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Abstract

We show for several planar and geometric problems that
the best known approximation schemes are essentially opti-
mal with respect to the dependence onǫ. For example, we
show that the2O(1/ǫ) · n time approximation schemes for
planar MAXIMUM INDEPENDENTSET and for TSPon a
metric defined by a planar graph are essentially optimal:
if there is aδ > 0 such that any of these problems admits
a 2O((1/ǫ)1−δ)nO(1) time PTAS, then the Exponential Time
Hypothesis (ETH) fails. It is known thatMAXIMUM IN-
DEPENDENTSET on unit disk graphs and the planar logic
problemsMPSAT, TMIN , TMAX admitnO(1/ǫ) time ap-
proximation schemes. We show that they are optimal in the
sense that if there is aδ > 0 such that any of these problems
admits a2(1/ǫ)O(1)

nO((1/ǫ)1−δ) time PTAS, then ETH fails.

1 Introduction

Many classical graph-theoretic problems admit
polynomial-time approximation schemes (PTAS) when
restricted to planar graphs. For example, in planar graphs a
(1+ ǫ)-approximation for MAXIMUM INDEPENDENTSET,
M INIMUM VERTEX COVER, M INIMUM DOMINATING

SET [7], and TSP [19] can be computed in time2O(1/ǫ) ·n.
Planar graph problems and planar geometric problems
share some structural similarities, hence two-dimensional
geometric problems often have PTAS’s. For example, given
a set of unit disks in the plane, a(1 + ǫ)-approximation of
the maximum independent set can be found in timenO(1/ǫ)

[15].
Improving the dependence of the running time onǫ is an

obvious goal and there is a history of such improvements
in the literature. Arora [5] presented annO(1/ǫ) time PTAS
for Euclidean TSP, which was improved ton · logO(1/ǫ) n in
the journal version of the paper [6]. Later, Rao and Smith
[26] gave a PTAS with running time further improved to
2O((1/ǫ) log(1/ǫ))n + O(n log n). Thus, given a PTAS, it

seems worth investigating whether improvements in the de-
pendence onǫ are possible or we have reached the optimum
PTAS. For planar graphs, an exact solution of MAXIMUM

INDEPENDENT SET can be found in time2O(
√

n) [2] (in-
stead of the trivial2O(n)); this might raise the hope that a

2O(
√

1/ǫ) · nO(1) PTAS exists. Finding a set ofk indepen-
dent unit disks can be done in timenO(

√
k) [3] (instead of

the trivialnO(k)), hence annO(
√

1/ǫ) time PTAS would not
be completely surprising. The main contribution of the pa-
per is proving almost-tight lower bounds for planar and ge-
ometric problems: we show that the known approximation
schemes for these problems are essentially optimal with re-
spect to the dependence onǫ in the running time. To prove
these lower bounds, we assume the Exponential Time Hy-
pothesis (ETH): we assume thatn-variable 3SAT cannot be
solved in time2o(n). The Sparsification Lemma of Impagli-
azzo, Paturi, and Zane [16] states that this assumption is
equivalent to the (seemingly stronger) assumption that there
is no algorithm that solves 3SAT in2o(n), wheren is the size
of the instance. We remark that instead of assuming ETH,
the results in this paper follow from the weaker assumption
thatm-clause 3SAT cannot be solved in time2O(m1−δ) for
anyδ > 0.

The following theorem states our lower bounds for five
problems that (with the exception of the last) are known to
admit approximation schemes with running time2O(1/ǫ) ·n.

Theorem 1.1. Assuming ETH, there is noδ > 0 such that
a 2O((1/ǫ)1−δ)nO(1) time PTAS exists for

• MAXIMUM INDEPENDENTSET on planar graphs,

• M INIMUM VERTEX COVER on planar graphs,

• M INIMUM DOMINATING SET on planar graphs,

• TSP with a metric defined by an unweighted planar
graph.

• M INIMUM VERTEX COVER for unit disks or unit
squares.
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The problems considered in the following theorem ad-
mit approximation schemes with running timenO(1/ǫ); we
show that1/ǫ in the exponent ofn cannot be replaced by
(1/ǫ)1−δ for any δ > 0. The statement of the theorem is
slightly stronger: the lower bound on the exponent holds
even if we allow an exponential function of1/ǫ as a multi-
plier:

Theorem 1.2. Assuming ETH, there is noδ > 0 such that
a 2(1/ǫ)O(1) · nO((1/ǫ)(1−δ)) time PTAS exists for

• MPSAT for planar formulas,

• TMIN for planar formulas,

• TMAX for planar formulas,

• MAXIMUM INDEPENDENT SET for unit disks or
squares.

• M INIMUM DOMINATING SET for unit disks or
squares.

Ideally, for these problems we would like to have a tight
result that rules out the possibility of a PTAS with running
timef(ǫ)no(1/ǫ), for anyfunctionf(ǫ). For example, Theo-
rem 1.2 does not rule out the possibility of a PTAS with run-

ning time, say,2221/ǫ

nlog log(1/ǫ)—such a PTAS could be
considered as a theoretical improvement overnO(1/ǫ) time.
Without going into details, we mention that it is possible

to prove the weaker result that nof(ǫ)no(
√

1/ǫ) PTAS ex-
ists for any functionf(ǫ) for these problems. Theorems 1.1
and 1.2 are not tight because we are using the almost-linear
size PCP construction of Dinur [12]. Replacing this with
a linear-size PCP would result in tight lower bounds, but
currently such a construction is not in sight.

A simple observation gives us non-tight lower bounds
on the dependence onǫ. Since MAXIMUM INDEPENDENT

SET is NP-hard for planar graphs, there is a polynomial-
time algorithm that turns a 3SAT instance of sizen into
an equivalent instance of MAXIMUM INDEPENDENT SET

on a planar graph of sizenc, for some constantc. By set-
ting ǫ := 1/(nc + 1), a (1 + ǫ)-approximation algorithm
can solve the constructed instance of MAXIMUM INDEPEN-
DENT SET exactly. Therefore, no PTAS with running time
2o((1/ǫ)1/c)nO(1) can exist: otherwise it would be able to
solve 3SAT in time2o(n), contradicting ETH. By observing
that c = 2 in the known reductions from 3SAT to planar
MAXIMUM INDEPENDENTSET, we obtain a lower bound
of 2

√
1/ǫ · nO(1). However, this argument cannot be used

to prove stronger lower bounds: as planar MAXIMUM IN-
DEPENDENT SET can be solved in time2O(

√
n) [2], a re-

duction withc < 2 would mean that 3SAT can be solved in
time 2o(n). Therefore, new techniques are required for the
almost-tight bounds of Theorems 1.1.

The situation is similar in the case of MAXIMUM IN-
DEPENDENTSET for unit disks. The W[1]-hardness proof
of [24] together with a result of [11] implies that there is
a constantc > 0 such that there is nof(k)no(k1/c) time
algorithm for finding a set ofk independent disks, unless
ETH fails. This means (by a simple argument of Bazgan
[8] and Cesati and Trevisan [10]) that no PTAS with running
time f(ǫ)no((1/ǫ)1/c) can exist. However, the problem can
be solved in timenO(

√
k) [3], thusc ≥ 2, which means that

we cannot prove a lower bound stronger thanf(ǫ)nO(
√

1/ǫ)

with this argument.

We get around these difficulties by using the fact that,
assuming ETH, not only 3SAT cannot be solved in time
2o(n), but the optimization version MAX3SAT cannot be
approximated to some constant factor in time2O(n1−δ) for
anyδ > 0. This is a consequence of the almost-linear size
PCP of Dinur [12]. The lower bounds for the planar prob-
lems are obtained by a reduction that is approximation pre-
serving in a weak way: a fast PTAS for the planar prob-
lem would imply a fast constant-factor approximation for
MAX3SAT. Note that this reduction is somewhat unusual,
since a problem without a PTAS is reduced to a problem
that admits a PTAS.

Previously, the literature focused mostly on the PTAS
vs. EPTAS question [10, 9, 13, 24, 23, 25]. Aneffi-
cient PTAS(EPTAS) is an approximation scheme with run-
ning time f(ǫ)nO(1) for some functionf . These papers
showed, for problems that were known to admit approx-
imation schemes, that no EPTAS exists (under the stan-
dard parameterized complexity assumption W[1]6= FPT).
These results can be turned into non-tight lower bounds on
the exponent ofn. In [4], almost-tight lower bounds were
obtained for the string matching problem CLOSEST SUB-
STRING; this is the only previous result that we are aware
of where almost-tight bounds were established. Our result
give almost-tight bounds for most of the problems consid-
ered in [10, 9, 13, 24]. Furthermore, we also give almost-
tight lower bounds for problems that admit EPTASs (Theo-
rem 1.1); to our knowledge, these are the first results of this
type.

In Section 2, we introduce the planar problem MATRIX

TILING . This problem admits annO(1/ǫ) time PTAS and a
special case of the problem admits a2O(1/ǫ)n time PTAS.
We show that these approximation schemes are optimal in
the sense of Theorem 1.1 and 1.2. The lower bounds of The-
orem 1.1 and 1.2 are obtained by reducing MATRIX TILING

(or its special case) to the various problems (Sections 3–
6). MATRIX TILING was defined with such reductions in
mind, thus the reductions are fairly straightforward if we
can construct the problem-specific gadgets. It is likely that
reduction from MATRIX TILING can be used to prove lower
bounds for many other planar and geometric problems.



2 The MATRIX T ILING problem

The problem MATRIX TILING plays a central role in the
paper: we prove lower bounds on the efficiency of the ap-
proximation schemes of MATRIX TILING and these lower
bounds are transfered to other problems by appropriate re-
ductions. We denote byZD the set{0, 1, . . . , D − 1}
throughout the paper.

MATRIX TILING

Input:
Integersk, D, andk2 nonempty setsSi,j ⊆ ZD × ZD (1 ≤
i, j ≤ k).

Find:
For each1 ≤ i, j ≤ k, a valuesi,j ∈ Si,j ∪ {⋆} such that

• If si,j = (a1, a2) andsi,j+1 = (b1, b2), thena1 = b1.

• If si,j = (a1, a2) andsi+1,j = (b1, b2), thena2 = b2.

Goal:
Maximize the number of pairs(i, j) (1 ≤ i, j ≤ k) with
si,j 6= ⋆.

We think of the valuessi,j of a solution as being ele-
ments of a matrix, hence we use the expressions row, col-
umn, and cell with the obvious meaning. Observe that
the optimum is always at leastk2/4: if i and j are both
odd, then letsi,j be an arbitrary element ofSi,j , other-
wise letsi,j = ⋆. (Here we use thatSi,j is required to be
nonempty.) This observation will be useful when reducing
MATRIX TILING to other problems. The size of the input
instance can be bounded byO(k2D2).

The following lemma gives a reduction from MAX3SAT
to MATRIX TILING . The reduction is approximation-
preserving in a certain weak sense, which allows use to use a
PTAS for MATRIX TILING to solve MAX3SAT. A formula
withm clauses isα-satisfiableif there is an assignment that
satisfies at leastαm clauses.

Lemma 2.1. There is an algorithm with running time poly-
nomial in the size of theoutputthat, given a 3SAT formulaφ
havingm clauses and an integerk, constructs an instance
of MATRIX TILING with parametersk andD := 3⌈m/k⌉

such that for every1 > α > 0,

• if φ is satisfiable, then the optimum ofMATRIX

TILING is k2,

• if φ is notα-satisfiable, then the optimum ofMATRIX

TILING is at mostk2 − k(1 − α)/2 + 1.

Proof. Let us associate a variableyi ∈ {1, 2, 3} with each
clause ofφ. The intended meaning ofyi = ℓ is that thei-th
clause is satisfied by itsℓ-th literal. To enforce this interpre-
tation, we construct a set of constraints: if theℓ1-th literal of
thei1-th clause is the negation of theℓ2-th literal of thei2-th

clause, then the constraint(yi1 6= ℓ1 ∨ yi2 6= ℓ2) is added to
the set. It is clear that a subsetC0 of clauses is satisfiable if
and only if there is an assignment to the corresponding|C0|
variables that satisfies all the constraints induced byC0.

We want to partition theyi’s into k blocksB1, . . . ,
Bk of equal size, butm/k is not necessarily integer. Let
m′ := k⌈m/k⌉ and let us addm′−m ≤ m′/k new dummy
variables that do not appear in any of the constraints. Set
D := 3m′/k; for each block ofm′/k variables, we can fix
a bijection betweenZD and the possible assignments of the
variables in the block. We construct an instance of MA-
TRIX TILING with parametersk andD where the setsSi,j

are defined as follows. We say that a partial assignmentγ
of the variablesyi is compatible,if there is no constraint
(yi1 6= ℓ1 ∨ yi2 6= ℓ2) with γ(yi1) = ℓ1 andγ(yi2) = ℓ2.
If i = j, thenSi,j contains those pairs(t, t) wheret ∈ ZD

corresponds to a compatible assignment of blockBi. For
i 6= j, consider a pair(vi, vj) ∈ ZD × ZD. Let γi (resp.,
γj) be the assignment of blockBi (resp.,Bj) that corre-
sponds tovi (resp.,vj). The pair(vi, vj) is in Si,j if and
only if γi andγj together form a compatible assignment
of Bi ∪ Bj . If a setSi,j is empty, thenφ is unsatisfiable,
since there is no compatible assignment for some pair of
blocks. In this case, we can output an arbitrary instance
with optimumk2/4. This completes the description of the
constructed instance of MATRIX TILING .

If φ is satisfiable, then there is an assignmentγ of the
yi’s that satisfies all the constraints we defined. For each
1 ≤ i, j ≤ k, let vi ∈ ZD be the value corresponding to
assignmentγ restricted to blockBi. Setsi,j = (vi, vj).
Assignmentγ satisfies all the constraints; in particular, it
satisfies all the constraints induced by the variables inBi ∪
Bj , implying (vi, vj) ∈ Si,j . Thus we obtain a solution
with valuek2.

For the second part, suppose that MATRIX TILING has a
solution with value at leastk2−k(1−α)/2+1, i.e., the num-
ber of⋆’s is at mostk(1 − α)/2 − 1. Let us call a block
Bi bad if the i-th row or thei-th column contains at least
one⋆. As a⋆ can make at most 2 blocks bad, there are at
most(1 − α)k − 2 bad blocks. Let us call a variableyt and
(if yt is not a dummy variable) the corresponding clause of
φ good,if yt does not belong to a bad block; clearly, there
are at least(m′/k)(k − (1 − α)k + 2) = αm′ + 2m′/k
good variables. Less thanm′/k of the good variables are
dummy variables, hence we have at leastαm good clauses.
We claim that there is an assignment ofφ satisfying all the
good clauses, contradicting the assumption thatφ is notα-
satisfiable. If blockBr is not bad, then there is a valuevr

such that the first component of eachsr,j (1 ≤ j ≤ k) is vr.
Similarly, there is a valuev′r such that the second compo-
nent of eachsi,r (1 ≤ i ≤ k) is v′r. Since(vr, v

′
r) ∈ Sr,r,

we get thatvr = v′r. The valuevr defines an assignment of
the variablesyt in blockvr; this way, we obtain a value for



each good variableyt. In a natural way, we can construct
an assignment ofφ corresponding to the values of the good
variables:yt = ℓmeans that thet-th clause is satisfied by its
ℓ-th literal, hence it defines the value of one variable ofφ; if
a variablexi of φ is not assigned a value this way, then we
can assign an arbitrary value to it. This assignment is well
defined: ifyt1 = ℓ1 andyt2 = ℓ2 force a variable to differ-
ent values, then there is a constraint(yt1 6= ℓ1 ∨ yt2 6= ℓ2).
Suppose thatyt1 ∈ Br1 , yt2 ∈ Br2 ; this means that the
assignment ofBr1 corresponding tovr1 is not compatible
with the assignment ofBr2 corresponding tovr2 , contra-
dicting the fact thatsr1,r2 = (vr1 , vr2) ∈ Sr1,r2 . Therefore,
the constructed assignment satisfies every good clause, i.e.,
φ is α-satisfiable.

Using standard layering techniques, it can be shown that
MATRIX TILING admits a PTAS with running timenO(1/ǫ).
In Theorem 2.3, we show that the1/ǫ in the exponent ofn
is essentially optimal. The lower bound is obtained from
known hardness results on MAX3SAT.

The Sparsification Lemma of Impagliazzo, Paturi, and
Zane [16] implies that ETH is equivalent to the assump-
tion thatm-clause 3SAT cannot be solved in time2o(m).
The almost-linear size PCP of Dinur can be used to turn
a formulaφ with m clauses into a formulaψ with m′ :=
m logO(1)m clauses such that ifφ is satisfiable, thenψ
is satisfiable and ifφ is unsatisfiable, thenψ is not α-
satisfiable for some constantα < 1. Therefore, the running
time of an algorithm distinguishing between these two cases
cannot be2o(m), which means that it cannot be2O(m′(1−δ))

for anyδ > 0.

Lemma 2.2. There is a constant1 > α > 0 such that if
there is an algorithm that can distinguish between satisfi-
able and notα-satisfiable 3SAT formulas in time2O(m1−δ)

for some constantδ > 0 (wherem is the number of clauses),
then ETH fails.

Theorem 2.3. If there are constantsδ, d > 0 such that
MATRIX TILING has a PTAS with running time2O(1/ǫ)d ·
nO(1/ǫ)1−δ

, then ETH fails.

Proof. Let φ be a 3SAT formula withm clauses. Setk :=
⌈m1/(2d+1)⌉ ≤ m. Let us use the algorithm of Lemma 2.1
to construct an instance of MATRIX TILING from φ with
this value ofk. Setǫ := (1 − α)/(2k) − 1/k2 = Θ(1/k),
whereα is the universal constant in Theorem 2.2 (we as-
sume thatm, and hencek, is sufficiently large thatǫ is
positive.) Ifφ is satisfiable, then the optimum of MATRIX

TILING is k2. On the other hand, ifφ is notα-satisfiable,
then the optimum is at mostk2 − k(1 − α)/2 + 1. Since
k2/(1 + ǫ) > k2(1 − ǫ) = k2 − k(1 − α)/2 + 1, a
(1 + ǫ)-approximation algorithm can distinguish between
the two cases. If there is a PTAS with running time

2O(1/ǫ)d · nO(1/ǫ)(1−δ)

, then the two cases can be distin-
guished in time

2O(kd) · (k2 ·D2)O(k)1−δ

= exp
(

O(kd) + (O(log k) +O(m/k)) ·O(k)1−δ
)

= exp
(

O(md/(2d+1)) + o(k) +O(m/kδ)
)

= exp
(

o(m) +O(m1−δ/(2d+1))
)

= 2o(m),

which, by Lemma 2.2, contradicts ETH.

Let us investigate the special case of MATRIX TILING

with D = 2. It can be shown that this special case admits
a PTAS with running time2O(1/ǫ)n and, as we shall see in
Theorem 2.6, this is essentially optimal. The lower bounds
in Theorem 1.1 are obtained by reductions from this spe-
cial case. When reducing from this special case,|Si,j | ≤ 4
implies that a “gadget” representing someSi,j has to have
only a constant number of states. Therefore, the gadget con-
struction can be simpler and the reduction can be done to a
wider range of problems.

If D = 2, then we are not able to reduce MAX3SAT
to MATRIX TILING as in Lemma 2.1. Instead, we reduce
MAX2SAT. We say that a 2SAT formula issimple,if it does
not contain unsatisfiable clauses or duplicated clauses.

Lemma 2.4. There is a polynomial-time algorithm that,
given a simple 2SAT formulaφ withm clauses where each
variables appears in at mostd clauses, constructs an in-
stance ofMATRIX TILING with parametersk := O(d2m)
andD := 2 such that ift is the minimum number of un-
satisfied clauses inφ, then the optimum of the constructed
instance isk2 − t.

Proof. Let x1, . . . , xp be an ordering of the variables ofφ
(p ≤ 2m). By adding new variables, we obtain a longer
sequenceX of variables. Letxi1 , . . . , xid′

be those vari-
ables that appear together withxi in some clause (d′ ≤ d).
Setz := 4d. We replacexi with a sequence of2zd′ + 1
variables, called thesegmentof xi. This segment contains
xi and2zd′ new variablesxis,i,ℓ (1 ≤ s ≤ d′, 1 ≤ ℓ ≤ 2z).
The variables in the segment are ordered in such a way that
xis,i,ℓ is beforexi for 1 ≤ ℓ ≤ z and it is afterxi for
z + 1 ≤ ℓ ≤ 2z. Replacing everyxi with the correspond-
ing segment of2zd′ + 1 variables gives a sequence X of
k ≤ p(2zd + 1) = O(d2m) variables. For each new vari-
ablexis,i,ℓ, we say that it is acopyof xis ; each variable
has at most2zd copies (we do not consider a variablexi

to be a copy of itself). If a variable is a copy ofxi or it is
xi itself, then we say that the variablerepresentsxi. We
construct an instance of MATRIX TILING with parameters
k andD = 2 where the rows and the columns are indexed
by thek variables inX . The setsSi,j are defined the fol-
lowing way. If there is a clause(xi ∨ xj), then the set in



row xi and columnxj is {(0, 1), (1, 0), (1, 1)}. We con-
sider a clause as an ordered pair of literals, hence clause
(xi ∨ xj) does not influence the set in rowxj of columnxi.
We proceed similarly for clauses containing negations: in
this case, the setSi,j contains the three pairs corresponding
to the satisfying assignments of the clause. Every other set
is {(0, 0), (0, 1), (1, 0), (1, 1)}, unless the row and the col-
umn indices represent the same variablexi, in which case
the set is{(0, 0), (1, 1)}.

Assume thatφ has an assignmentγ that satisfies all butt
of the clauses. We define the value ofsi,j the following way.
If the i-th variable in sequenceX representsxi0 and the
j-th variable representsxj0 , thensi,j = (γ(xi0), γ(xj0 )).
This pair is inSi,j unlessSi,j corresponds to a clause not
satisfied byγ. That is, thei-th (resp.,j-th) variable of the
sequence isxi0 (resp.,xj0 ) itself (not a copy) and there is
an unsatisfied clause where the first (resp., second) variable
is xi0 (resp.,xj0 ). If the pair is not inSi,j , then we set
si,j = ⋆; clearly, the number of⋆’s is at mostt.

Assume now that there is a solution with value at least
k2− t. A variable of the sequenceX is badif the row or the
column corresponding to the variable contains at least one
⋆; otherwise let us call itgood. If the i-th variable of the
sequenceX is good, then let us associate to this variable
the value that appears as the first component of each pair
in the i-th row. Because of the way the setSi,i is defined,
this value is the same as the value that appears as the second
component of each pair in thei-th column. If thei-th and
thej-th variables ofX are both good and they represent the
same variable, then the same value is associated to them:
setSi,j = {(0, 0), (1, 1)} ensures this. A variable ofφ is
spoiledif at leastz of its copies are bad. We construct an
assignmentγ of φ the following way: ifxi is spoiled, then
we setγ(xi) arbitrarily, otherwise letγ(xi) be the common
value associated with the good copies ofxi.

We claim that at mostt clauses ofφ are not satisfied byγ.
For each clause, we define a set of cells called thecrossof
the clause. Letxi, xj be the two variables of the clause. The
cross of the clause contains those cells of rowxi whose col-
umn belongs to the segment ofxj and contains those cells
of columnxj whose row belongs to the segment ofxi. It is
easy to see that the crosses for different clauses are disjoint
(here we use the assumption that there are no duplicated
clauses inφ). We claim that for every unsatisfied clause, at
least one of the following is true: (1) the cell in rowxi of
columnxj contains a⋆, (2) the clause has a spoiled vari-
able, (3) the cross of the clause contains at least two⋆’s.
Consider a clause such that none of (1)–(3) hold. Sincexi

is not spoiled, there is an1 ≤ ℓi,1 ≤ z such that variable
xi,j,ℓi,1 is good and there is az + 1 ≤ ℓi,2 ≤ 2z such that
variablexi,j,ℓi,2 is good. If there is no⋆ in rowxi between
columnsxi,j,ℓi,1 andxj , then the first component of rowxi

of columnxj is γ(xi). Similarly, if there is no⋆ in row xi

between columnsxi andxi,j,ℓi,2 , then the first component
of row xi of columnxj is againγ(xi). As neither (1) nor
(3) holds for the clause, at least one of these two statements
has to be true. A similar argument shows that the second
component of rowxi of columnxj is γ(xj). Therefore, the
fact that the pair(γ(xi), γ(xj)) appears in the correspond-
ing cell implies that the clause is satisfied byγ.

Let t0 be the number of clauses for which (1) is true.
Observe that the correspondingt0 ⋆’s do not influence
whether (2) or (3) are true for the other clauses. There-
fore, it is sufficient to investigate the effect of the remain-
ing t − t0 ⋆’s. A ⋆ can make at most 2 variables of
the sequenceX bad, hence there are at most2(t − t0)/z
spoiled variables inφ. Therefore, (2) is true for at most
d · 2(t − t0)/z ≤ (t − t0)/2 clauses. As the crosses are
disjoint, at most(t− t0)/2 of them can contain at least two
⋆’s. Therefore, the total number of unsatisfied clauses is at
mostt0 + (t− t0)/2 + (t− t0)/2 = t.

Combining Lemma 2.2 with standard reductions, we get

Lemma 2.5. There are constants1 > α1 > α2 > 0 such
that if there is an algorithm that can distinguish between
α1-satisfiable and notα2-satisfiable 2SAT formulas in time
2O(m1−δ) for some constantδ > 0 (wherem is the number
of clauses), then ETH fails. Furthermore, we can assume
that the formula is simple and a variable appears at mostd
times for some constantd > 0.

Theorem 2.6. If there is aδ > 0 such thatMATRIX TILING

has a PTAS with running time2O(1/ǫ)1−δ ·nO(1) in the spe-
cial caseD = 2, then ETH fails.

Proof. Let φ be a 3SAT formula withm clauses. Let us
use the algorithm of Lemma 2.4 to construct an instance of
MATRIX TILING with k = O(d2m) andD = 2. If φ is α1-
satisfiable, then the optimum of the constructed instance of
MATRIX TILING is at leastk2−(1−α1)m, while if φ is not
α2-satisfiable, then the optimum is less thank2−(1−α2)m.
This means that by settingǫ := (α1 − α2)m/(4k

2) =
O(1/k), a(1 + ǫ)-approximation algorithm can distinguish
between the two cases. Therefore, if the assumed PTAS ex-
ists, then this can be done in time

2O(1/ǫ)1−δ ·nO(1) = 2O(k)1−δ ·kO(1) = 2O(m)1−δ+O(log k)

= 2O(m1−δ),

which, by Lemma 2.5, contradicts ETH.

Having proved the lower bounds of Theorems 2.3 and
2.6, we transfer these bounds to other optimization prob-
lems by means of an L-reduction.

Definition 2.7. Let A and B be optimization problems
and cA and cB their respective cost functions. A pair of



logspace-computable functionsR andS is anL-reduction
if all of the following conditions are met:

• if x is an instance of problemA, thenR(x) is an in-
stance of problemB,

• if y is a solution toR(x), thenS(y) is a solution tox,

• there exists a constantα > 0 such thatOPT(R(x)) ≤
αOPT(x).

• there exists a constantβ > 0 such that|OPT(x) −
cA(S(y))| ≤ β|OPT(R(x)) − cB(y)|.

It is easy to see that the bounds of Theorems 2.3 and 2.6
remain valid under L-reductions:

Lemma 2.8. (1) If there is an L-reduction fromMA-
TRIX TILING to Problem X, then there are nod, δ > 0
such that Problem X admits a PTAS with running time
2O((1/ǫ)d)nO((1/ǫ)1−δ), unless ETH fails.

(2) If there is an L-reduction fromMATRIX TILING with
D = 2 to Problem X, then there is noδ > 0 such that Prob-
lem X admits a PTAS with running time2O((1/ǫ)1−δ)nO(1),
unless ETH fails.

3 Planar logic problems

Khanna and Motwani [18] defined classes of optimiza-
tion problems that admit polynomial-time approximation
schemes. The problems are formulated using Boolean log-
ical expressions. A formula indisjunctive normal form
(DNF) is a disjunction of terms. A DNF ispositive(resp.,
negative), if every literal is positive (resp., negated). The
weightof an assignment is the number of variables that are
set to true.

MPSAT
Input: A collectionC = {φ1, . . . , φn} of DNFs.
Find: An assignmentγ.
Goal: Maximize the number of DNFs satisfied byγ.

TMIN
Input: A collectionC = {φ1, . . . , φn} of positive DNFs.
Find: An assignmentγ that satisfies every DNF inC.
Goal: Minimize the weight ofγ.

TMAX
Input: A collectionC = {φ1, . . . , φn} of negative DNFs.
Find: An assignmentγ that satisfies every DNF inC.
Goal: Maximize the weight ofγ.

These problems generalize many of the standard opti-
mization problems: for example, MAX CUT can be re-
duced to MPSAT; MAXIMUM INDEPENDENTSET can be
reduced to TMAX; and MINIMUM VERTEX COVER can
be reduced to TMIN. (In all three reductions, we associate a
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φ1,3φ1,2

φ3,2 φ3,3

φ2,3φ2,2φ2,1
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A2,3A2,2A2,1A2,0

B2,3B2,2B2,1
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A1,2 A1,2A1,1A1,0

B0,3B0,2B0,1

B1,1 B1,2

Figure 1. Structure of the instance con-
structed in Theorem 3.1 (D = 4, k = 3).

variable with each vertex and a DNF with each edge.) Given
an instance of the above problems, theincidence graphis a
bipartite graph defined by associating a vertex to each vari-
able and to each DNF, and by connecting each variable to
every DNF where it appears. Khanna and Motwani [17]
show that MPSAT, TMIN, TMAX all admitnO(1/ǫ) time
PTAS’s if the incidence graph is planar. Here we prove that
these approximation schemes are essentially optimal:

Theorem 3.1. If there is aδ > 0 such thatPLANAR MP-
SAT has a PTAS with running time2(1/ǫ)O(1) · nO(1/ǫ)1−δ

,
then ETH fails.

Proof. We present an L-reduction from MATRIX TILING

to PLANAR MPSAT. The collectionC consists ofk2 DNFs
φi,j (1 ≤ i, j ≤ k) on2k(k + 1)D variables. The variables
are arranged into blocksAi,j (1 ≤ i ≤ k, 0 ≤ j ≤ k) and
Bi,j (0 ≤ i ≤ k, 1 ≤ j ≤ k), where each block containsD
variables. The variables in blockAi,j (resp.,Bi,j) will be
denoted byai,j,s (resp.,bi,j,s) for s ∈ ZD. The DNFφi,j

(1 ≤ i, j ≤ t) contains variables only from blocksAi,j−1,
Ai,j , Bi−1,j , Bi,j . As shown in Figure 1, the incidence
graph is planar. The formulas are defined as

φi,j =
∨

(x,y)∈Si,j

(ai,j−1,x ∧ ai,j,x ∧ bi−1,j,y ∧ bi,j,y

∧
∧

x′ 6=x

āi,j−1,x′∧
∧

x′ 6=x

āi,j,x′∧
∧

y′ 6=y

b̄i−1,j,y′∧
∧

y′ 6=y

b̄i,j,y′).

This completes the description of the instance. We claim
that the optimum of the constructed instance is the same as
the optimum of MATRIX TILING . Assume that MATRIX

TILING has a solution where the number of⋆’s is t. If
si,j = (x, y) 6= ⋆, then set the variables inAi,j−1, Ai,j ,



Bi−1,j , Bi,j such that the term corresponding to(x, y) is
satisfied inφi,j , i.e.,ai,j−1,x′ = ai,j,x′ is true if and only if
x′ = x, andbi−1,j,y′ = bi,j,y′ is true if and only ify = y′.
Observe that this assignment is well-defined: for example,
if si,j , si,j+1 6= ⋆, then they assign the same values to the
variables inAi,j (sincesi,j , si,j+1 agree in the first compo-
nent). Assign values to the remaining variables arbitrarily.
It is clear that ifsi,j 6= ⋆, then the correspondingφi,j is
satisfied.

For the other direction, assume thatt of the φi,j ’s are
satisfied in an assignment. Ifφi,j is satisfied, then there is a
pair(x, y) ∈ Si,j such that the term corresponding to(x, y)
is satisfied; setsi,j = (x, y) in this case. Letsi,j = ⋆ if
φi,j is not satisfied. It is easy to verify that thesi,j ’s form a
valid solution of MATRIX TILING .

In a very similar way (details omitted), we can reduce
MATRIX TILING to TMIN and TMAX, hence

Theorem 3.2. If there is a δ > 0 such thatPLANAR

TMIN or PLANAR TMAX has a PTAS with running time
2(1/ǫ)O(1) · nO(1/ǫ)1−δ

, then ETH fails.

4 Intersection graphs

Given a set of geometric objects in the plane, thein-
tersection graphhas one vertex for each object, and two
vertices are connected by an edge if and only if they have
nonempty intersection. The intersection graphs of squares,
rectangles, disks, segments, and other geometric objects
play an important role in many applications such as facility
location [28], frequency assignment [22], and map labeling
[1]. The MAXIMUM INDEPENDENT SET problem for the
intersection graph of unit squares has a2O(1/ǫ)n time PTAS
[15]. Here we show that this PTAS is essentially optimal:

Theorem 4.1. If there is aδ > 0 such thatMAXIMUM

INDEPENDENT SET for unit squares admits a PTAS with
running time2(1/ǫ)O(1) · nO(1/ǫ)1−δ

, then ETH fails.

Proof. The proof is by an L-reduction from MATRIX

TILING . We assume that the squares are open, i.e., two
squares that only touch each other do not intersect. We
represent eachSi,j by a gadgetGi,j . A gadget consists of
16 blocks of squares, where each block induces a clique.
Consider the 16 squaresA1, . . . , A16 of Fig. 2a, and let
(x1, y1), . . . , (x16, y16) be the coordinates of the lower left
corner of these squares. (These squares are not part of
the set of squares that we construct, but they will be use-
ful in the definition of the set.) Setǫ := 1/(4D2) and
let ι : ZD × ZD → ZD2 be an arbitrary bijection. If
(x, y) ∈ Si,j andι(x, y) = r, then we add 16 squaresBi,r

(1 ≤ i ≤ 16) to gadgetGi,j with coordinates

(a) (b)

A16

A3 A4 A5

A6

A7

A8

A9A11A10A12A13

A14

A15

A2A1

Figure 2. The gadget and the way the gadgets
are arranged for k = 3 (Theorem 4.1).

(x1 + rǫ, y1 + rǫ) (x9 − rǫ, y9 − rǫ)
(x2 + rǫ, y2 − yǫ) (x10 − rǫ, y10 + yǫ)
(x3 + rǫ, y3 −Dǫ) (x11 − rǫ, y11 +Dǫ)
(x4 + rǫ, y4 + yǫ) (x12 − rǫ, y12 − yǫ)
(x5 + rǫ, y5 − rǫ) (x13 − rǫ, y13 + rǫ)
(x6 − xǫ, y6 − rǫ) (x14 + xǫ, y14 + rǫ)
(x7 −Dǫ, y7 − rǫ) (x15 +Dǫ, y15 + rǫ)
(x8 + xǫ, y8 − rǫ) (x16 − xǫ, y16 + rǫ)

Furthermore, we add 15 (!) squaresB1,D2 , . . . , B15,D2

with the following coordinates:

(x1 +D2ǫ, y1 +D2ǫ) (x9 −D2ǫ, y9 −D2ǫ)
(x2 +D2ǫ, y2 −Dǫ) (x10 −D2ǫ, y10 +Dǫ)
(x3 +D2ǫ, y3 −Dǫ) (x11 −D2ǫ, y11 +Dǫ)
(x4 +D2ǫ, y4 −Dǫ) (x12 −D2ǫ, y12 +Dǫ)
(x5 +D2ǫ, y5 −D2ǫ) (x13 −D2ǫ, y13 +D2ǫ)
(x6 −Dǫ, y6 −D2ǫ) (x14 +Dǫ, y14 +D2ǫ)
(x7 −Dǫ, y7 −D2ǫ) (x15 +Dǫ, y15 +D2ǫ)
(x8 −Dǫ, y8 −D2ǫ)

It is clear that at most 16 independent squares can be se-
lected from a gadget and an independent set of size 16 con-
tains exactly one squareBi,vi for each1 ≤ i ≤ 16. It can
be verified that for every0 ≤ j ≤ D2, the squaresB1,j ,
. . . , B16,j are independent (if they exist). Furthermore, we
show that every independent setI of size 16 is of this form.
Observe that ifvi > vi+1, thenBi,vi andBi+1,vi+1 inter-
sect (and similarly forB16,v16 andB1,v1). Therefore, we
getv1 ≤ v2 ≤ · · · ≤ v16 ≤ v1, which means that there is
a j such thatvi = j for every1 ≤ i ≤ 16. In particular,
this means that ifI is an independent set of size 16, then
a squareBi,D2 cannot appear inI, as there is no square
B16,D2 .

Thek2 gadgets are arranged as in Fig. 2b, i.e., there is an
offset of 6 between the rows and columns. Adjacent gad-



gets are connected by two blocks of additional squares as
follows. If j < k, then in gadgetGi,j we add the squares
with coordinatesH1

r = (x6 + 1 − rǫ, y6 − D2ǫ), H2
r =

(x8 +1+rǫ, y8 +D2ǫ) for 0 ≤ r < D. These squares form
thehorizontal connectionbetweenGi,j andGi,j+1. Simi-
larly, if i < k, then we addV 1

r = (x10−D2ǫ, y10−1+rǫ),
V 2

r = (x12 +D2ǫ, y12−1−rǫ) for 0 ≤ r < D (thevertical
connectionbetweenGi,j andGi+1,j ). This completes the
description of the constructed set of squares.

We claim that if the optimum of MATRIX TILING is
k2 − t, then the maximum number of independent squares
is 16k2 + 4k(k − 1) − t. Recall that the optimum of MA-
TRIX TILING is always at leastk2/4, hence the reduction
increases the optimum by at most a factor ofα = 80. As-
sume that MATRIX TILING has a solution with valuek2− t.
If si,j = (x, y) 6= ⋆, then select the 16 squaresB1,ι(x,y),
. . . , B16,ι(x,y) from gadgetGi,j . If si,j = ⋆, then select
the 15 squaresB1,D2 , . . . , B15,D2 from Gi,j . Note that
the 16k2 − t squares selected so far are independent. We
show that this independent set can be extended by4k(k−1)
further squares by selecting two squares from each of the
2k(k − 1) connections. Ifsi,j = ⋆, then the 15 squares
selected fromGi,j do not intersectanyof the squares in the
horizontal or vertical connections ofGi,j . Therefore, ifsi,j

or si,j+1 is ⋆, then it is easy to select two squares from the
connection betweenGi,j andGi,j+1. If si,j = (x, y) and
si,j+1 = (x, y′), then we selectH1

x andH2
x from the con-

nection betweenGi,j andGi,j+1. Observe that these two
squares do not conflict with squaresB6,ι(x,y) andB8,ι(x,y)

ofGi,j and with squaresB14,ι(x,y) andB16,ι(x,y) ofGi,j+1.
For example,B6,ι(x,y) at (x6 − xǫ, y6 − ι(x, y)ǫ) does not
conflict withH1

x at(x6 +1−xǫ, y6−D2ǫ), since the differ-
ence in the first coordinate is exactly 1. In a similar way, we
can select two squares from each vertical connection, hence
we obtain an independent set of size16k2 + 4k(k− 1)− t,
as required.

Assume now that we have an independent setI of size
16k2 + 4k(k − 1) − t. If |Gi,j ∩ I| < 16, then set
si,j = ⋆. We setsi,j to ⋆ also in the case ifI con-
tains less than two squares from the horizontal connection
betweenGi,j andGi,j+1 or from the vertical connection
betweenGi,j andGi+1,j . For every remainingGi,j , we
have|Gi,j ∩ I| = 16, hence (as we have argued above),
there is anr such thatGi,j ∩ I = {B1,r, . . . , B16,r}. Set
si,j = ι−1(r) in this case. From|I| = 16k2 +4k(k−1)− t
it follows that we set at mostt cells to ⋆. Assume that
si,j = (x, y) andsi,j+1 = (x′, y′) in the constructed solu-
tion; we have to show thatx = x′. There are two squares
H1

x1
, H2

x2
selected from the horizontal connection between

Gi,j andGi,j+1 (otherwisesi,j would be⋆). Now we have
that x ≥ x1 ≥ x′, otherwiseH1

x1
would intersect either

B6,ι(x,y) of Gi,j orB16,ι(x′,y′) of Gi,j+1. Similarly, by ob-
servingH2

x2
, B8,ι(x,y) of Gi,j , andB14,ι(x′,y′) of Gi,j+1,

we getx ≤ x2 ≤ x′, hencex = x′ follows. With an
analogous argument, we can show that ifsi,j = (x, y) and
si+1,j = (x′, y′), theny = y′ holds.

By an argument of [24], the reduction can be made to
work for unit disks as well. A similar gadget construction
can be used in the case of the MINIMUM DOMINATING SET

problem.

Theorem 4.2. If there is aδ > 0 such thatMAXIMUM

INDEPENDENT SET or M INIMUM DOMINATING SET for
unit squares or unit disks has a PTAS with running time
2(1/ǫ)O(1) · nO(1/ǫ)1−δ

, then ETH fails.

There is a2O(1/ǫ2)n time PTAS for MINIMUM VER-
TEX COVER on unit disk graphs [24, 27], hence the ana-
log of Theorem 4.2 is not true for this problem. However,
we can prove a lower bound with the following argument.
In the caseD = 2, the reduction of Theorem 4.1 con-
structs an intersection graph having bounded degee. For
bounded-degree graphs, there is an L-reduction between
MAXIMUM INDEPENDENT SET and MINIMUM VERTEX

COVER. Hence by (2) of Lemma 2.8,

Theorem 4.3. If there is aδ > 0 such thatM INIMUM VER-
TEX COVER for unit squares or unit disks has a PTAS with
running time2(1/ǫ)1−δ · nO(1), then ETH fails.

Note that the lower bound of Theorem 4.3 does not
match the best known approximation scheme. This might
suggest that the2O(1/ǫ2) PTAS of [24, 27] can be improved
to 2O(1/ǫ). We leave this as an open question.

5 Independent Set, Vertex Cover, Dominat-
ing Set

Lipton and Tarjan [21] used the planar separator theorem
of [20] to show that MAXIMUM INDEPENDENTSET on pla-
nar graphs admits a PTAS with running time2O(1/ǫ)2n +
O(n log n). Using a completely different approach, Baker
[7] improved the dependence onǫ to 2O(1/ǫ) · n. Here we
show that Baker’s algorithm is essentially optimal:

Theorem 5.1. If there is aδ > 0 such thatMAXIMUM IN-
DEPENDENTSET for planar graphs has a PTAS with run-
ning time2O(1/ǫ)1−δ · nO(1), then ETH fails.

Proof. The proof is by presenting an L-reduction from MA-
TRIX TILING with D = 2 to PLANAR MAXIMUM INDE-
PENDENTSET. Each of thek2 setsSi,j will be represented
by an appropriate gadget. A gadget is a planar graph with
distinguished verticesa0, a1, b0, b1, c0, c1, d0, d1 on its
boundary (in this order) such thata0a1, b0b1, c0c1, d0d1

are edges and there are no other edges between these ver-
tices. LetB be the set of these 8 vertices. We say that a



subsetB′ ⊆ B representsthe pair(x, y) ∈ Z2 × Z2 if
B′ = {ax, cx, by, dy}. The purpose of the gadget represent-
ingSi,j is to ensure that the vertices selected fromB repre-
sent a pair fromSi,j , otherwise the gadget incurs a penalty.
The following lemma states the requirements formally:

Lemma 5.2. There is a constantc > 0 such that for every
nonempty setS ⊆ Z2 × Z2, there is a gadgetGS such that

1. The size of the maximum independent set isα(GS) =
c+ 1.

2. If B′ ⊆ B represents a pair inS, thenB′ can be ex-
tended to an independent set of sizec+ 1.

3. IfB′ ⊆ B is an independent set of size4, thenB′ can
be extended to an independent set of sizec.

4. If I is an independent set of sizec + 1, thenB ∩ I
represents a set inS.

The proof the lemma uses standard techniques: we can
argue that every setS ⊆ Z2 × Z2 can be represented by a
formula, which can be turned into a planar formula, which
can be turned into a planar graph using the standard reduc-
tion from 3SAT to MAXIMUM INDEPENDENTSET. Details
omitted.

We construct a planar graphG the following way. For
every1 ≤ i, j ≤ k, we introduce a gadgetGi,j that is the
copy ofGSi,j . For every1 ≤ i ≤ k, 1 ≤ j < k, vertex
c0 (resp.,c1) of Gi,j is connected with vertexa1 (resp.,a0)
of Gi,j+1; and for every1 ≤ i < k, 1 ≤ j ≤ k, vertexd0

(resp.,d1) of Gi,j is connected with vertexb1 (resp.,b0) of
Gi+1,j .

We claim that if the optimum of MATRIX TILING is
k2 − t, thenα(G) = (c + 1)k2 − t. Assume that there
is a solution of MATRIX TILING with valuek2 − t. For
eachsi,j 6= ⋆, let us select a subsetB′ ⊆ B that represents
si,j , and extend it to an independent set of sizec+1 (Prop. 3
of Lemma 5.2). Observe that the independent sets selected
from neighboring gadgets do not conflict. For example, if
si,j , si,j+1 6= ⋆, then they agree in the first component,
hence eitherc0 is selected fromGi,j anda0 is selected from
Gi,j+1, or c1 is selected fromGi,j anda1 is selected from
Gi,j+1. Consider the cells withsi,j = ⋆ in arbitrary order,
and in each gadget, select 4 vertices ofB that do not conflict
with the vertices already selected from the neighboring gad-
gets (this can be done, since it is not possible that, say, both
a0 anda1 have a selected neighbor). Extend these 4 vertices
into an independent set of sizec (Prop. 2 of Lemma 5.2). If
t is the number of⋆’s in the solution of MATRIX TILING ,
then we obtain an independent set of sizect+(c+1)(k2−t),
henceα(G) ≥ (c+ 1)k2 − t follows.

For the other direction, suppose thatG has an indepen-
dent setI of size(c + 1)k2 − t. Since|I ∩ Gi,j | ≤ c + 1
(Prop. 1 of Lemma 5.2),|Gi,j ∩ I| ≤ c for at mostt of

the Gi,j ’s. If |Gi,j ∩ I| ≤ c, then setsi,j = ⋆. If
|Gi,j ∩ I| = c + 1, then by Prop. 4 of Lemma 5.2,B ∩ I
in Gi,j represents a pair(x, y) from Si,j ; in this case, set
si,j = (x, y). We can verify that this is a valid solution
of MATRIX TILING . For example, ifsi,j = (x1, y1) and
si,j+1 = (x2, y2), thenx1 = x2: otherwisecx1 ∈ I of Gi,j

andax2 ∈ I of Gi,j+1 would be neighbors. As the number
of ⋆’s is t, we get that the optimum of MATRIX TILING is
at leastk2 − t.

Observe that the reduction constructs bounded-degree
graphs. For bounded degree graphs, there is an L-reduction
from MAXIMUM INDEPENDENTSET to MINIMUM VER-
TEX COVER. Furthermore, there is an L-reduction from
M INIMUM VERTEX COVER to MINIMUM DOMINATING

SET, hence we have

Theorem 5.3. If there is aδ > 0 such thatM INIMUM VER-
TEX COVER or M INIMUM DOMINATING SET for planar
graphs has a PTAS with running time2O(1/ǫ)1−δ · nO(1),
then ETH fails.

6 TSP on planar graphs

The Traveling Salesperson Problem (TSP) is one of the
most studied optimization problems. Here we consider the
special case where the distance metric is the shortest-path
metric of an unweighted planar graph. That is, given a pla-
nar graph, the task is to find a tour (closed walk) of min-
imum length that visits every vertex at least once. The
first PTAS for the problem was given by Grigni et al. [14],
with running timenO(1/ǫ). Recently, this was improved to
2O(1/ǫ)n by Klein [19], which is essentially optimal:

Theorem 6.1. If there is aδ > 0 such that TSP on un-
weighted planar graphs has a PTAS with running time
2O(1/ǫ)1−δ · nO(1), then ETH fails.

Proof. The proof is by presenting an L-reduction from MA-
TRIX TILING withD = 2 to the problem. We say that a tour
is efficientif after removing any loop (i.e., a subtour that
starts and ends on the same vertex) there is at least one ver-
tex that is not visited by the resulting shorter tour. Clearly,
the optimum tour is efficient. The purpose of theexclusive-
or line (Fig. 3) is to force the tour to use exactly one of the
two edgese1 ande2. Assume that in a graphG edgese1
ande2 are connected as in Fig. 3b, and there is an efficient
TSP tourT that visits each of the 16 internal vertices of
the exclusive-or line exactly once. It can be verified by in-
spection that tourT enters the exclusive-or line only once,
and it either uses bothe′1 ande′′1 (Fig. 3c), or bothe′2 and
e′′2 (Fig. 3d). In fact, we can make the assumption slightly
weaker: the same conclusion holds even if we only assume
that 15 of the 16 internal vertices are visited exactly once.
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Figure 3. The exclusive-or line.

(Here we use the assumption thatT is efficient: otherwise it
would be possible thatT visits the exclusive-or line twice,
the first time visiting every vertex and the second time vis-
iting only one vertex.)

We represent each setSi,j of MATRIX TILING by a gad-
getGi,j . The gadget is a planar graph with 4 distinguished
verticesv1, v2, v3, v4 and 4 distinguished edgesa0, a1, b0,
b1 on its boundary (see Fig. 4a). We say that a setW of
walks is atraversalof the gadget if both endpoints of each
walk is in {v1, v2, v3, v4} and each vertex of the gadget is
visited by at least one of the walks. A traversalusesan edge
e if at least one of the walks go throughe. A traversalW
representsa pair (x, y) ∈ Z2 × Z2 if ax and by are the
only distinguished edges that are used byW. Theweight
of a traversal is the number of vertices in the gadget that
are visited more than once. The properties of the gadget are
summarized in the following lemma:

Lemma 6.2. There is a constantc > 0 such that for every
nonempty setS ⊆ Z2 × Z2, there is a gadgetGS such that

1. There arec vertices inGS .

2. For every (x, y) ∈ S, there is a traversalW =
{P1, P2} of weight0 where simple pathP1 connects
v1 andv3, simple pathP2 connectsv2 andv4, andW

represents(x, y).

3. For everyZ ⊆ {a0, a1, b0, b1}, there is a traversal
W = {P1, P2} of weight1 where walkP1 connects
v1 and v3, walk P2 connectsv2 and v4, andW uses
the edges inZ, but not those in{a0, a1, b0, b1} \ Z.

4. If a traversalW has weight0, then it represents a set
(x, y) ∈ S.

The proof of this lemma is tedious, but uses only the
standard gadgeteering techniques developed for proving the
NP-hardness of Hamiltonian cycle. Details will appear in
the full version.

Each setSi,j is represented by a gadgetGi,j that is a
copy of GSi,j . The gadgets are connected as shown in

b1

v4v3

v2

b0

v1

a1a0

(a) (b)

Figure 4. The gadget and the way the gadgets
are arranged for k = 3 (Theorem 6.1).

Fig. 4b. Distinguished edges of adjacent gadgets are con-
nected with exclusive-or lines. For1 ≤ i < k, 1 ≤ j ≤ k,
vertex v3 (resp.,v4) of Gi,j is connected with vertexv1
(resp.,v2) of Gi+1,j . Verticesv3 and v4 of gadgetGk,j

are connected with each other (for1 ≤ j ≤ k), while ver-
tex v2 of G1,j is connected with vertexv1 of G1,j+1 (for
1 ≤ j < k). Finally, vertexv1 of G1,1 is connected with
vertexv2 ofG1,k. Observe that the number of vertices of the
constructed graph isc·k2+32k(k−1): there arek2 gadgets
with c vertices each, and each of the2k(k− 1) exclusive-or
lines add 16 new vertices.

We show that if the optimum of MATRIX TILING is
k2 − t, then the optimum of the constructed instance of
TSP isc · k2 + 32k(k − 1) + t. Assume first that MA-
TRIX TILING has a solution where the number of⋆’s is t.
We construct a tour that starts at vertexv1 of G1,1, goes to
vertexv3 of G1,1, goes to vertexv1 of G2,1, goes to vertex
v3 of G2,1, etc., until it reaches vertexv3 of Gk,1. Using
the edgev3v4, the tour goes tov4 of Gk,1 and revisits the
first column by going tov2 of Gk,1, to v4 of Gk−1,1, to v2
of Gk−1,1, etc., until it reaches vertexv2 of G1,1. At this
point the tour goes to vertexv1 of G1,2 and visits the sec-
ond column in a similar way. Finally, when the tour reaches
vertexv2 of G1,k, it returns tov1 of G1,1. Each gadget is
visited twice: once by a walk fromv1 to v3, and once by
a walk fromv2 to v4. To complete the construction of the
tour, we have to find an appropriate traversal for each gad-
get. If si,j = (x, y) 6= ⋆, then we use the traversal ofGi,j

given by Prop. 2 of Lemma 6.2. Ifsi,j , si,j+1 6= ⋆, then
si,j = (x, y1), si,j+1 = (x, y2) implies that the traversal
of Gi,j uses edgea1 if and only if the traversal ofGi,j+1

does not use edgea0. Therefore, the tour can be extended
to the exclusive-or lines in such a way that the tour visits the
vertices of these lines exactly once (Fig. 3c or Fig. 3d). If



si,j = ⋆, then we choose an appropriate subset of the dis-
tinguished edges, and by Prop. 3 of Lemma 6.2, we obtain
a traversal of weight1 that is compatible with the traver-
sals of the neighboring gadgets, i.e., there is no conflict on
the exclusive-or lines. If the weight of a traversal is1, then
there is exactly one vertex in the gadget that is visited twice.
Thus there are exactlyt vertices in the graph that are visited
twice, all the other vertices are visited exactly once. There-
fore, the total length of the tour isc · k2 + 32k(k − 1) + t.

For the other direction, assume that there is an efficient
tour T with lengthc · k2 + 32k(k − 1) + t. This means
that there are at mostt vertices that are visited more than
once; letX be the set of these vertices. IfGi,j ∩ X 6= ∅,
then setsi,j = ⋆. If at least two vertices ofX are in
the exclusive-or line connectingGi,j andGi,j+1, then set
si,j = si,j+1 = ⋆. The exclusive-or line connectingGi,j

andGi+1,j is handled similarly. LetGi,j be a gadget such
that si,j was not set to⋆. Each of the exclusive-or lines
connected toGi,j contains at most one vertex ofX , thus (as
we have observed at the beginning of the proof) the line is
used in a “proper way,” i.e., as in Fig. 3c or Fig. 3d. There-
fore, if we remove the exclusive-or lines, thenT induces
a traversalW of Gi,j of weight 0 (sinceGi,j ∩ X = ∅).
By Prop. 4 of Lemma 6.2, this means thatW represents a
pair (x, y) ∈ Si,j ; setsi,j := (x, y). It easy to see that if
si,j = (x1, y1) andsi,j+1 = (x2, y2), thenx1 = x2, oth-
erwise it would not be true that the exclusive-or line con-
nectinga1 of Gi,j anda0 of Gi,j+1 contains at most one
vertex ofX . Similarly, if si,j , si+1,j 6= ⋆, then they agree
in the second component. The number of⋆’s is at most
the size ofX , hence we obtain a solution with value at least
k2 − t.

For the weighted version of the problem, Klein [19] gives
a 2O(1/ǫ2)n time PTAS. We leave it as an open question
whether this PTAS is optimal for the weighted version or
(as in the unweighted case) it can be improved to2O(1/ǫ)n
to match Theorem 6.1.

References

[1] P. K. Agarwal, M. van Kreveld, and S. Suri. Label placement
by maximum independent set in rectangles.Comput. Geom.,
11(3-4):209–218, 1998.

[2] J. Alber, H. Fernau, and R. Niedermeier. Parameterized
complexity: exponential speed-up for planar graph prob-
lems.J. Algorithms, 52(1):26–56, 2004.

[3] J. Alber and J. Fiala. Geometric separation and exact solu-
tions for the parameterized independent set problem on disk
graphs.J. Algorithms, 52(2):134–151, 2004.

[4] A. Andoni, P. Indyk, and M. Patrascu. On the optimal-
ity of the dimensionality reduction method. InFOCS ’06:
Proceedings of the 47th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS’06), pages 449–458,
Washington, DC, USA, 2006. IEEE Computer Society.

[5] S. Arora. Polynomial time approximation schemes for Eu-
clidean TSP and other geometric problems. InFOCS 1996,
pages 2–11. IEEE Comput. Soc. Press, 1996.

[6] S. Arora. Polynomial time approximation schemes for Eu-
clidean traveling salesman and other geometric problems.J.
ACM, 45(5):753–782, 1998.

[7] B. S. Baker. Approximation algorithms for NP-complete
problems on planar graphs.J. ACM, 41(1):153–180, 1994.
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