On subexponential parameterized algorithms for Steiner Tree and Directed Subset TSP on planar graphs

Dániel Marx\(^1\) Marcin Pilipczuk\(^2\) Michał Pilipczuk\(^2\)

\(^1\)Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI)
Budapest, Hungary

\(^2\)Institute of Informatics, University of Warsaw, Poland

FOCS 2018
Paris, France
October 9, 2018
Square root phenomenon

NP-hard problems become easier on planar graphs, and usually exactly by a square root factor.
Square root phenomenon

NP-hard problems become easier on planar graphs, and usually exactly by a square root factor.

The running time is still exponential, but significantly smaller:

\[
\begin{align*}
2^\Theta(n) & \Rightarrow 2^{\Theta(\sqrt{n})} \\
\Theta(n^k) & \Rightarrow \Theta(\sqrt{k}) \\
2^{\Theta(k)} \cdot \Theta(n^{O(1)}) & \Rightarrow 2^{\Theta(\sqrt{k})} \cdot \Theta(n^{O(1)})
\end{align*}
\]
Square root phenomenon

NP-hard problems become easier on planar graphs, and usually exactly by a square root factor.

The running time is still exponential, but significantly smaller:

\[
\begin{align*}
2^{O(n)} & \Rightarrow 2^{O(\sqrt{n})} \\
n^{O(k)} & \Rightarrow n^{O(\sqrt{k})} \\
2^{O(k)} \cdot n^{O(1)} & \Rightarrow 2^{O(\sqrt{k})} \cdot n^{O(1)}
\end{align*}
\]

Several known examples known where such improvement is possible, and (assuming the ETH)

- \(O(k)\) is best possible for general graphs and
- \(O(\sqrt{k})\) is best possible for planar graphs.
Two standard techniques

1. **Using treewidth:**
 Works for e.g. **3-Coloring** or **Hamiltonian Cycle**:

 Planar graphs have treewidth $O(\sqrt{n})$

 $2^{O(w)} \cdot n^{O(1)}$ algorithm for treewidth w

 \Rightarrow $2^{O(\sqrt{n})}$ algorithm
Two standard techniques

1. **Using treewidth:**
 Works for e.g. **3-Coloring** or **Hamiltonian Cycle**:

 - Planar graphs have treewidth $O(\sqrt{n})$
 - $2^{O(w)} \cdot n^{O(1)}$ algorithm for treewidth w

 \Rightarrow $2^{O(\sqrt{n})}$ algorithm

2. **Bidimensionality:**
 Works for e.g. **k-Path** or **Vertex Cover**:

 - Trivial answer if treewidth is $\Omega(\sqrt{k})$.
 - $2^{O(w)} \cdot n^{O(1)}$ algorithm for treewidth w

 \Rightarrow $2^{O(\sqrt{k})} \cdot n^{O(1)}$ algorithm
Many other result were obtained using problem-specific techniques:

- **Strongly Connected Steiner Subgraph** [Chitnis et al. 2014]
- **Multiway Cut** [Klein and M. 2012], [Colin de Verdière 2017]
- **Subgraph Isomorphism** for connected bounded-degree patterns [Fomin et al. 2016]
- **Subset TSP** [Klein and M. 2014]
- **Facility Location** [M. and Pilipczuk 2015]
- **Odd Cycle Transversal** [Lokshtanov et al. 2012]
Two main results

1. A positive result:

Directed Subset TSP with \(k \) terminals can be solved

- in time \(2^{O(k)} \cdot n^{O(1)} \) in general graphs,
 [Held-Karp 1962]
- in time \(2^{O(\sqrt{k} \log k)} \cdot n^{O(1)} \) in planar graphs.
 [new result #1]

2. A negative result:

Steiner Tree with \(k \) terminals cannot be solved in time \(2^{O(k)} \cdot n^{O(1)} \) in planar undirected graphs (assuming the ETH).

[new result #2]
Two main results

1. A positive result:

Directed Subset TSP with k terminals can be solved
- in time $2^{O(k)} \cdot n^{O(1)}$ in general graphs,
 [Held-Karp 1962]
- in time $2^{O(\sqrt{k} \log k)} \cdot n^{O(1)}$ in planar graphs.
 [new result #1]

2. A negative result:

Steiner Tree with k terminals
- can be solved in time $2^{O(k)} \cdot n^{O(1)}$ in general graphs,
 [Dreyfus and Wagner 1971]
- cannot be solved in time $2^{o(k)} \cdot n^{O(1)}$ in planar undirected graphs (assuming the ETH). [new result #2]
TSP

Input: A set T of cities and a distance function $d(.,.)$ on T

Output: A tour on T with minimum total distance

Theorem [Held and Karp 1962]

TSP with n cities can be solved in time $O(2^n \cdot n^2)$.

Dynamic programming:

Let $x(v, T')$ be the minimum length of path from v_{start} to v visiting all the cities $T' \subseteq T$.
Subset TSP on planar graphs

Assume that the cities correspond to a subset T of vertices of a planar graph and distance is measured in this planar graph.
Subset TSP on planar graphs

Assume that the cities correspond to a subset T of vertices of a planar graph and distance is measured in this planar graph.

- Can be solved in time $n^{O(\sqrt{n})}$.
- Can be solved in time $2^k \cdot n^{O(1)}$.

Question: Can we restrict the exponential dependence to k and exploit planarity?
Subset TSP on planar graphs

Assume that the cities correspond to a subset T of vertices of a planar graph and distance is measured in this planar graph.

Theorem [Klein and M. 2014]

Subset TSP for k cities in a unit-weight undirected planar graph can be solved in time $2^{O(\sqrt{k} \log k)} \cdot n^{O(1)}$.

Theorem [Klein and M. 2014]

Subset TSP for k cities in a unit-weight undirected planar graph can be solved in time $2^{O(\sqrt{k} \log k)} \cdot n^{O(1)}$.

Subset TSP on planar graphs

Assume that the cities correspond to a subset T of vertices of a planar graph and distance is measured in this planar graph.

Theorem [new result #1]

Subset TSP for k cities in a directed planar graph can be solved in time $2^{O(\sqrt{k \log k})} \cdot n^{O(1)}$.
Partial solutions

General idea: build larger and larger partial solutions.

Held-Karp algorithm: the partial solutions are $v_{\text{start}} \rightarrow v$ paths visiting a subset T' of cities.
Partial solutions

General idea: build larger and larger partial solutions.

Held-Karp algorithm: the partial solutions are $v_{\text{start}} - v$ paths visiting a subset T' of cities.

Generalization: a partial solution is a set of at most d pairwise disjoint paths with specified cities as endpoints.

The type of a partial solution can be described by

- the set of endpoints of the paths,
- a matching between the endpoints, and
- the subset T' of visited cities.
Merging partial solutions

Two partial solutions can be merged in an obvious way if a matching is given between the endpoints:
Merging partial solutions

Two partial solutions can be merged in an obvious way if a matching is given between the endpoints:
Merging partial solutions

Two partial solutions can be merged in an obvious way if a matching is given between the endpoints:

Algorithm

1. Start with an initial set of trivial partial solutions.
2. Combine two partial solutions as long as possible.
3. Keep at most one partial solution from each type: the best one encountered so far.
4. Return the best partial solution that consists of a single path (cycle) visiting all vertices.
Merging partial solutions

Two partial solutions can be merged in an obvious way if a matching is given between the endpoints:

Algorithm

- Start with an initial set of trivial partial solutions.
- Combine two partial solutions as long as possible.
- Keep at most one partial solution from each type: the best one encountered so far.
- Return the best partial solution that consists of a single path (cycle) visiting all vertices.
Running time

Algorithm

- Start with an initial set of trivial partial solutions.
- Combine two partial solutions as long as possible.
- Keep at most one partial solution from each type: the best one encountered so far.
- Return the best partial solution that consists of a single path (cycle) visiting all vertices.
Running time

Algorithm

- Start with an initial set of trivial partial solutions.
- Combine two partial solutions as long as possible.
- Keep at most one partial solution from each type: the best one encountered so far.
- Return the best partial solution that consists of a single path (cycle) visiting all vertices.

For $d = O(\sqrt{k})$, the number of types (\approx running time) is

\[k^{O(\sqrt{k})} \cdot 2^k \]
Running time

Algorithm

- Start with an initial set of trivial partial solutions.
- Combine two partial solutions as long as possible.
- Keep at most one partial solution from each type: the best one encountered so far.
- Return the best partial solution that consists of a single path (cycle) visiting all vertices.

For $d = O(\sqrt{k})$, the number of types (\approx running time) is $k^{O(\sqrt{k})} \cdot 2^k$.

We need to reduce somehow the number of possible subsets of cities partial solutions can visit!
Running time

Algorithm
- Start with an initial set of trivial partial solutions.
- Combine two partial solutions as long as possible.
- Keep at most one partial solution from each type: the best one encountered so far.
- Return the best partial solution that consists of a single path (cycle) visiting all vertices.

Basic idea
We restrict attention to a collection \mathcal{T} of subsets of cities and consider only partial solutions that visit a subset in \mathcal{T}.

We need: a collection \mathcal{T} of size $k^{O(\sqrt{k})}$ that guarantees finding an optimum solution.
Bounding the treewidth . . . of what?

The following principle can be deduced from earlier work: Exploit that the union of the unknown solution + a known something has treewidth $O(\sqrt{k})$.
Bounding the treewidth . . . of what?

The following principle can be deduced from earlier work:

Exploit that the union of the unknown solution + a known something has treewidth $O(\sqrt{k})$.
Bounding the treewidth ... of what?

The following principle can be deduced from earlier work:

Exploit that the union of the unknown solution + a known something has treewidth $O(\sqrt{k})$.
Bounding treewidth

Take an arbitrary Steiner tree T and assume first that it intersects $OPT O(k)$ times.

$OPT + T$ has $O(k)$ branch vertices
⇒ treewidth $O(\sqrt{k})$
⇒ exists a sphere-cut decomposition of width $O(\sqrt{k})$
Sphere-cut decompositions

Noose: a closed curve intersecting the graph only at vertices.

Sphere-cut decomposition of width $O(\sqrt{k})$: a recursive decomposition where the boundary of each part is a noose intersecting $O(\sqrt{k})$ vertices.
Sphere-cut decompositions

Noose: a closed curve intersecting the graph only at vertices.

Sphere-cut decomposition of width $O(\sqrt{k})$: a recursive decomposition where the boundary of each part is a noose intersecting $O(\sqrt{k})$ vertices.
Sphere-cut decompositions

Noose: a closed curve intersecting the graph only at vertices.

Sphere-cut decomposition of width $O(\sqrt{k})$: a recursive decomposition where the boundary of each part is a noose intersecting $O(\sqrt{k})$ vertices.
Sphere-cut decompositions

Noose: a closed curve intersecting the graph only at vertices.

Sphere-cut decomposition of width $O(\sqrt{k})$: a recursive decomposition where the boundary of each part is a noose intersecting $O(\sqrt{k})$ vertices.
Sphere-cut decompositions

Noose: a closed curve intersecting the graph only at vertices.

Sphere-cut decomposition of width $O(\sqrt{k})$: a recursive decomposition where the boundary of each part is a noose intersecting $O(\sqrt{k})$ vertices.
Sphere-cut decompositions

Noose: a closed curve intersecting the graph only at vertices.

Sphere-cut decomposition of width $O(\sqrt{k})$: a recursive decomposition where the boundary of each part is a noose intersecting $O(\sqrt{k})$ vertices.
Partial solutions

Each noose cuts out a partial solution with $O(\sqrt{k})$ subpaths of OPT.

What can be the set of terminals visited by this partial solution?
Partial solutions

Each noose cuts out a partial solution with $O(\sqrt{k})$ subpaths of OPT.

What can be the set of terminals visited by this partial solution?
Each noose cuts out a partial solution with $O(\sqrt{k})$ subpaths of OPT.

What can be the set of terminals visited by this partial solution?
Cutting terminals from a tree

Lemma

We can compute a collection \mathcal{T} of $k^{O(\sqrt{k})}$ subsets of terminals such that if C is a cycle intersecting the tree T at most $O(\sqrt{k})$ times, then the set of terminals enclosed by C is in \mathcal{T}.

We can restrict attention only to partial solutions restricted to \mathcal{T}!
Algorithm

- Compute the collection \mathcal{T} (possible sets of terminals enclosed by a cycle intersecting tree T at most $O(\sqrt{k})$ times).
- Start with an initial set of trivial partial solutions.
- Combine two partial solutions as long as possible and keep it only if it visits a subset in \mathcal{T}.
- Keep at most one partial solution from each type: the best one encountered so far.
- Return the best partial solution that consists of a single path (cycle) visiting all vertices.

Only $k^{O(k)}$ subproblems are considered

\Downarrow

Running time is $k^{O(k)}n^{O(1)}$.
Algorithm

<table>
<thead>
<tr>
<th>Algorithm</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute the collection \mathcal{T} (possible sets of terminals enclosed by a cycle intersecting tree T at most $O(\sqrt{k})$ times).</td>
<td></td>
</tr>
<tr>
<td>Start with an initial set of trivial partial solutions.</td>
<td></td>
</tr>
<tr>
<td>Combine two partial solutions as long as possible and keep it only if it visits a subset in \mathcal{T}.</td>
<td></td>
</tr>
<tr>
<td>Keep at most one partial solution from each type: the best one encountered so far.</td>
<td></td>
</tr>
<tr>
<td>Return the best partial solution that consists of a single path (cycle) visiting all vertices.</td>
<td></td>
</tr>
</tbody>
</table>

Existence of the sphere-cut decomposition implies that the algorithm finds an optimum solution!
Many intersections

What happens if $OPT + T$ has more than $O(k)$ intersections?
Many intersections

What happens if $OPT + T$ has more than $O(k)$ intersections?
Many intersections

What happens if $OPT + T$ has more than $O(k)$ intersections?
Many intersections

What happens if $OPT + T$ has more than $O(k)$ intersections?
Many intersections

What happens if \(OPT + T \) has more than \(O(k) \) intersections?

- Let us contract the subpaths of \(OPT \) between consecutive terminals (each such path is a shortest path).
- Each noose goes through \(O(\sqrt{k}) \) contracted vertices
 \(\Rightarrow \) we can guess the contractions that produced these vertices.
Many intersections

What happens if $OPT + T$ has more than $O(k)$ intersections?

- Let us contract the subpaths of OPT between consecutive terminals (each such path is a shortest path).
- Each noose goes through $O(\sqrt{k})$ contracted vertices
 \Rightarrow we can guess the contractions that produced these vertices.
It is not possible to bound the number of self-crossings by a function of k, but we can show that there is a solution that is a "cactus."
Lower bound for Steiner Tree

Theorem [new result #2]

Assuming the ETH, Steiner Tree on planar undirected graphs with k terminals cannot be solved in time $2^{o(k)} \cdot n^{O(1)}$.

Standard techniques show that Steiner Tree (and many other problems) do not have $2^{o(\sqrt{k})} \cdot n^{O(1)}$ time algorithms assuming the ETH, but a lower bound ruling out $2^{o(k)} \cdot n^{O(1)}$ is quite unusual!
Standard lower bounds for planar problems

ETH + Sparsification Lemma

There is no $2^{o(n+m)}$-time algorithm for m-clause 3SAT.

- Typical reduction from 3SAT creates $O(n + m)$ gadgets and $O((n + m)^2)$ crossings in the plane.
- A crossing typically increases the size by $O(1)$.

3SAT formula ϕ
- n variables
- m clauses

\Rightarrow

Planar graph G'
- $O((n + m)^2)$ vertices
- $O((n + m)^2)$ edges

Corollary

Assuming the ETH, there is no $2^{o(\sqrt{n})}$ algorithm for STEINER TREE on an n-vertex planar graph.
Standard lower bounds for planar problems

ETH + Sparsification Lemma

There is no $2^{o(n+m)}$-time algorithm for m-clause 3SAT.

- Typical reduction from 3SAT creates $O(n + m)$ gadgets and $O((n + m)^2)$ crossings in the plane.
- A crossing typically increases the size by $O(1)$.

<table>
<thead>
<tr>
<th>3SAT formula ϕ</th>
<th>Planar graph G'</th>
</tr>
</thead>
<tbody>
<tr>
<td>n variables</td>
<td>$O((n + m)^2)$ vertices</td>
</tr>
<tr>
<td>m clauses</td>
<td>$O((n + m)^2)$ edges</td>
</tr>
</tbody>
</table>

Corollary

Assuming the ETH, there is no $2^{o(\sqrt{k})} \cdot n^{O(1)}$ algorithm for Steiner Tree on an n-vertex planar graph with k terminals.
Standard lower bounds for planar problems

ETH + Sparsification Lemma

There is no $2^{o(n+m)}$-time algorithm for m-clause 3SAT.

- Typical reduction from 3SAT creates $O(n + m)$ gadgets and $O((n + m)^2)$ crossings in the plane.
- A crossing typically increases the size by $O(1)$.

| 3SAT formula ϕ | n variables | m clauses | \Rightarrow | Planar graph G' | $O((n + m)^2)$ vertices | $O((n + m)^2)$ edges |

No way such reductions could give a bound stronger than $2^{o(\sqrt{k})}$!
Stronger lower bound

We get around this issue by crossing gadgets where a stream of many bits cross a stream of one bit and has only $O(1)$ terminals.
Stronger lower bound

We get around this issue by crossing gadgets where a stream of **many bits** cross a stream of **one bit** and has only $O(1)$ terminals.
Stronger lower bound

We get around this issue by crossing gadgets where a stream of \textbf{many bits} cross a stream of \textbf{one bit} and has only $O(1)$ terminals.
We get around this issue by crossing gadgets where a stream of **many bits** cross a stream of **one bit** and has only $O(1)$ terminals.
Stronger lower bound

We get around this issue by crossing gadgets where a stream of many bits cross a stream of one bit and has only $O(1)$ terminals.
Stronger lower bound

We get around this issue by crossing gadgets where a stream of many bits cross a stream of one bit and has only $O(1)$ terminals.
Stronger lower bound

We get around this issue by crossing gadgets where a stream of many bits cross a stream of one bit and has only $O(1)$ terminals.
Reduction from 3SAT

Partition the variables into g groups of size n/g each.

- **Horizontal flow**: assignment in group i ($2^{n/g}$ possibilities)
- **Vertical flow**: checking satisfiability of each clause C_j.

Graph size: $N = 2^{O(n/g)}$ with $k = O(m \cdot g)$ terminals.
Reduction from 3SAT

Partition the variables into g groups of size n/g each.

- **Horizontal flow:** assignment in group i ($2^{n/g}$ possibilities)
- **Vertical flow:** checking satisfiability of each clause C_j.

Graph size: $N = 2^{O(n/g)}$ with $k = O(m \cdot g)$ terminals.
Reduction from 3SAT

Partition the variables into g groups of size n/g each.

- **Horizontal flow:** assignment in group i ($2^{n/g}$ possibilities)
- **Vertical flow:** checking satisfiability of each clause C_j.

Graph size: $N = 2^{O(n/g)}$ with $k = O(m \cdot g)$ terminals.
Reduction from 3SAT

Partition the variables into g groups of size n/g each.

- **Horizontal flow:** assignment in group i ($2^{n/g}$ possibilities)
- **Vertical flow:** checking satisfiability of each clause C_j.

Graph size: $N = 2^{O(n/g)}$ with $k = O(m \cdot g)$ terminals.
Reduction from 3SAT

Graph size: \(N = 2^{O(n/g)} \) with \(k = O(m \cdot g) \) terminals.

Running time \(2^{O(k/g^2)} \cdot N^{O(1)} \) for **Steiner Tree**

\(\Downarrow \)

Running time \(2^{O(m/g)} \cdot 2^{O(n/g)} = 2^{o(n+m)} \) for **3SAT**
Summary

1. **Main positive result**

 Subset TSP for k cities in a directed planar graph can be solved in time $2^{O(\sqrt{k} \log k)} \cdot n^{O(1)}$.

 Exploit that the union of the unknown solution + a known something has treewidth $O(\sqrt{k})$.

2. **Main negative result**

 Assuming the ETH, **Steiner Tree** on planar undirected graphs with k terminals cannot be solved in time $2^{o(k)} \cdot n^{O(1)}$.

 The square root phenomenon does not appear for every problem, making the previous positive results even more interesting!