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Abstract seems worth investigating whether improvements in the de-
pendence onare possible or we have reached the optimum
We show for several planar and geometric problems that PTAS. For planar graphs, an exact solution oAxMum
the best known approximation schemes are essentially optid NDEPENDENT SET can be found in tim&°™) [2] (in-
mal with respect to the dependenceerfor example, we  stead of the triviaR®("™)); this might raise the hope that a
show that the2?(!/<) . . time approximation schemes for 90(v/1/9) . ;,001) PTAS exists. Finding a set dfindepen-
planar MAXIMUM INDEPENDENTSET and for TSPon a dent unit disks can be done in tim& (V%) [3] (instead of

metric defined by a planar graph are essentially optimal: the trivial n®™), hence am®V179 time PTAS would not

if there is ad > 0 such that any of these problems admits L . e
20((1/9*~*),00) time PTAS, then the Exponential Time be c_ompIeFer surprising. The main contribution of the pa-

Z thesis (ETH) fails. It i k tha : per is proving almost-tight lower bounds for planar and ge-
ypothesis ) fails. It is known AXIMUM IN- ometric problems: we show that the known approximation

DEZTND:\;IEEI;TTO_?&TEI d_'l_sl\k/lgr;?phds a.?dott]&?lﬁnar logic  schemes for these problems are essentially optimal with re-
proviem ' ’ admitn IMe ap- spect to the dependence ein the running time. To prove

proximation schemes. We show that they are optimal in thethese lower bounds, we assume the Exponential Time Hy-

sens_e that iftho?lr)e ig@> OEEC“ that any of these problgms pothesis (ETH): we assume thatvariable 3SAT cannot be

admits a2(/9"n /97 time PTAS, then ETH fails.  go)yed in time2e(™. The Sparsification Lemma of Impagli-
azzo, Paturi, and Zane [16] states that this assumption is
equivalent to the (seemingly stronger) assumption thaethe
is no algorithm that solves 3SAT #¥("), wheren is the size

1 Introduction of the instance. We remark that instead of assuming ETH,
the results in this paper follow from the weaker assumption

Many classical graph-theoretic problems admit thatm-clause 3SAT cannot be solved in tiR@™'~*) for
polynomial-time approximation schemes (PTAS) when anys > 0.
restricted to planar graphs. For example, in planar graphsa The following theorem states our lower bounds for five
(1+¢)-approximation for MXIMUM INDEPENDENTSET, problems that (with the exception of the last) are known to
MINIMUM VERTEX COVER, MINIMUM DOMINATING admit approximation schemes with running titf&!/<) . n,
SET[7], and TSP [19] can be computed in tiR@(/¢) . .

Planar graph problems and planar geometric problemsTheorem 1.1. Assuming ETH, there is nb> 0 such that
share some structural similarities, hence two-dimensiona a 20((1/9" )0 time PTAS exists for

geometric problems often have PTAS'’s. For example, given

a set of unit disks in the plane,(a + ¢)-approximation of e MAXIMUM INDEPENDENTSET on planar graphs,
the maximum independent set can be found in tirf€/¢)
[15].

Improving the dependence of the running timesags an
obvious goal and there is a history of such improvements
in the literature. Arora [5] presented af(*/¢) time PTAS e TSP with a metric defined by an unweighted planar
for Euclidean TSP, which was improveditolog® "/ n in graph.
the journal version of the paper [6]. Later, Rao and Smith
[26] gave a PTAS with running time further improved to ~ ® MINIMUM VERTEX COVER for unit disks or unit
20((1/)log(1/))y + O(nlogn). Thus, given a PTAS, it squares.

MINIMUM VERTEX COVER on planar graphs,

MINIMUM DOMINATING SET on planar graphs,



The problems considered in the following theorem ad-
mit approximation schemes with running tim&/); we
show thatl/e in the exponent of. cannot be replaced by
(1/€)!=° for anyd > 0. The statement of the theorem is

The situation is similar in the case of MIMUM IN-
DEPENDENT SET for unit disks. The W[1]-hardness proof
of [24] together with a result of [11] implies that there is
a constant: > 0 such that there is ng(k)n°*"") time

slightly stronger: the lower bound on the exponent holds algorithm for finding a set of: independent disks, unless

even if we allow an exponential function ofe as a multi-
plier:

Theorem 1.2. Assuming ETH, there is nb> 0 such that
a2(1/9%% . po((1/9") time PTAS exists for

e MPSAT for planar formulas,

TMIN for planar formulas,

TMAX for planar formulas,

e MAXIMUM INDEPENDENT SET for unit disks or
squares.

MINIMUM DOMINATING SET for unit disks or
squares.

Ideally, for these problems we would like to have a tight
result that rules out the possibility of a PTAS with running
time f (¢)n°(*/¢), for anyfunction f (¢). For example, Theo-
rem 1.2 does not rule out the possibility of a PTAS with run-

1/e
ning time, say22” " nloslos(1/9 _such a PTAS could be
considered as a theoretical improvement ov@r'/) time.
Without going into details, we mention that it is possible
to prove the weaker result that rfge)n°(v/¢) PTAS ex-
ists for any functiory (¢) for these problems. Theorems 1.1

ETH fails. This means (by a simple argument of Bazgan
[8] and Cesati and Trevisan [10]) that no PTAS with running
time £(e)n°((/9"*) can exist. However, the problem can
be solved in time:° (V%) [3], thusc > 2, which means that

we cannot prove a lower bound stronger thfge)n© (v /)
with this argument.

We get around these difficulties by using the fact that,
assuming ETH, not only 3SAT cannot be solved in time
2°(™), but the optimization version MAX3SAT cannot be
approximated to some constant factor in tif&™" ") for
anyd > 0. This is a consequence of the almost-linear size
PCP of Dinur [12]. The lower bounds for the planar prob-
lems are obtained by a reduction that is approximation pre-
serving in a weak way: a fast PTAS for the planar prob-
lem would imply a fast constant-factor approximation for
MAX3SAT. Note that this reduction is somewhat unusual,
since a problem without a PTAS is reduced to a problem
that admits a PTAS.

Previously, the literature focused mostly on the PTAS
vs. EPTAS question [10, 9, 13, 24, 23, 25]. /Asffi-
cient PTASEPTAS) is an approximation scheme with run-
ning time f(e)n®®) for some functionf. These papers
showed, for problems that were known to admit approx-
imation schemes, that no EPTAS exists (under the stan-

and 1.2 are not tight because we are using the almost-lineadard parameterized complexity assumption WAJFPT).

size PCP construction of Dinur [12]. Replacing this with

These results can be turned into non-tight lower bounds on

a linear-size PCP would result in tight lower bounds, but the exponent of.. In [4], almost-tight lower bounds were

currently such a construction is not in sight.

A simple observation gives us non-tight lower bounds
on the dependence enh Since MAXIMUM INDEPENDENT
SET is NP-hard for planar graphs, there is a polynomial-
time algorithm that turns a 3SAT instance of sizdnto
an equivalent instance of AKIMUM INDEPENDENTSET
on a planar graph of size¢, for some constant. By set-
ting e := 1/(n° 4+ 1), a(1 + ¢)-approximation algorithm
can solve the constructed instance ofMMUM INDEPEN
DENT SET exactly. Therefore, no PTAS with running time
20((1/9"*)p0(1) can exist: otherwise it would be able to
solve 3SAT in time2°("™), contradicting ETH. By observing
thatc = 2 in the known reductions from 3SAT to planar
MAXIMUM INDEPENDENTSET, we obtain a lower bound
of 2V1/¢ . nO) However, this argument cannot be used
to prove stronger lower bounds: as planasMvum IN-
DEPENDENT SET can be solved in time®(v™) [2], a re-
duction withe < 2 would mean that 3SAT can be solved in

obtained for the string matching problem.@SEST SUB-
STRING; this is the only previous result that we are aware
of where almost-tight bounds were established. Our result
give almost-tight bounds for most of the problems consid-
ered in [10, 9, 13, 24]. Furthermore, we also give almost-
tight lower bounds for problems that admit EPTASSs (Theo-
rem 1.1); to our knowledge, these are the first results of this
type.

In Section 2, we introduce the planar problenaiwkix
TILING. This problem admits an®(*/¢) time PTAS and a
special case of the problem admit@@(*/<)n time PTAS.

We show that these approximation schemes are optimal in
the sense of Theorem 1.1 and 1.2. The lower bounds of The-
orem 1.1 and 1.2 are obtained by reducingm™ix TILING

(or its special case) to the various problems (Sections 3—
6). MATRIX TILING was defined with such reductions in
mind, thus the reductions are fairly straightforward if we
can construct the problem-specific gadgets. It is likely tha

time 2°("), Therefore, new techniques are required for the reduction from MATRIX TILING can be used to prove lower

almost-tight bounds of Theorems 1.1.

bounds for many other planar and geometric problems.



2 The MATRIX TILING problem

The problem M\TRIX TILING plays a central role in the

clause, then the constraifit;, # ¢1V y:, # {2) is added to
the set. Itis clear that a subsgt of clauses is satisfiable if
and only if there is an assignment to the corresponfii

paper: we prove lower bounds on the efficiency of the ap- variables that satisfies all the constraints induced'py

proximation schemes of MRIX TILING and these lower

We want to partition they;’s into & blocks By, ...,

bounds are transfered to other problems by appropriate re-B;, of equal size, butn/k is not necessarily integer. Let

ductions. We denote by, the set{0,1,...
throughout the paper.

D — 1}

MATRIX TILING

Input:

Integersk, D, andk? nonempty sets; ; C Zp x Zp (1 <
i,j < k).

Find:

Foreachl <i,j <k, avalues; ; € S; ; U{%} such that
o If s;; = (a1,a2) ands; j+1 = (b1, b2), thena; = b:.
o If Si,j = (04,(12) andsi+1,]- = (b1,b2), thenag = bs.

Goal:

Maximize the number of pair§i,j) (1 < 7,7 < k) with
Sij # K.

We think of the values; ; of a solution as being ele-

m' = k[m/k] and let us adéh’ —m < m’/k new dummy
variables that do not appear in any of the constraints. Set
D := 3™'/%; for each block ofn’ /k variables, we can fix

a bijection betweely ;, and the possible assignments of the
variables in the block. We construct an instance of-M
TRIX TILING with parameterg and.D where the sets); ;

are defined as follows. We say that a partial assignment
of the variablesgy; is compatible,if there is no constraint
(yin # €1V yi, # o) With y(y;,) = €1 andy(ys,) = Lo

If i = j, thensS, ; contains those pair@, t) wheret € Zp
corresponds to a compatible assignment of bl&gk For

i # j, consider a paifv;,v;) € Zp x Zp. Let~; (resp.,

;) be the assignment of block; (resp.,5;) that corre-
sponds tov; (resp.,v;). The pair(v;,v;) isin S, ; if and
only if ~; and~; together form a compatible assignment
of B; U B;. If a setsS; ; is empty, thenp is unsatisfiable,
since there is no compatible assignment for some pair of

ments of a matrix, hence we use the expressions row, colplocks. In this case, we can output an arbitrary instance
umn, and cell with the obvious meaning. Observe that with optimumk? /4. This completes the description of the

the optimum is always at leaf/4: if i andj are both
odd, then lets; ; be an arbitrary element of; ;, other-
wise lets; ; = %. (Here we use that; ; is required to be
nonempty.) This observation will be useful when reducing
MATRIX TILING to other problems. The size of the input
instance can be bounded by(k2D?).

The following lemma gives a reduction from MAX3SAT
to MATRIX TILING. The reduction is approximation-

preservingin a certain weak sense, which allows use to use g,

PTAS for MATRIX TILING to solve MAX3SAT. A formula
with m clauses igv-satisfiabldf there is an assignment that
satisfies at leastm clauses.

Lemma 2.1. There is an algorithm with running time poly-
nomial in the size of theutputthat, given a 3SAT formula
havingm clauses and an integét, constructs an instance
of MATRIX TILING with parameters: and D := 3/™/*1
such that for every > o > 0,

e if ¢ is satisfiable, then the optimum d¥1ATRIX
TILING is k2,

e if ¢ is nota-satisfiable, then the optimum MATRIX
TILING is at mostk? — k(1 — )/2 + 1.

Proof. Let us associate a variabje € {1, 2,3} with each
clause ofp. The intended meaning gf = ¢ is that thei-th
clause is satisfied by itsth literal. To enforce this interpre-
tation, we construct a set of constraints: if theth literal of
thei;-th clause is the negation of tiig-th literal of thei,-th

constructed instance of MRIX TILING.

If ¢ is satisfiable, then there is an assignmentf the
y;'s that satisfies all the constraints we defined. For each
1 <i,j <k, letv; € Zp be the value corresponding to
assignmenty restricted to blockB;. Sets;; = (v;,v;).
Assignmenty satisfies all the constraints; in particular, it
satisfies all the constraints induced by the variables;it
Bj, implying (v;,v;) € S; ;. Thus we obtain a solution
ith valuek?.

For the second part, suppose thativtix TILING has a
solution with value at leagt’ —k(1—a)/2+1, i.e., the num-
ber of %'s is at mostk(1 — «)/2 — 1. Let us call a block
B; badif the ¢-th row or thei-th column contains at least
one. As ax can make at most 2 blocks bad, there are at
most(1 — o)k — 2 bad blocks. Let us call a variabje and
(if y; is not a dummy variable) the corresponding clause of
¢ good,if y, does not belong to a bad block; clearly, there
are at leastm’/k)(k — (1 — o)k + 2) = am’ + 2m//k
good variables. Less than’/k of the good variables are
dummy variables, hence we have at least good clauses.
We claim that there is an assignmentgo$atisfying all the
good clauses, contradicting the assumption ¢histnot -
satisfiable. If blockB, is not bad, then there is a valuge
such that the first component of eagh; (1 < j < k) isv,.
Similarly, there is a value!. such that the second compo-
nent of eacts; , (1 < i < k) iswv,. Since(v,,v.) € Sy,
we get thaw, = v... The valuev, defines an assignment of
the variableg; in block v,.; this way, we obtain a value for



each good variablg;. In a natural way, we can construct
an assignment af corresponding to the values of the good
variablesy; = ¢ means that theth clause is satisfied by its
(-th literal, hence it defines the value of one variablegaf

a variabler; of ¢ is not assigned a value this way, then we

can assign an arbitrary value to it. This assignment is well

defined: ify;, = ¢; andy,, = ¢, force a variable to differ-
ent values, then there is a constraipt, # ¢1 V yi, # {2).
Suppose thay;, € B, yt, € B,,; this means that the
assignment of3,., corresponding ta,, is not compatible
with the assignment oB,., corresponding ta,.,, contra-
dicting the fact that,, ,, = (vy,,vr,) € Sr, .r,. Therefore,

the constructed assignment satisfies every good clause, i.e

¢ is a-satisfiable.

Using standard layering techniques, it can be shown that,

MATRIX TILING admits a PTAS with running time© (1/€),
In Theorem 2.3, we show that thi¢e in the exponent of.
is essentially optimal. The lower bound is obtained from
known hardness results on MAX3SAT.

The Sparsification Lemma of Impagliazzo, Paturi, and
Zane [16] implies that ETH is equivalent to the assump-
tion thatm-clause 3SAT cannot be solved in tirge™),

The almost-linear size PCP of Dinur can be used to turn

a formula¢ with m clauses into a formula with m’ :=
mlog®® m clauses such that i is satisfiable, then)
is satisfiable and ify is unsatisfiable, them is not a-
satisfiable for some constamt< 1. Therefore, the running

20(1/9)" . 01/ "then the two cases can be distin-
guished in time

20(k") (2. p2)OR)'~*
= exp (O(k?) + (O(log k) + O(m/k)) - O(k)' )
= exp (O(m®/ D) 4 o(k) + O(m/k"))
= exp (o(m) + o(m1—6/<2d+1>)) _ polm),

which, by Lemma 2.2, contradicts ETH. O

Let us investigate the special case oATRIX TILING
with D = 2. It can be shown that this special case admits
a PTAS with running time°(/9)n, and, as we shall see in
Theorem 2.6, this is essentially optimal. The lower bounds
in Theorem 1.1 are obtained by reductions from this spe-
cial case. When reducing from this special caSg;| < 4
implies that a “gadget” representing soifig; has to have
only a constant number of states. Therefore, the gadget con-
struction can be simpler and the reduction can be done to a
wider range of problems.

If D = 2, then we are not able to reduce MAX3SAT
to MATRIX TILING as in Lemma 2.1. Instead, we reduce
MAX2SAT. We say that a 2SAT formula ®mple,if it does
not contain unsatisfiable clauses or duplicated clauses.

Lemma 2.4. There is a polynomial-time algorithm that,
given a simple 2SAT formulawith m clauses where each

time of an algorithm distinguishing between these two casesvariables appears in at most clauses, constructs an in-

cannot be2°(™), which means that it cannot B& ™" ")

foranyo > 0.

Lemma 2.2. There is a constant > « > 0 such that if
there is an algorithm that can distinguish between satisfi-
able and not-satisfiable 3SAT formulas in ting (™' ™)

for some constardt > 0 (wherem is the number of clauses),
then ETH fails.

Theorem 2.3. If there are constants,d > 0 such that
MATRIX TILING has a PTAS with running tin@?(1/" .
nO0/' ™" then ETH fails.

Proof. Let ¢ be a 3SAT formula withn clauses. Set :=
[m!/(24+1)7] < m,. Let us use the algorithm of Lemma 2.1
to construct an instance of MRIX TILING from ¢ with
this value ofk. Sete := (1 — a)/(2k) — 1/k? = ©(1/k),
wherec« is the universal constant in Theorem 2.2 (we as-
sume thatm, and hence, is sufficiently large that is
positive.) If ¢ is satisfiable, then the optimum of MRIx
TILING is k2. On the other hand, i is not a-satisfiable,
then the optimum is at mo#f — k(1 — «)/2 + 1. Since
E2/(14+¢€ > k(1 —¢) = k2 —k(1 —a)/2+1,a

(1 + €)-approximation algorithm can distinguish between
the two cases. If there is a PTAS with running time

stance of MATRIX TILING with parameters: := O(d?m)
and D := 2 such that if¢t is the minimum number of un-
satisfied clauses in, then the optimum of the constructed
instance isk? — ¢.

Proof. Let x4, ..., z, be an ordering of the variables ¢f

(p < 2m). By adding new variables, we obtain a longer
sequenceX of variables. Let;,, ..., z;, be those vari-
ables that appear together within some claused < d).
Setz := 4d. We replacer; with a sequence dfzd’ + 1
variables, called theegmenbdf x;. This segment contains
x; and2zd’' new variablese;, ;0 (1 <s < d',1 < /¢ < 2z).
The variables in the segment are ordered in such a way that
x;, i IS beforex; for 1 < ¢ < z and it is afterx; for
z+1 < ¢ < 2z. Replacing every; with the correspond-
ing segment oRzd’ + 1 variables gives a sequence X of
k < p(2zd + 1) = O(d?*m) variables. For each new vari-
ablex;, ; ¢, we say that it is aopyof z;,; each variable
has at mosRzd copies (we do not consider a variahlg

to be a copy of itself). If a variable is a copy of or it is

x; itself, then we say that the variablepresentsr;. We
construct an instance of MRIX TILING with parameters

k andD = 2 where the rows and the columns are indexed
by thek variables inX. The setsS; ; are defined the fol-
lowing way. If there is a clausér; V z;), then the set in



row z; and columnz; is {(0,1),(1,0),(1,1)}. We con- between columns; andz; ; o, ,, then the first component
sider a clause as an ordered pair of literals, hence claus®f row z; of columnz; is againy(xz;). As neither (1) nor

(x; V z;) does not influence the set in rawy of columnaz;. (3) holds for the clause, at least one of these two statements
We proceed similarly for clauses containing negations: in has to be true. A similar argument shows that the second
this case, the s, ; contains the three pairs corresponding component of row; of columnz; is v(x;). Therefore, the

to the satisfying assignments of the clause. Every other sefact that the pai(~(z;), v(z;)) appears in the correspond-

is {(0,0),(0,1),(1,0),(1,1)}, unless the row and the col- ing cell implies that the clause is satisfiedfy

umn indices represent the same variablein which case Let to be the number of clauses for which (1) is true.
the setis{(0,0),(1,1)}. Observe that the corresponding %’s do not influence

Assume thap has an assignmentthat satisfies all but ~ Whether (2) or (3) are true for the other clauses. There-
Of the C|auses_ We deﬁne the Va|u$pj the fo”owing Way_ fore, it is sufficient to inVeStigate the effect of the remain
If the i-th variable in sequenc& represents;, and the i ¢ — fo %’s. A % can make at most 2 variables of
j-th variable represents;,, thens, ; = (y(xi,),v(z;,)).  the sequenc& bad, hence there are at mast — to)/z
This pair is inS; ; unlesssS; ; corresponds to a clause not SPoiled variables irp. Therefore, (2) is true for at most
satisfied byy. That is, thei-th (resp.,j-th) variable of the ~ d - 2(t —t0)/z < (t —t0)/2 clauses. As the crosses are
sequence igio (resp_,xjo) itself (not a Copy) and there is d|SJO|nt, at mOS(t — t())/2 of them can contain at least two
an unsatisfied clause where the first (resp_, Second) variabl *,S. Therefore, the total number of unsatisfied clauses is at
is x;, (resp.,z;,). If the pair is not inS; ;, then we set ~ MOStto + (£ — t0)/2 + (t — t0)/2 = 1. O
si,; = %; clearly, the number ok’s is at most.

Assume now that there is a solution with value at least
k2 —t. A variable of the sequence is badif the row orthe ~ Lemma 2.5. There are constants > a; > az > 0 such
column corresponding to the variable contains at least onethat if there is an algorithm that can distinguish between
%; otherwise let us call igood. If the i-th variable of the ~ «ai-satisfiable and noti»-satisfiable 2SAT formulas in time
sequenceX is good, then let us associate to this variable 20(m' ") for some constant > 0 (wherem is the number
the value that appears as the first component of each paiof clauses), then ETH fails. Furthermore, we can assume
in the i-th row. Because of the way the s&t; is defined, that the formula is simple and a variable appears at mbst
this value is the same as the value that appears as the secoritnes for some constart> 0.
component of each pair in theth column. If thei-th and _
the j-th variables ofX are both good and they represent the 1heorem 2.6.Ifthereis aj > 0 such thaMATRIX TILING
same variable, then the same value is associated to ther3as @ PTAS with running tim@(*/<)" " . n%() in the spe-
setS;; = {(0,0),(1,1)} ensures this. A variable af is  Cial caseD = 2, then ETH fails.
spoiledif at leastz of its copies are bad. We construct an
assignment of ¢ the following way: ifz; is spoiled, then
we sety(z;) _arbitrar_ily, otherwise Ie’o/_(xi) be the common MATRIX TILING with k = O(d?m) andD = 2. If ¢ is o -
value associated with the good copiesvof satisfiable, then the optimum of the constructed instance of

We claim that at mostclauses of are not satisfied by. MATRIX TILING is at leask? — (1— a1 )m, while if ¢ is not
For each clause, we define a set of cells calleccthesof ap-satisfiable, then the optimum is less th&n- (1 —az)m.

the clause. Let;, z; be the two variables of the clause. The This means that by setting := (a1 — az)m/(4k%) =

Combining Lemma 2.2 with standard reductions, we get

Proof. Let ¢ be a 3SAT formula withn clauses. Let us
use the algorithm of Lemma 2.4 to construct an instance of

cross of the clause contains those cells of @\whose col-  O(1/k), a(1 + ¢)-approximation algorithm can distinguish
umn belongs to the segment.of and contains those cells  petween the two cases. Therefore, if the assumed PTAS ex-
of columnz; whose row belongs to the segmentwf It is ists, then this can be done in time

easy to see that the crosses for different clauses arerdisjoi

(here we use the assumption that there are no duplicated 90(1/e)' =% L O(1) _ 9O(k)'~° L.O(1) _ 9O(m)' °+O(log k)
clauses inp). We claim that for every unsatisfied clause, at
least one of the following is true: (1) the cell in rowy of
columnz; contains ak, (2) the clause has a spoiled vari- i ]
able, (3) the cross of the clause contains at least#i® which, by Lemma 2.5, contradicts ETH. 0
Consider a clause such that none of (1)—(3) hold. Since
is not spoiled, there is ah < ¢; ; < z such that variable
i j.e,, 1S good and thereisa+ 1 < /;» < 2z such that
variablex; ; 4, , is good. If there is nok in row z; between
columnsz; ¢, , andz;, then the first component of row Definition 2.7. Let A and B be optimization problems
of columnz; isfy(:ri). Similarly, if there is nok in row z; and c4 and cp their respective cost functions. A pair of

_ 2()(,”741—5)7

Having proved the lower bounds of Theorems 2.3 and
2.6, we transfer these bounds to other optimization prob-
lems by means of an L-reduction.



logspace-computable functiodsand S is anL-reduction Boi[e @ ® o] Bozeese]
if all of the following conditions are met: (o] b by .
[ 2
e if 2 is an instance of problem, thenR(x) is an in- pd
tance of problens, Ao L1
S P GLEees B Eees
o if y is a solution toR(x), thenS(y) is a solution tar, o] A by
[ 2
e there exists a constant > 0 such thatOPT(R(z)) < pd
aOPT(x) Az 2,1
Bi@ € @8] B, e 00

e there exists a constarit > 0 such that|OPT(x) —

o]
(o ?,
ca(S(y))| < BIOPT(R(x)) — cn(y)l. o g -
It is easy to see that the bounds of Theorems 2.3 and 2.6 f:r:o 31 5.2 53
remain valid under L-reductions: B;.8 @8] B;,6608] B;:8688
Lemma 2.8. (1) If there is an L-reduction fronMA- Figure 1. Structure of the instance con-
TRIX TILING to Problem X, then there are n@g§ > 0 structed in Theorem 3.1 (D =4, k = 3).

such that Problem X admits a PTAS with running time
20((1/)p0((1/0'™") ynless ETH fails.
(2) If there is an L-reduction frorM ATRIX TILING with
D = 2to Problem X, then there is nb> 0 such that Prob-  variable with each vertex and a DNF with each edge.) Given

lem X admits a PTAS with running ting€((t/)' =)0 an instance of the above problems, iheidence graplis a

unless ETH fails. O bipartite graph defined by associating a vertex to each vari-
able and to each DNF, and by connecting each variable to

3 Planar logic problems every DNF where it appears. Khanna and Motwani [17]

show that MPSAT, TMIN, TMAX all admit2®1/¢) time
PTAS's if the incidence graph is planar. Here we prove that

Khanna and Motwani [18] defined classes of optimiza- C _ X
these approximation schemes are essentially optimal:

tion problems that admit polynomial-time approximation
schemes. The problems are formulated using Boolean 10g-Theorem 3.1. If there is ad > 0 such thatPLANAR MP-
ical expressions. _A formula ||d|SJunct|v_e ng_rmal form  gAT has a PTAS with running tim@(1/9° . 00/t
(DNF) is a disjunction of terms. A DNF ipositive(resp., then ETH fails.

negativ@, if every literal is positive (resp., negated). The

weightof an assignment is the number of variables that are Proof. We present an L-reduction from MRIX TILING
set to true. to PLANAR MPSAT. The collectior® consists of> DNFs
¢i; (1 <1i,5 < k)on2k(k + 1)D variables. The variables

MPSAT : B : ‘
Input: A collectionC = {¢1,...,¢n} of DNFs. are a”anged Into blO,Ck'sW (l<i<k0<j<k) e_md
Find:  An assignment,. Bm_- 0<i<k 1 g 7 < k) where each block conj[anﬁ
Goal: Maximize the number of DNFs satisfied by variables. The variables in block; ; (resp.,B; ;) will be

denoted byu; ; s (resp..b; ;) for s € Zp. The DNF¢; ;

TMIN (1 <14,j < t) contains variables only from blocks; ;_1,
Input: A collectionC = {¢1, ..., ¢, } of positive DNFs. A j, Bi—1,j, Bsj. As shown in Figure 1, the incidence
Find:  An assignment that satisfies every DNF i@. graph is planar. The formulas are defined as
Goal:  Minimize the weight ofy.

TVAX ii= N (Gij1aNaije Abicijy Abijy
Input: A collectionC = {¢1, ..., $,} of negative DNFs. (z.y)€85i,;

Find:  An assignmenty that satisfies every DNF i@. A G 1A G it A b1 A b)),
Goal: Maximize the weight ofy. ,/\ pImhe ,/\ o /\ Tl //\ i)

These problems generalize many of the standard opti-This completes the description of the instance. We claim
mization problems: for example, Ak CUT can be re-  that the optimum of the constructed instance is the same as
duced to MPSAT; MXIMUM INDEPENDENTSET can be the optimum of MATRIX TILING. Assume that MTRIX
reduced to TMAX; and NNIMUM VERTEX COVER can TILING has a solution where the number #fs is ¢. If
be reducedto TMIN. (In all three reductions, we associate as; ; = (z,y) # %, then set the variables i4; ;_i, A4; ;,



B;_1,;, B;; such that the term corresponding(te, y) is
satisfied ing; ;, i.€.,a; j—1,2 = ai,j, 1S true if and only if
z = x, andbi_Lj,y/ = b,‘,j7yl is true if and onIy Ify = yl. Ay A2‘A3‘A4 As
Observe that this assignment is well-defined: for example, Aig |4s|
if si;,sij+1 # %, then they assign the same values to the A1s |A]
variables in4; ; (sinces; ;, s; j+1 agree in the first compo- At As
nent). Assign values to the remaining variables arbityaril Ao A
It is clear that ifs; ; # %, then the corresponding; ; is
satisfied.

For the other direction, assume thadf the ¢; ;'s are

satisfied in an assignment.df ; is satisfied, then there is a
pair (z,y) € S; ; such that the term correspondingtg y)

is satisfied; set; ; = (x,y) in this case. Lek; ; = ¥ if (@) (b)
¢i,5 is not satisfied. It is easy to verify that thg;'s form a
valid solution of MATRIX TILING. O

Figure 2. The gadget and the way the gadgets

o ] ) are arranged for k = 3 (Theorem 4.1).
In a very similar way (details omitted), we can reduce

MATRIX TILING to TMIN and TMAX, hence

Theorem 3.2. If there is ad > 0 such thatPLANAR
TMIN or PLANAR TMAX has a PTAS with running time
2(1/97M 001/ then ETH falils. O

(x1 +re,y1 +r€e) (w9 — e, yg — 7€)
(x2 +re,y2 —ye) (w10 — 7€, Y10 + YE)
(z3 +7r6,y3 — De) (w11 — e, y11 + De)
(za+re,ys+ye)  (T12 — 7€ Y12 — YE)
(x5 + 76, y5 — 7€) (W13 — €, Y13 + 7€)
(x6 — we,ys — re)  (T14 + x€, Y14 + TE)
( (15 + De, y15 + 7€)
(zs + e, yg —re) (w16 — x€,y16 + T€)

4 Intersection graphs

Given a set of geometric objects in the plane, e
tersection graphhas one vertex for each object, and two
vertices are connected by an edge if and only if they have Furthermore, we add 15 (1) squaré§ pe, ..., Bis p2
nonempty intersection. The intersection graphs of squaresWith the following coordinates:
rectangles, disks, segments, and other geometric objects (. | p2 4, + D2) (z9 — D2, yo — D%)
play an important role in many applications such as facility (z2 + D2¢,yo — De) (210 — D2€,y10 + De)
location [28], frequency assignment [22], and map labeling (z3 + D%¢,y3 — De) (211 — D%e,y11 + De)

[1]. The MAXIMUM INDEPENDENTSET problem for the (24 + D%, ys — De) (212 — D2€,y12 + De)
intersection graph of unit squares ha’4'/<)n time PTAS (25 + D%, ys — D2) (113 — D%, y13 + D2)
[15]. Here we show that this PTAS is essentially optimal: (z6 — De,y — D2€) (214 + De, y1a + D)

(ZC7 — De,y7 — D?%¢ ) (115 + De,y15 + D2€)

Theorem 4.1. If there is ad > 0 such thatMAXIMUM (s — De, ys — D2€)

INDEPENDENT SET for unit squares admits a PTAS with

running time2(1/6)°® .nC1/9'™" then ETH fails. It is clear that at most 16 independent squares can be se-
lected from a gadget and an independent set of size 16 con-
Proof. The proof is by an L-reduction from MRIX tains exactly one squa; ,, for eachl < ¢ < 16. It can

TILING. We assume that the squares are open, i.e., twobe verified that for every < j < D?, the squaress; ;,
squares that only touch each other do not intersect. We..., B¢ ; are independent (if they exist). Furthermore, we
represent each; ; by a gadgets; ;. A gadget consists of show that every independent dedf size 16 is of this form.

16 blocks of squares, where each block induces a clique Observe that ify; > v;y1, thenB; ,, andB;;1,,,,, inter-
Consider the 16 square$;, ..., Ais of Fig. 2a, and let  sect (and similarly fotBys .,, and By .,). Therefore, we
(z1,11), - - -, (z16, y16) be the coordinates of the lower left getv; < v < -+ < w15 < w1, Which means that there is
corner of these squares. (These squares are not part odj such that, = j for everyl < i < 16. In particular,
the set of squares that we construct, but they will be use-this means that if is an independent set of size 16, then
ful in the definition of the set.) Set := 1/(4D?) and a squareB; p» cannot appear id, as there is no square
let. : Zp x Zp — Zp2 be an arbitrary bijection. If B pe.

(x,y) € S;; andu(z,y) = r, then we add 16 squarés .. Thek? gadgets are arranged as in Fig. 2b, i.e., there is an
(1 <i < 16)to gadget’; ; with coordinates offset of 6 between the rows and columns. Adjacent gad-



gets are connected by two blocks of additional squares aswe getr < zo < z/, hencex = 2’ follows. With an
follows. If j < k, then in gadge; ; we add the squares analogous argument, we can show thajf = (z,y) and
with coordinatest! = (w6 + 1 — re,ys — D%¢), H? = siy1,; = (2/,y'), theny = ¢’ holds. O
(xg+1+7e,ys + D?e) for 0 < r < D. These squares form
the horizontal connectiobmetweenG; ; andG; j+1. Simi-
larly, if i < k, thenwe add/! = (219 — D%¢,y10— 1 +7re),
V2 = (v12+ D%, 12— 1—re) for0 < r < D (thevertical

By an argument of [24], the reduction can be made to
work for unit disks as well. A similar gadget construction
can be used in the case of thelMuM DOMINATING SET

connectiorbetweenG; ; andG; 1. ;). This completes the ~ Problem.
description of the constructed set of squares. Theorem 4.2. If there is ad > 0 such thatMAXIMUM

We claim that if the optimum of MTRIX TILING is INDEPENDENT SET or MINIMUM DOMINATING SET for
k? — t, then the maximum number of independent squaresunit squares or unit disks has a PTAS with running time
is 16k2 + 4k(k — 1) — t. Recall that the optimum of - 2(1/6)°" 01/ then ETH fails. 0
TRIX TILING is always at least?/4, hence the reduction ] o
increases the optimum by at most a factonof= 80. As- There is a2°(!/)n time PTAS for MNIMUM VER-
sume that MTRIX TILING has a solution with value? —¢, ~ TEX COVER on unit disk graphs [24, 27], hence the ana-
If s;,; = (z,y) # %, then select the 16 squares (. ., log of Theorem 4.2 is not true for this probI(_am. However,
+++ Big.u(a.y) from gadgetG; ;. If s;; = %, then select We can prove a lower bound W{th the following argument.
the 15 square®; pe, ..., Bis.pe from G; ;. Note that I the caseD = 2, the reductlon of Theorem 4.1 con-
the 16k2 — ¢ squares selected so far are independent. WeStructs an intersection graph ha_vmg bounded _degee. For
show that this independent set can be extendetkby— 1) bounded-degree graphs, there is an L-reduction between

further squares by selecting two squares from each of theMAXIMUM INDEPENDENT SET and MINIMUM VERTEX

2k(k — 1) connections. Ifs; ; = %, then the 15 squares COVER. Hence by (2) of Lemma 2.8,

selected fronG; ; do not intersecanyof the squares in the

horizontal or vertical connections 6f; ;. Therefore, ifs; ;

or s; j+1 IS %, then it is easy to select two squares from the

connection betweet; ; andG; ;1. If s;; = (z,y) and

sij+1 = (z,y'), then we selecH! and HZ from the con- Note that the lower bound of Theorem 4.3 does not

nection betweerds; ; andG; ;1. Observe that these two  match the best known approximation scheme. This might

squares do not conflict with squarsg,,(,,,) andBs,.(z,y)  suggest that the®(1/<*) PTAS of [24, 27] can be improved

of G; ; and with squaresyy () aNdBig,,(2,4) OF Gij11.  1020(1/9), We leave this as an open question.

For exampleBg , () at (ze — x¢€,ys — L(x,y)e) does not
N 5 .

conflictwith H, at(zs + 1~ z¢,ys — D), since the differ- g janenqent Set, Vertex Cover, Dominat-

ence in the first coordinate is exactly 1. In a similar way, we .

can select two squares from each vertical connection, hence ing Set

we obtain an independent set of sizik? + 4k(k — 1) — ¢,
as required. Lipton and Tarjan [21] used the planar separator theorem

Assume now that we have an independent/set size of [20]to ShOWth_at MXIMUM I_NDEPENDE'\_'TS%IT/O)D pla-
16k% + dk(k — 1) — t. If |Gi; N I| < 16, then set nar graphs adr_mts a PTAS with running tirk@(1/<)"n +
’ O(nlogn). Using a completely different approach, Baker
[7] improved the dependence erio 2°(1/¢) . . Here we
show that Baker’s algorithm is essentially optimal:

Theorem 4.3.If thereis a) > 0 such thatMINIMUM VER-
TEX COVER for unit squares or unit disks has a PTAS with
running time2(1/)' " . nO) | then ETH fails. O

si;j = %. We sets; ; to % also in the case if con-
tains less than two squares from the horizontal connection
betweenG; ; and G; ;41 or from the vertical connection

betweenG; ; andGiy, ;. For every remaining; ;, We  Theorem 5.1. If there is ad > 0 such thatM AXIMUM | N-

have|Gi; N I| = 16, hence (as we have argued above), pepeNDENTSET for planar graphs has a PTAS with run-
there is ?n" s_uch.thatGw» NI ={By,...,Bi.}. Set ning time20(1/'~* . 00 then ETH fails.

si,; = ¢~ *(r) in this case. Froml| = 16k> +4k(k—1)—t

it follows that we set at most cells to . Assume that  Proof. The proofis by presenting an L-reduction froraM

si; = (z,y) ands; j41 = (2/,y’) in the constructed solu-  TRIX TILING with D = 2 to PLANAR MAXIMUM INDE-
tion; we have to show that = 2’. There are two squares PENDENTSET. Each of thek? setsS, ; will be represented
H;I, Hfz selected from the horizontal connection between by an appropriate gadget. A gadget is a planar graph with
G;,; andG; ;41 (otherwises; ; would bev). Now we have distinguished verticesag, a1, b, b1, cg, ¢1, do, di On its
thatz > z; > 2, otherwiseHi1 would intersect either  boundary (in this order) such thatay, bob1, coci1, dody
Bg,1(x,y) Of G j OF Big (27 ) Of G j11. Similarly, by ob- are edges and there are no other edges between these ver-
servingHﬁQ, Bg i (z,y) Of Gij, and Biy (5 ) Of Gy jy1, tices. LetB be the set of these 8 vertices. We say that a



subsetB’ C B representghe pair(z,y) € Zs x Zs if

B’ ={ay, ¢z, by, dy }. The purpose of the gadget represent-

ing S; ; is to ensure that the vertices selected frBmepre-

sent a pair fronms;_;, otherwise the gadget incurs a penalty.

The following lemma states the requirements formally:

Lemma 5.2. There is a constant > 0 such that for every
nonempty sef C 7, x Zs, there is a gadgefs such that

1. The size of the maximum independent se{8s) =
c+1.

2. If B’ C B represents a pair ir6, thenB’ can be ex-
tended to an independent set of size 1.

3. If B’ C Bis anindependent set of sizethenB’ can
be extended to an independent set of gize

4. If I is an independent set of sizet+ 1, thenB N I
represents a set if.

the Giyj,S. If |Gi,j n I| < ¢, then Setsm- = %. If
|Gi; N I| = c+ 1, then by Prop. 4 of Lemma 5.8 NI

in G, ; represents a paitr, y) from S; ;; in this case, set
si,; = (z,y). We can verify that this is a valid solution
of MATRIX TILING. For example, ifs; ; = (z1,y1) and
Sij+1 = (ZQ,yQ), thenz; = zo: OtherWiS@xl e I of Gi,j
anda, € I of G; j4+1 would be neighbors. As the number
of %’'s is t, we get that the optimum of MrriX TILING is

at least® — t. O

Observe that the reduction constructs bounded-degree
graphs. For bounded degree graphs, there is an L-reduction
from MAXIMUM INDEPENDENTSET to MINIMUM VER-

TEX COVER. Furthermore, there is an L-reduction from
MINIMUM VERTEX COVER to MINIMUM DOMINATING
SET, hence we have

Theorem 5.3.Ifthereisad > 0 such thatMINIMUM VER-
TEX COVER or MINIMUM DOMINATING SET for planar

The proof the lemma uses standard techniques: we cargraphs has a PTAS with running ting® (/9" ™" . 0,

argue that every s&t C Z, x Z, can be represented by a
formula, which can be turned into a planar formula, which

then ETH fails.

can be turned into a planar graph using the standard reducg TSP on planar graphs

tion from 3SAT to MaxIMUM INDEPENDENTSET. Details
omitted.

We construct a planar gragh the following way. For
everyl < 4,5 < k, we introduce a gadgét; ; that is the
copy of G, ;. Foreveryl <i <k, 1< j < k, vertex
co (resp.c1) of G; ; is connected with vertex; (resp.,ao)
of G; j+1; and foreveryl <i < k,1 < j <k, vertexdy
(resp..d;) of G; ; is connected with vertel (resp.,bg) of
Gi+17j-

We claim that if the optimum of MTRIX TILING is
k? —t, thena(G) = (c + 1)k? — t. Assume that there
is a solution of MaTRIX TILING with value k? — t. For
eachs; ; # %, letus select a subsg& C B that represents
s;,j, and extend it to an independent set of sizel (Prop. 3

The Traveling Salesperson Problem (TSP) is one of the
most studied optimization problems. Here we consider the
special case where the distance metric is the shortest-path
metric of an unweighted planar graph. That is, given a pla-
nar graph, the task is to find a tour (closed walk) of min-
imum length that visits every vertex at least once. The
first PTAS for the problem was given by Grigni et al. [14],
with running timen©(1/¢), Recently, this was improved to
2001/, by Klein [19], which is essentially optimal:

Theorem 6.1. If there is ad > 0 such that TSP on un-
weighted planar graphs has a PTAS with running time
20(1/9'"* . nO() then ETH fails.

of Lemma 5.2). Observe that the independent sets selected
from neighboring gadgets do not conflict. For example, if Proof. The proofis by presenting an L-reduction frormM
sij,Sij+1 7 %, then they agree in the first component, TRIX TILING with D = 2 to the problem. We say that a tour

hence eithee is selected fronds; ; anda is selected from
G j+1, Or c1 is selected fronty; ; anda; is selected from
Gi,j+1. Consider the cells with; ; = % in arbitrary order,
and in each gadget, select 4 vertice®ahat do not conflict

is efficientif after removing any loop (i.e., a subtour that
starts and ends on the same vertex) there is at least one ver-
tex that is not visited by the resulting shorter tour. Chgarl

the optimum tour is efficient. The purpose of éaeclusive-

with the vertices already selected from the neighboring gad or line (Fig. 3) is to force the tour to use exactly one of the
gets (this can be done, since it is not possible that, saly, bot two edgese; ande,;. Assume that in a grapi’ edgese;
ap anda; have a selected neighbor). Extend these 4 verticesande, are connected as in Fig. 3b, and there is an efficient

into an independent set of siz¢Prop. 2 of Lemma 5.2). If
t is the number ofk’s in the solution of MATRIX TILING,
then we obtain an independent set of size (c+1)(k%—t),
hencen(G) > (c + 1)k? — t follows.

For the other direction, suppose tha@thas an indepen-
dent setl of size(c + 1)k* — . Since|lI NG, ;| < c+1
(Prop. 1 of Lemma 5.2)|G; ; N I| < ¢ for at mostt of

TSP tourT that visits each of the 16 internal vertices of
the exclusive-or line exactly once. It can be verified by in-
spection that tout” enters the exclusive-or line only once,
and it either uses bot#, ande! (Fig. 3c), or bothe’, and

e}y (Fig. 3d). In fact, we can make the assumption slightly
weaker: the same conclusion holds even if we only assume
that 15 of the 16 internal vertices are visited exactly once.
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Figure 3. The exclusive-or line.

(d)

(Here we use the assumption thais efficient: otherwise it
would be possible thaf' visits the exclusive-or line twice,

the first time visiting every vertex and the second time vis-

iting only one vertex.)
We represent each s&f ; of MATRIX TILING by a gad-

get; ;. The gadgetis a planar graph with 4 distinguished

verticesvy, vs, v3, v4 and 4 distinguished edges, a1, by,

b1 on its boundary (see Fig. 4a). We say that aseof
walks is atraversalof the gadget if both endpoints of each
walk is in {v1,v2,v3,v4} and each vertex of the gadget is
visited by at least one of the walks. A traversaksan edge

e if at least one of the walks go through A traversalW
representsa pair (z,y) € Zz x Z» if a, andb, are the
only distinguished edges that are usedWy The weight

e

A

N

V3 V4 ><+<
b

(@

(b)

Figure 4. The gadget and the way the gadgets
are arranged for k£ = 3 (Theorem 6.1).

Fig. 4b. Distinguished edges of adjacent gadgets are con-
nected with exclusive-or lines. Far< i < k,1 < j <k,
vertexvs (resp.,vyq) of G, ; is connected with vertex;
(resp.,v2) of G;11,;. Verticesvs andv, of gadgetGy, ;

are connected with each other (for< j < k), while ver-

tex vo of G ; is connected with vertex; of Gy ;41 (for

1 < j < k). Finally, vertexv; of G ; is connected with

of a traversal is the number of vertices in the gadget that Vertexvs of Gy . ObseQrve that the number of vgrtices ofthe
are visited more than once. The properties of the gadget ar€onstructed graph is £ +32k(k — 1): there aré:* gadgets

summarized in the following lemma:

Lemma 6.2. There is a constant > 0 such that for every
nonempty sef C Zs x Z,, there is a gadgefr s such that

1. There are: vertices inGg.

2. For every(z,y) € S, there is a traversalhV =
{P1, P»} of weight0 where simple pattP; connects
v1 andws, simple pathP, connects, andvs, andW
representgz, y).

3. For everyZ C {aop,a1,bo, b1}, there is a traversal
W = {Py, P,} of weightl where walkP; connects
v; and vz, walk P, connectss, and vy, and'W uses
the edges irZ, but not those i{ag, a1,b0,b01} \ Z.

4. If a traversalW has weigh®, then it represents a set
(z,y) € S.

with ¢ vertices each, and each of thk(k — 1) exclusive-or
lines add 16 new vertices.

We show that if the optimum of MrRIX TILING is
k? — t, then the optimum of the constructed instance of
TSP isc - k? + 32k(k — 1) + t. Assume first that M-
TRIX TILING has a solution where the numberfs is ¢.
We construct a tour that starts at vertgxof G 1, goes to
vertexvs of G1 1, goes to vertex, of Gy 1, goes to vertex
vz of Gq 1, etc., until it reaches vertex; of G, ;. Using
the edgevsvy, the tour goes ta, of G ; and revisits the
first column by going ta; of Gy 1, to v4 Of Gi—1,1, tO vy
of Gi—_1.1, etc., until it reaches vertex, of G1 ;. At this
point the tour goes to vertex of G; 2 and visits the sec-
ond column in a similar way. Finally, when the tour reaches
vertexvy of Gy, it returns tov; of G;,;. Each gadget is
visited twice: once by a walk from; to v3, and once by
a walk fromwvs to v4. To complete the construction of the
tour, we have to find an appropriate traversal for each gad-
get. If s; ; = (z,y) # %, then we use the traversal €f ;

The proof of this lemma is tedious, but uses only the given by Prop. 2 of Lemma 6.2. K; ;,s; j+1 # %, then
standard gadgeteering techniques developed for provingth s; ; = (z,11), si;+1 = (z,y2) implies that the traversal
NP-hardness of Hamiltonian cycle. Details will appear in of G, ; uses edge, if and only if the traversal of7; ;1

the full version.
Each setS; ; is represented by a gadgéf ; that is a

does not use edge). Therefore, the tour can be extended
to the exclusive-or lines in such a way that the tour visiés th

copy of Gs, ;. The gadgets are connected as shown in vertices of these lines exactly once (Fig. 3c or Fig. 3d). If



si,; = %, then we choose an appropriate subset of the dis- [5] S. Arora. Polynomial time approximation schemes for Eu-

tinguished edges, and by Prop. 3 of Lemma 6.2, we obtain
a traversal of weight that is compatible with the traver-
sals of the neighboring gadgets, i.e., there is no conflict on

the exclusive-or lines. If the weight of a traversal jghen

there is exactly one vertex in the gadget that is visitedawic
Thus there are exacttyvertices in the graph that are visited
twice, all the other vertices are visited exactly once. €her

fore, the total length of the tour is- k% + 32k(k — 1) + ¢.

(6]

(7]

(8]

For the other direction, assume that there is an efficient [9]

tour 7" with lengthc - k% + 32k(k — 1) + ¢t. This means

that there are at mostvertices that are visited more than

once; letX be the set of these vertices. @ ; N X # 0,
then sets;, ; = . If at least two vertices ofX are in
the exclusive-or line connecting; ; andG; 11, then set
si,j = 8i,j+1 = %. The exclusive-or line connecting; ;

andG;y1 5 is handled similarly. Lety; ; be a gadget such
thats; ; was not set tok. Each of the exclusive-or lines

connected td; ; contains at most one vertex &f, thus (as

we have observed at the beginning of the proof) the line is
used in a “proper way,” i.e., as in Fig. 3c or Fig. 3d. There-

fore, if we remove the exclusive-or lines, th&hinduces
a traversalW of G, ; of weight0 (sinceG,; N X = 0).
By Prop. 4 of Lemma 6.2, this means th&trepresents a
pair (z,y) € S; ;; sets;; := (z,y). It easy to see that if
Sij = (l‘l,yl) andsmurl = (l‘g,yg), thenxl = I9, oth-

erwise it would not be true that the exclusive-or line con-
nectinga; of G; ; andag of G; j41 contains at most one

vertex of X. Similarly, if s; 5, si+1,; # %, then they agree
in the second component. The numberdek is at most

the size ofX, hence we obtain a solution with value at least

k2 —t. O

For the weighted version of the problem, Klein [19] gives
a201/¢), time PTAS. We leave it as an open question
whether this PTAS is optimal for the weighted version or

(as in the unweighted case) it can be improved?6'/<)n
to match Theorem 6.1.
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