fhw(H) ≤ w and a set W with ρ∗H(W ) ≤

6w3 + 27w + 6, �nd a frational hypertree deomposition T of width atmost 7w3 + 31w + 7 suh that some bag B of T ontains the set W .Note that this algorithm implies the existene of the algorithm required by thetheorem: If this algorithm is applied to a hypergraph H and W = ∅, then eitherit produes a frational hypertree deomposition of H with the required width orif the output is something else, then we an orretly onlude that fhw(H) > w.The values 6w3 + 27w + 6 and 7w3 + 31w+ 7 might look somewhat arbitrary, butthese are the smallest values ensuring that inequalities (1) and (2) below are true.If ρ∗(H) ≤ 7w3 + 31w + 7, then we are done, as a tree deomposition onsistingof a single bag B = V (H) is su�ient. Thus we an assume that ρ∗(H) ≥ 7w3 +
31w+7. By adding arbitrary verties toW one by one, we an extendW suh that
6w3 + 27w+ 6 ≤ ρ∗H(W ) < 6w3 + 27w+ 7. Let us use the algorithm of Lemma 3.5to �nd a partition (A,B) of (the nonempty set) W and an (A,B)-separator S with
ρ∗H(S) ≤ w3 + 4w. A onneted omponent of H \ S annot interset both A and
B. Let V1 be the union of S and all the onneted omponents interseting A; let
V2 be the union of S and the onneted omponents not interseting A. Let H1(resp., H2) be the subhypergraph of H indued by V1 (resp., V2).First we verify that H1 and H2 are proper subhypergraphs of H ; in fat, theirfrational edge over number is stritly less than ρ∗(H). Sine ρ∗H(W ) ≤ ρ∗H(W ∩
V1) + ρ∗H(W \ V1) and ρ∗H(W ∩ V1) ≤ ρ∗H(A) + ρ∗H(S), we have
ρ∗H(W \ V1) ≥ ρ∗H(W ) − (ρ∗H(A) + ρ∗H(S))

≥ ρ∗H(W ) −
2

3
ρ∗H(W ) − w − ρ∗H(S) ≥ w3 + 4w + 2. (1)Consider a frational edge over γ of H with weight ρ∗(H). Let γS be a frationaledge over of S with weight ρ∗H(S). Let us de�ne

γ′(e) =

{

γ(e) if e ∩ (W \ V1) = ∅,
0 otherwise.ACM Journal Name, Vol. 2, No. 3, 09 2001.



124 · Dániel MarxObserve that weight(γ′) ≤ weight(γ)− (w3 + 4w+ 2), sine by (1), γ has to assignweight at least w3 + 4w + 2 to the edges interseting W \ V1. Now γ′ + γS is anedge over of V1 (sine edges interseting W \ V1 annot interset V1 \ S), thus
ρ∗(H1) ≤ weight(γ′) + weight(γS) ≤ ρ∗(H) − (w3 + 4w + 2) + ρ∗H(S) ≤ ρ∗(H) − 2.A similar argument shows ρ∗(H2) ≤ ρ∗(H) − 2.Let W1 := A ∪ S and W2 := B ∪ S; we have ρ∗H(W1), ρ

∗
H(W2) ≤ 2

3ρ
∗
H(W ) +

w + ρ∗H(S) < 6w3 + 27w + 6. Sine H1 and H2 are stritly smaller than H , wean use the algorithm reursively to obtain a tree deomposition T1 of H1 where
W1 is ontained in some bag B1, and a tree deomposition T2 of H2 where W2 isontained in some bag B2. We onnet these two tree deomposition by introduinga new bag B0 := W ∪ S that is onneted to B1 and B2; note that

ρ∗H(B0) ≤ ρ∗H(W ) + ρ∗H(S) ≤ 7w3 + 31w + 7. (2)It is easy to see that the resulting tree deomposition T is a proper tree deompo-sition of H and the bag B0 fully ontains W .Let us estimate the running time of the algorithm. If ρ∗(H) ≤ 7w3 + 31w + 7,then the algorithm onstruts only a single bag and does not reurse. We proveby indution that if ρ∗(H) > 7w3 + 31w + 7, then the algorithm onstruts atree deomposition with at most ρ∗(H) − 2w3 − 8w − 1 bags. As the time spentonstruting a bag is ‖H‖O(w3), this proves that the running time is ‖H‖O(w3).First we show that
ρ∗H(V1) + ρ∗H(V2) ≤ ρ∗(H) + 2w3 + 8w. (3)To see this, onsider a frational edge over γ of H with weight ρ∗(H) and let γSbe a frational edge over of S with weight at most w3 + 4w. Let us de�ne

γ1(e) =

{

γ(e) if e 6⊆ V2

0 otherwise and γ2(e) =

{

γ(e) if e 6⊆ V1

0 otherwise.Sine every edge is fully ontained in either V1 or V2, we have weight(γ1)+weight(γ2) ≤weight(γ). Furthermore, γ1+γS is a frational edge over of V1, and γ2+γS is a fra-tional edge over of V2. Now (3) follows from weight(γS) ≤ w3 + 4w. Subtrating
4w3 + 16w + 2 from both sides of (3), we get

(ρ∗(H1)−2w3−8w−1)+(ρ∗(H2)−2w3−8w−1) ≤ (ρ∗(H)−2w3−8w−1)−1(4)Suppose that hypergraph H with ρ∗(H) > 7w3 + 31w + 7 is deomposed into
H1 and H2. The algorithm onstruts a tree deomposition T that is obtained byjoining the tree deompositions T1 and T2 with a new bag. Thus |T| = |T1|+|T2|+1.We have to onsider di�erent ases depending on how ρ∗(H1), ρ∗(H2) ompare with
7w3 + 31w + 7. If ρ∗(H1), ρ

∗(H2) > 7w3 + 31w + 7, then the indution hypothesisand (4) shows |T| ≤ ρ∗(H)−2w3−8w−1. If ρ∗(H1), ρ
∗(H2) ≤ 7w3+31w+7, then Tonsists of only 3 bags. Sine ρ∗(H)−2w3−8w−1 ≥ 5w3+23w+6 > 3, the indutionstatement holds in this ase as well. Suppose now that ρ∗(H1) > 7w3 +31w+7 and

ρ∗(H2) ≤ 7w3+31w+7. In this ase, |T| = |T1|+2. Now |T| ≤ ρ∗(H)−2w3−8w−1follows from the indution hypothesis on H1 and ρ∗(H1) ≤ ρ∗(H)−2 proved earlier.ACM Journal Name, Vol. 2, No. 3, 09 2001.



Approximating frational hypertree width · 125The ase when ρ∗(H1) ≤ 7w3 +31w+7 and ρ∗(H2) > 7w3 +31w+7 an be provedsimilarly.Given a CSP instane I with hypergraph H suh that fhw(H) ≤ w, Theorem 4.1produes a frational hypertree deomposition of width O(w3). By [Grohe andMarx 2006, Theorem 15℄, now the instane an be solved in time ‖I‖O(w3). Thusfor every �xed w ≥ 1, there is a polynomial-time algorithm for solving instaneswith fhw(H) ≤ w.Corollary 4.2. If H has bounded frational hypertree width, then CSP(H) anbe solved in polynomial time.5. HARDNESS RESULTGottlob et al. [2005℄ have shown that, given a hypergraph H and an integer k, it isNP-hard to deide if ghw(H) ≤ k. The proof is a very simple redution from SetCover. This proof annot be adapted to prove hardness for frational hypertreewidth, sine the frational version of Set Cover is polynomial-time solvable. Herewe prove the hardness of frational hypertree width using the fat that given agraph G and an integer k, it is NP-hard to deide if the tree width of G is at most
k [Bodlaender et al. 1995℄ (the same hardness result was obtained independentlyby Fomin et al. [2009℄). Note that for every �xed k, it an be heked in lineartime whether the tree width is at most k [Bodlaender 1996℄, thus tree width ishard only if k is part of the input. Consequently, our hardness result for frationalhypertree width assumes that the bound w is given in the input. This means thatthe hardness result does not rule out the possibility that for every �xed w ≥ 1, thereis a polynomial-time algorithm for deiding fhw(H) ≤ w (and for onstruting theorresponding deomposition). It remains an interesting open question whetherthe approximation algorithm presented in this paper an be replaed by an optimalpolynomial-time algorithm or the problem is NP-hard already for some �xed w ≥ 1.Note that for generalized hypertree with, Gottlob et al. [2007℄ gave a (muh moreinvolved) proof that deiding ghw(H) ≤ 3 is NP-hard.Theorem 5.1. Given a hypergraph H and rational number w ≥ 1, it is NP-hardto deide whether fhw(H) ≤ w.Proof. Given a graph G and an integer k, we onstrut a hypergraph H suhthat tw(G) ≤ k if and only if fhw(H) ≤ k + 1. Let v1, . . . , vn be the verties of
G. The hypergraph H is obtained by adding new verties and edges to G. Let ai,j(1 ≤ i ≤ k + 1, 1 ≤ j ≤ 3) be new verties and let A be the set of these 3(k + 1)verties. For every 1 ≤ x ≤ n, we add k + 1 new edges ex,i = {vx, ai,1, ai,2, ai,3}.Finally, for every pair a′, a′′ ∈ A, we add an edge {a′, a′′}. This ompletes thedesription of H .Suppose that (T, (Bt)t∈V (T )) is a width k tree deomposition of G. For every t ∈
V (T ), let B′

t = Bt∪A. It is easy to see that (T, (B′
t)t∈V (T )) is a tree deompositionof H . Furthermore, ρ∗H(B′

t) ≤ k + 1 for every t ∈ V (T ): If Bt = {vx1, . . . , vxk+1
},then the edges ex1,1, ex2,2, . . . , exk+1,k+1 form an edge over of Bt ∪A.Suppose now that (T, (B′

t)t∈V (T )) is a tree deomposition of H with frationalhypertree width at most k+1. First we show that it an be assumed that every B′
tontains A. It is well known that every lique is fully ontained in some bag of theACM Journal Name, Vol. 2, No. 3, 09 2001.



126 · Dániel Marxdeomposition. Sine A is a lique, there is at least one bag ontaining A and, bythe properties of the tree deomposition, the bags ontaining A form a onnetedsubtree T0 of T . We show that if we replae T with T0, then it remains a treedeomposition of H . To see that every vertex v 6∈ A of H appears in a bag of T0,observe that A ∪ {v} is a lique, thus there is a bag of T (and hene of T0) thatfully ontains A ∪ {v}. Similarly, if u, v 6∈ A are neighbors, then A ∪ {u, v} is alique, and it follows that T0 has a bag ontaining both u and v.Therefore, we an assume that A ⊆ B′
t for every t ∈ V (T ). Let Bt := B′

t \ A.It is lear that (T, (Bt)t∈V (T )) is a tree deomposition of G. Let us show thatthe tree width of this deomposition is at most k, i.e., |Bt| ≤ k + 1 for every
t ∈ V (T ). Let γ be a frational edge over of B′

t with weight(γ) ≤ k + 1. Denoteby γ(ai,j) :=
∑

e∈E(H):ai,j∈e γ(e) the weight assigned to the edges ontaining ai,j .As γ is a frational edge over of A, the sum ∑k+1
i=1

∑3
j=1 γ(ai,j) is at least 3(k+1).Eah edge ex,i ontributes to 3 terms of this sum, while every other edge ontributesto at most 2 terms. Sine the total weight of the edges is k+1, this is only possibleif γ is nonzero only on the edges of the form ex,i. Sine eah suh edge overs onlyone vertex outside A, the bag B′

t an ontain at most k + 1 verties outside A,proving |Bt| ≤ k + 1.6. CONCLUSIONSThe algorithm presented in the paper shows that if H is a lass of hypergraphswith bounded frational hypertree width, then there is a polynomial-time algo-rithm that an produe a tree deomposition with bounded frational hypertreewidth for eah member of H. It follows that CSP instanes where the onstraintstruture has bounded frational hypertree width are polynomial-time solvable; infat, this ondition is the stritly most general known tratability riterion. It re-mains an important open question whether there are further tratable ases notovered by bounded frational hypertree width. As our algorithm omputes onlyan approximately optimal tree deomposition, another open question is whether itan be made an exat algorithm, i.e., 7w3 +31w+7 in Theorem 4.1 an be replaedwith w. We expet that this turns out to be NP-hard, similarly as in the ase ofgeneralized hypertree width [Gottlob et al. 2007℄.ACKNOWLEDGMENTI'm grateful to Martin Grohe for many stimulating disussions.REFERENCESAdler, I., Gottlob, G., and Grohe, M. 2007. Hypertree width and related hypergraphinvariants. European J. Combin. 28, 8, 2167�2181.Bodlaender, H. L. 1996. A linear-time algorithm for �nding tree-deompositions of smalltreewidth. SIAM J. Comput. 25, 6, 1305�1317.Bodlaender, H. L., Gilbert, J. R., Hafsteinsson, H., and Kloks, T. 1995. Approximatingtreewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms 18, 2, 238�255.Bulatov, A. A. 2002. A dihotomy theorem for onstraints on a three-element set. In Pro.43th Symp. Foundations of Computer Siene. IEEE, 649�658.Bulatov, A. A. 2003. Tratable onservative onstraint satisfation problems. In 18th AnnualIEEE Symposium on Logi in Computer Siene (LICS'03). IEEE Computer Soiety, LosAlamitos, CA, USA, 321.ACM Journal Name, Vol. 2, No. 3, 09 2001.
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