The square root phenomenon in planar graphs

Daniel Marx!

institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI)
Budapest, Hungary

FAW-AAIM 2013
Dalian Maritime University
June 27, 2013
Dalian, China

Main message

Are NP-hard problems easier on planar graphs?

Yes, usually.

By how much?

Often by exactly a square root factor.

Overview

Chapter 1:
Subexponential algorithms using treewidth.

Chapter 2:
Grid minors and bidimensionality.

Chapter 3:
Finding bounded-treewidth solutions.

Better exponential algorithms

Most NP-hard problems (e.g., 3-COLORING, INDEPENDENT SET,
HAMILTONIAN CYCLE, STEINER TREE, etc.) remain NP-hard on
planar graphs,! so what do we mean by “easier"?

*Notable exception: Max CuT is in P for planar graphs.

Better exponential algorithms

Most NP-hard problems (e.g., 3-COLORING, INDEPENDENT SET,
HAMILTONIAN CYCLE, STEINER TREE, etc.) remain NP-hard on
planar graphs,! so what do we mean by “easier"?

The running time is still exponential, but significantly smaller:
20(n) . 20(Vn)
00(k) . ,0(1) _ 90(Vk) . ,0(1)

*Notable exception: Max CuT is in P for planar graphs.

Chapter 1: Subexponential algorithms using treewidth

Treewidth is a measure of “how treelike the graph is.”

We need only the following basic facts:

© |If a graph G has treewidth k, then many classical NP-hard

problems can be solved in time 20(k) . ,O(1) of
20(klogk) . ,O(1) 5p G.

@ A planar graph on n vertices has treewidth O(+/n).

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:
@ If u and v are neighbors, then there is a bag containing both
of them.
@ For every v, the bags containing v form a connected subtree.

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:
@ If u and v are neighbors, then there is a bag containing both
of them.
@ For every v, the bags containing v form a connected subtree.

: &h
b c d

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:
@ If u and v are neighbors, then there is a bag containing both
of them.
@ For every v, the bags containing v form a connected subtree.

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:
@ If u and v are neighbors, then there is a bag containing both
of them.
@ For every v, the bags containing v form a connected subtree.
Width of the decomposition: largest bag size —1.

treewidth: width of the best decomposition.

a

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:
@ If u and v are neighbors, then there is a bag containing both
of them.
@ For every v, the bags containing v form a connected subtree.
Width of the decomposition: largest bag size —1.

treewidth: width of the best decomposition.

Each bag is a separator.

Treewidth — a measure of “tree-likeness”

Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

@ If u and v are neighbors, then there is a bag containing both
of them.

@ For every v, the bags containing v form a connected subtree.
Width of the decomposition: largest bag size —1.

treewidth: width of the best decomposition.

A subtree communicates with the outside world
only via the root of the subtree.

Finding tree decompositions

Various algorithms for finding optimal or approximate tree
decompositions if treewidth is w:

e optimal decomposition in time 2°(**) . i [Bodlaender 1996].

@ 4-approximate decomposition in time 20(%) . p2

[Robertson and Seymour].

@ 5-approximate decomposition in time 2°0(%) . p
[Bodlaender et al. 2013].

e O(+/log w)-approximation in polynomial time
[Feige, Hajiaghayi, Lee 2008].
As we are mostly interested in algorithms with running time
20(w) . nO0(1) e may assume that we have a decomposition.

Subexponential algorithm for 3-COLORING

Theorem

3-COLORING can be solved in time 29(") . n10(1) on graphs of
treewidth w.

|
Theorem [Robertson and Seymour]

A planar graph on n vertices has treewidth O(+/n).
4
Corollary

3-COLORING can be solved in time 2°(v") on planar graphs.

textbook algorithm + combinatorial bound

4

subexponential algorithm

Lower bounds

Corollary
3-COLORING can be solved in time 290V on planar graphs.

Two natural questions:
@ Can we achieve this running time on general graphs?

@ Can we achieve even better running time (e.g., 20(%)) on

planar graphs?

Lower bounds

Corollary

3-COLORING can be solved in time 290V on planar graphs.

Two natural questions:
@ Can we achieve this running time on general graphs?
o Can we achieve even better running time (e.g., 2°(¥) on
planar graphs?

P = NP is not a sufficiently strong hypothesis: it is compatible with

3SAT being solvable in time 20(n/1%%) 4 even in time nOogn).

We need a stronger hypothesis!

Exponential Time Hypothesis (ETH)

Hypothesis introduced by Impagliazzo, Paturi, and Zane:
Exponential Time Hypothesis (ETH)
There is no 2°(")-time algorithm for n-variable 3SAT.

Note: current best algorithm is 1.30704" [Hertli 2011].

Note: an n-variable 3SAT formula can have Q(n®) clauses.

10

Exponential Time Hypothesis (ETH)

Hypothesis introduced by Impagliazzo, Paturi, and Zane:

Exponential Time Hypothesis (ETH)
There is no 2°(")-time algorithm for n-variable 3SAT.

Note: current best algorithm is 1.30704" [Hertli 2011].

Note: an n-variable 3SAT formula can have Q(n®) clauses.

Sparsification Lemma [Impagliazzo, Paturi, Zane 2001]

There is a 2°(")-time algorithm for n-variable 3SAT.

There is a 2°(™)-time algorithm for m-clause 3SAT.

10

Lower bounds based on ETH

Exponential Time Hypothesis (ETH)

There is no 2°(™)-time algorithm for m-clause 3SAT.

The textbook reduction from 3SAT to 3-COLORING:

3SAT formula ¢ Graph G
n variables = | O(m) vertices
m clauses O(m) edges

Corollary

Assuming ETH, there is no 2°(") algorithm for 3-COLORING on an
n-vertex graph G.

11

Lower bounds based on ETH
What about 3-COLORING on planar graphs?

The textbook reduction from 3-COLORING to PLANAR
3-COLORING uses a ‘crossover gadget” with 4 external connectors:

@ In every 3-coloring of the gadget, opposite external connectors
have the same color.

@ Every coloring of the external connectors where the opposite
vertices have the same color can be extended to the whole

gadgets.
o If two edges cross, replace them with a crossover gadget.

12

Lower bounds based on ETH
What about 3-COLORING on planar graphs?

The textbook reduction from 3-COLORING to PLANAR
3-COLORING uses a ‘crossover gadget” with 4 external connectors:

@ In every 3-coloring of the gadget, opposite external connectors
have the same color.

@ Every coloring of the external connectors where the opposite
vertices have the same color can be extended to the whole

gadgets.
o If two edges cross, replace them with a crossover gadget.

12

Lower bounds based on ETH
What about 3-COLORING on planar graphs?

The textbook reduction from 3-COLORING to PLANAR
3-COLORING uses a ‘crossover gadget” with 4 external connectors:

@ In every 3-coloring of the gadget, opposite external connectors
have the same color.

@ Every coloring of the external connectors where the opposite
vertices have the same color can be extended to the whole

gadgets.
o If two edges cross, replace them with a crossover gadget.

12

Lower bounds based on ETH

@ The reduction from 3-COLORING to PLANAR 3-COLORING
introduces O(1) new edge/vertices for each crossing.

e A graph with m edges can be drawn with O(m?) crossings.

3SAT formula ¢ Graph G Planar graph G’
n variables = | O(m) vertices | = | O(m?) vertices
m clauses O(m) edges O(m?) edges
Corollary

Assuming ETH, there is a no 2°(vV") algorithm for 3-COLORING on
an n-vertex planar graph G.

(Essentially observed by [Cai and Juedes 2001])

13

Summary of Chapter 1

Streamlined way of obtaining tight upper and lower bounds for
planar problems.

o Upper bound:
Standard bounded-treewidth algorithm + treewidth bound on
planar graphs give 2°(V") time subexponential algorithms.

e Lower bound:
Textbook NP-hardness proof with quadratic blow up + ETH
rule out 2°(V") algorithms.

Works for HAMILTONIAN CYCLE, VERTEX COVER,
INDEPENDENT SET, FEEDBACK VERTEX SET, DOMINATING
SET, STEINER TREE, ...

14

Chapter 2: Grid minors and bidimensionality

More refined analysis of the running time: we express the running
time as a function of input size n and a parameter k.

Definition
A problem is fixed-parameter tractable (FPT) parameterized by
k if it can be solved in time (k) - n©() for some computable
function f.
Examples of FPT problems:

@ Finding a vertex cover of size k.

@ Finding a feedback vertex set of size k.

o Finding a path of length k.

o Finding k vertex-disjoint triangles.

Note: these four problems have 20(K) . nO(1) time algorithms, which
is best possible on general graphs.

15

W([1]-hardness

Negative evidence similar to NP-completeness. If a problem is
W([1]-hard, then the problem is not FPT unless FPT=W[1].
Some W[1]-hard problems:

e Finding a clique/independent set of size k.

@ Finding a dominating set of size k.

@ Finding k pairwise disjoint sets.

° ...

For these problems, the exponent of n has to depend on k
(the running time is typically n©(¥)).

16

Subexponential parameterized algorithms

What kind of upper/lower bounds we have for f(k)?

e For most problems, we cannot expect a 2°(%) . nO(1) time
algorithm on general graphs.
(As this would imply a 2°(") algorithm.)

@ For most problems, we cannot expect a 20(Vk) . nO(1) time
algorithm on planar graphs.

(As this would imply a 2°(v") algorithm.)

o However, 20(Vk) . ,O(1) algorithms do exist for several

problems on planar graphs, even for some W[1]-hard problems.

@ Quick proofs via grid minors and bidimensionality.
[Demaine, Fomin, Hajiaghayi, Thilikos 2004]

17

Minors

Definition
Graph H is a minor of G (H < G) if H can be obtained from G by
deleting edges, deleting vertices, and contracting edges.

u v
deleting uv/ \contracting uv
» LN
u v w

Note: minimum vertex cover size of H is at most the minimum
vertex cover size of G.

18

Planar Excluded Grid Theorem

Theorem [Robertson, Seymour, Thomas 1994]
Every planar graph with treewidth at least 4k has a k x k grid

minor.

Note: for general graphs, we need treewidth at least kAR (k+2) for

a k x k grid minor [Diestel et al. 1999]
— Very recently, a k() bound was announced [Chekuri and

Chuznoy 2013]!

19

Bidimensionality for VERTEX COVER

Observation: If the treewidth of a planar graph G is at least 41/2k
= It has a v/2k x /2k grid minor (Planar Excluded Grid Theorem)
= The grid has a matching of size k

= The minimum vertex cover size of the grid is at least k

= The minimum vertex cover size of G is at least k.

20

Bidimensionality for VERTEX COVER

Observation: If the treewidth of a planar graph G is at least 41/2k
= It has a v/2k x /2k grid minor (Planar Excluded Grid Theorem)
= The grid has a matching of size k

= The minimum vertex cover size of the grid is at least k

= The minimum vertex cover size of G is at least k.

We use this observation to solve VERTEX COVER on planar graphs:
o Set w := 42k,

@ Find a 4-approximate tree

decomposition.

o If treewidth is at least w: we

answer “vertex cover is > k."”

o If we get a tree decomposition of

width 4w, then we can solve the

problem in time

20(w) . nO(1) — pO(VK) . ,O(1).

20

Bidimensionality
Definition
A graph invariant x(G) is minor-bidimensional if
e x(G’) < x(G) for every minor G' of G, and

o If G, is the k x k grid, then x(G) > ck®
(for some constant ¢ > 0).

Examples: minimum vertex cover, length of the longest path,
feedback vertex set are minor-bidimensional.

21

Bidimensionality
Definition
A graph invariant x(G) is minor-bidimensional if
e x(G') < x(G) for every minor G’ of G, and

o If G, is the k x k grid, then x(G) > ck®
(for some constant ¢ > 0).

Examples: minimum vertex cover, length of the longest path,
feedback vertex set are minor-bidimensional.

21

Bidimensionality
Definition
A graph invariant x(G) is minor-bidimensional if
e x(G') < x(G) for every minor G’ of G, and

o If G, is the k x k grid, then x(G) > ck®
(for some constant ¢ > 0).

Examples: minimum vertex cover, length of the longest path,
feedback vertex set are minor-bidimensional.

21

Summary of Chapter 2

Tight bounds for minor-bidimensional planar problems.

e Upper bound:
Standard bounded-treewidth algorithm + planar excluded grid
theorem give 20(VK) . nO(1) time FPT algorithms.

e Lower bound:
Textbook NP-hardness proof with quadratic blow up + ETH
rule out 2°(V") time algorithms = no 20(Vk) . n0(1) time
algorithm.

Variant of theory works for contraction-bidimensional problems,
e.g., INDEPENDENT SET, DOMINATING SET.

22

Chapter 3: Finding bounded treewidth solutions

So far the way we have used treewidth is to find something (e.g.,
Hamiltonian cycle) in a large bounded-treewidth graph:

23

Chapter 3: Finding bounded treewidth solutions

So far the way we have used treewidth is to find something (e.g.,
Hamiltonian cycle) in a large bounded-treewidth graph:

23

Chapter 3: Finding bounded treewidth solutions

But we can also find small bounded-treewidth graphs in an arbitrary
large graph.

Z

Theorem [Alon, Yuster, Zwick 1994]

Given a graph H and weighted graph G, we can find a minimum
weight subgraph of G isomorphic to H in time 20UV (H))) . hO(tw(H))

23

Chapter 3: Finding bounded treewidth solutions

But we can also find small bounded-treewidth graphs in an arbitrary
large graph.

Z

Theorem [Alon, Yuster, Zwick 1994]
Given a graph H and weighted graph G, we can find a minimum
weight subgraph of G isomorphic to H in time 20UV (H))) . hO(tw(H))

If the problem can be formulated as finding a graph of treewidth
O(V'k), then we get an nO(Vk) time algorithm.

23

Examples

Three examples:

@ PLANAR k-TERMINAL CUT
Improvement from n©(K) to 20(k) . nO(Vk).

@ PLANAR STRONGLY CONNECTED SUBGRAPH
Improvement from n©(k) to 20(klogk) . nOWk),

@ SUBSET TSP with k cities in a planar graph

Improvement from 29(k) . nO1) o 20(Vklogk) . O(1)

24

A classical problem

s—t Cutr

Input: A graph G, an integer p, vertices s and t
Output: A set S of at most p edges such that removing S sep-
arates s and t.

Theorem [Ford and Fulkerson 1956]

A minimum s — t cut can be found in polynomial time.

What about separating more than two terminals?

25

More than two terminals
MULTIWAY CUT (aka k-TERMINAL CUT)

Input: A graph G, an integer p, and a set T of k terminals
Output: A set S of at most p edges such that removing S sep-
arates any two vertices of T

Theorem [Dalhaus et al. 1994]
NP-hard already for k = 3.

26

More than two terminals
MULTIWAY CUT (aka k-TERMINAL CUT)

Input: A graph G, an integer p, and a set T of k terminals
Output: A set S of at most p edges such that removing S sep-
arates any two vertices of T

Theorem [Dalhaus et al. 1994] [Hartvigsen 1998] [Bentz 2012]

PLANAR k-TERMINAL CUT can be solved in time n©().

Theorem [Klein and M. 2012]

PLANAR k-TERMINAL CUT can be solved in time 20(K) . nO(VK).

26

Dual graph

The first step of the algorithms is to look at the solution in the
dual graph:

27

Dual graph

The first step of the algorithms is to look at the solution in the
dual graph:

Recall:
Primal graph Dual graph
vertices <« faces
faces <« vertices
edges <« edges

27

Dual graph

The first step of the algorithms is to look at the solution in the
dual graph:

Recall:

Primal graph Dual graph
vertices < faces
faces <« vertices
edges <« edges

We slightly transform the problem in such a way that the terminals are
represented by vertices in the dual graph (instead of faces).

27

Finding the dual solution

Main ideas of [Dalhaus et al. 1994] [Hartvigsen 1998] [Bentz 2012]:
© The dual solution has O(k) branch vertices.

@ Guess the location of branch vertices (n°(¥) guesses).

© Deep magic to find the paths connecting the branch vertices
(shortest paths are not necessarily good!)

28

Finding the dual solution

Idea for n°VH) time algorithm:
@ Guess the graph H representing the branch vertices.

@ Build a weighted complete graph G representing the distances
in the planar graph.

o Find in time nO®(H) = nO(VK) 3 minimum weight copy of H
in G.

Problem: How to ensure that the solution separates the terminals?

28

The Steiner tree

We find a minimum cost Steiner tree T of the terminals in the
dual and cut open the graph along the tree.

(Steiner tree: 3% - n°1) time by [Dreyfus-Wagner 1972] or 2k . n9(1)
time by [Bjorklund 2007])

29

The Steiner tree

We find a minimum cost Steiner tree T of the terminals in the
dual and cut open the graph along the tree.

(Steiner tree: 3% - n°1) time by [Dreyfus-Wagner 1972] or 2k . n9(1)
time by [Bjorklund 2007])

29

The Steiner tree

We find a minimum cost Steiner tree T of the terminals in the
dual and cut open the graph along the tree.

(Steiner tree: 3% - n°®) time by [Dreyfus-Wagner 1972] or 2k . n9(1)
time by [Bjorklund 2007])

29

The Steiner tree

We find a minimum cost Steiner tree T of the terminals in the
dual and cut open the graph along the tree.

(Steiner tree: 3% - n°1) time by [Dreyfus-Wagner 1972] or 2k . n9(1)
time by [Bjorklund 2007])

29

The Steiner tree

We find a minimum cost Steiner tree T of the terminals in the
dual and cut open the graph along the tree.

(Steiner tree: 3% - n°1) time by [Dreyfus-Wagner 1972] or 2k . n9(1)
time by [Bjorklund 2007])

29

The Steiner tree

We find a minimum cost Steiner tree T of the terminals in the
dual and cut open the graph along the tree.

(Steiner tree: 3% - n°1) time by [Dreyfus-Wagner 1972] or 2k . n9(1)
time by [Bjorklund 2007])

Key idea: the paths of the dual solution between the branch
points/crossing points can be assumed to be shortest paths.

29

Topology
Key idea: the paths of the dual solution between the branch
points/crossing points can be assumed to be shortest paths.

@ Thus a solution can be completely described by the location of
these points and which of them are connected.

@ A “topology” just describes the connections without the
locations.

@ We can bound the size of the topology by O(k) and its
treewidth by O(V/k).

30

Lower bounds

Theorem [Klein and M. 2012]

PLANAR k-TERMINAL CUT can be solved in time 20(K) . nO(Vk)_

Natural questions:
o Is there an f(k) - n°(VK) time algorithm?

o Is there an f(k) - n®1) time algorithm (i.e., is it
fixed-parameter tractable)?

31

Lower bounds

Theorem [Klein and M. 2012]

PLANAR k-TERMINAL CUT can be solved in time 20(K) . nO(Vk)_

Natural questions:
o Is there an f(k) - n°(VK) time algorithm?
o Is there an f(k) - n®1) time algorithm (i.e., is it
fixed-parameter tractable)?

The previous lower bound technology is of no help here: showing
that there is no 2°(v") time algorithm does not answer the
question.

Lower bounds:
Theorem [M. 2012]

PLANAR k-TERMINAL CUT is W[1]-hard and has no f(k) - n°(V%)
time algorithm (assuming ETH).

31

W([1]-hardness

Definition
A parameterized reduction from problem A to B maps an
instance (x, k) of A to instance (x’, k) of B such that

o (x,k)e A —= (X,K)eB,

e k' < g(k) for some computable function g.

o (x', k") can be computed in time f(k) - |x|°M).

Easy: If there is a parameterized reduction from problem A to
problem B and B is FPT, then A is FPT as well.

Definition
A problem P is W[1]-hard if there is a parameterized reduction
from k-CLIQUE to P.

32

W([1]-hardness

Definition
A parameterized reduction from problem A to B maps an
instance (x, k) of A to instance (x’, k) of B such that

o (x,k)e A —= (X,K)eB,

e k' < g(k) for some computable function g.

o (x', k") can be computed in time f(k) - |x|°M).

Easy: If there is a parameterized reduction from problem A to
problem B and B is FPT, then A is FPT as well.

Definition
A problem P is W[1]-hard if there is a parameterized reduction
from k-CLIQUE to P.

32

W([1]-hardness vs. NP-hardness

W([1]-hardness proofs are more delicate than NP-hardness proofs:
we need to control the new parameter.

Example: k-INDEPENDENT SET can be reduced to k’-VERTEX
COVER with k' := n — k. But this is not a parameterized
reduction.

33

W([1]-hardness vs. NP-hardness

W([1]-hardness proofs are more delicate than NP-hardness proofs:
we need to control the new parameter.

Example: k-INDEPENDENT SET can be reduced to k’-VERTEX
COVER with k' := n — k. But this is not a parameterized
reduction.

NP-hardness proof

Reduction from some graph problem. We build n vertex gadgets of
constant size and m edge gadgets of constant size.

W][1]-hardness proof

Reduction from k-CLIQUE. We build k large vertex gadgets, each
having n states (and/or (’2() large edge gadgets with m states).

33

Tight bounds

Theorem [Chen et al. 2004]

Assuming ETH, there is no f(k) - n°%) algorithm for k-CLIQUE for
any computable function f.

Transfering to other problems:

k-Clique N Problem A
(x, k) (<, g(k))
f(k) - not) - f(k) - note (k)

algorithm algorithm

Bottom line:
To rule out f(k) - n°(Vk) algorithms, we need a parameterized
reduction that blows up the parameter at most quadratically.

34

Tight bounds

Theorem [Chen et al. 2004]

Assuming ETH, there is no f(k) - n°%) algorithm for k-CLIQUE for
any computable function f.

Transfering to other problems:

k-Clique N Problem A
(x, k) (x', k?)
f(k)-ne®) | | F(k)-noVR)
algorithm algorithm

Bottom line:
To rule out 7(k) - n°(Vk) algorithms, we need a parameterized
reduction that blows up the parameter at most quadratically.

34

Grid Tiling

GRID TILING

Input: A k x k matrix and a set of pairs S;; C [D] x [D] for
each cell.
Find: A pair s;; € S;; for each cell such that

@ Horizontal neighbors agree in the first component.

@ Vertical neighbors agree in the second component.

(1,1) (1,5) (1,1)
(1.3) (4.1) (4,2)
(4.2) (3,5) (3.3)
(2,2) (1.3) (2,2)
(4.1) (2.1) (3.2)
(3.1)

) | (32)
83 (31 (3.5)

k—3. D=

35

Grid Tiling

GRID TILING

Input: A k x k matrix and a set of pairs S;; C [D] x [D] for
each cell.
Find: A pair s;; € S;; for each cell such that

@ Horizontal neighbors agree in the first component.

@ Vertical neighbors agree in the second component.

(1,1) (1,5) (1,1)
13) | (41) | (42
(4.2) (35) (3.3)
(2,2) (1,3) (2,2)
(4,1) (2,1) (3,2)
(3.1)

(11) (3.2)
83 (31 (3.5)

K=3,D=

35

Grid Tiling

GRID TILING

Input: A k x k matrix and a set of pairs S;; C [D] x [D] for
each cell.
Find: A pair s;j € S; for each cell such that

@ Horizontal neighbors agree in the first component.

@ Vertical neighbors agree in the second component.
Fact

There is a parameterized reduction from k-CLIQUE to k x k GRID
TILING.

35

Reduction from k x k GRID TILING

to PLANAR k?-TERMINAL CUT

For every set S; ;, we construct a gadget such that
o for every (x,y) € S;j, there is a minimum multiway cut that
represents (x, y).
@ every minimum multiway cut represents some (x,y) € S; ;.

Main part of the proof: constructing these gadgets.

UL v vz uzs us us UR

%
L2
L3
Lla
ls

r
r2
3
ra
I's

DL di d» ds di ds DR

The gadget.
gadg 36

Reduction from k x k GRID TILING

to PLANAR k?-TERMINAL CUT

For every set S; ;, we construct a gadget such that
o for every (x,y) € S;j, there is a minimum multiway cut that
represents (x, y).
@ every minimum multiway cut represents some (x,y) € S; ;.

Main part of the proof: constructing these gadgets.

UL ui ur uzs us us UR

%
L2
L3
Lla
ls

r
r2
3
ra

I's

L di d> d3 di d5 DR

A cut representing (2,4). 36

Reduction from k x k GRID TILING

to PLANAR k?-TERMINAL CUT

For every set S; ;, we construct a gadget such that
o for every (x,y) € S;j, there is a minimum multiway cut that
represents (x, y).
@ every minimum multiway cut represents some (x,y) € S; ;.

Main part of the proof: constructing these gadgets.

U1 Uy U3 U Us

ch o ds dy ds

A cut not representing any pair.

36

Putting together the gadgets

37

Putting together the gadgets

37

Putting together the gadgets

P T

T

37

PLANAR k-TERMINAL CUT

o Upper bound:
Looking at the dual + cutting open a Steiner tree + guessing
a topology + finding a graph of treewidth O(V/k).

e Lower bound:
ETH + reduction from GRID TILING + tricky gadget
construction rule out f(k) - n°(Vk) time algorithms.

38

STRONGLY CONNECTED SUBGRAPH

Undirected graphs:
STEINER TREE: Find a minimum weight connected subgraph that
contains all k terminals.

Theorem [Dreyfus-Wagner 1972]

STEINER TREE can be solved in time 20(k) . nO(1),

39

STRONGLY CONNECTED SUBGRAPH
Undirected graphs:
STEINER TREE: Find a minimum weight connected subgraph that
contains all k terminals.

Theorem [Dreyfus-Wagner 1972]
STEINER TREE can be solved in time 20(k) . nO(1),

Directed graphs:
STRONGLY CONNECTED SUBGRAPH: Find a minimum weight
strongly connected subgraph that contains all k terminals.

Theorem

STRONGLY CONNECTED SUBGRAPH on general directed graphs
@ can be solved in time n©()

[Feldman and Ruhl 2006],

@ is W[1]-hard parameterized by k.
[Guo, Niedermeier, Suchy 2011].

on general directed graphs

39

STRONGLY CONNECTED SUBGRAPH on planar graphs

Theorem [Feldman and Ruhl 2006]

STRONGLY CONNECTED SUBGRAPH can be solved in time n©()
on general directed graphs.
Natural questions:

o Is there an f(k) - n°(K) time algorithm on planar graphs?

o Is there an f(k) - n°() time algorithm (i.e., is it
fixed-parameter tractable) on planar graphs?

40

STRONGLY CONNECTED SUBGRAPH on planar graphs

Theorem [Feldman and Ruhl 2006]

STRONGLY CONNECTED SUBGRAPH can be solved in time n©()
on general directed graphs.
Natural questions:

o Is there an f(k) - n°(K) time algorithm on planar graphs?

o Is there an f(k) - n°() time algorithm (i.e., is it
fixed-parameter tractable) on planar graphs?

Theorem [Chitnis, Hajiaghayi, M.]

STRONGLY CONNECTED SUBGRAPH on planar directed graphs
o can be solved in time 20(klogk) . ,O(Vk),
@ has no f(k) - n°(Vk) time algorithm.

40

Optimum solutions

Closely looking at the n©() algorithm of [Feldman and Ruhl 2006]
shows that an optimum solution consists of directed paths and
“bidirectional strips™:

VEN

AN

With some work, we can bound the number paths/strips by O(k).

41

Algorithm

[Ignore the bidirectional strips for simplicity]

@ We guess the topology of the solution (20(k1°8k) possibilities).

o Treewidth of the topology is O(V/k).

@ We can find the best realization of this topology (matching
the location of the terminals) in time nOWh),

42

Algorithm

[Ignore the bidirectional strips for simplicity]

@ We guess the topology of the solution (20(klogk)

o Treewidth of the topology is O(V/k).

@ We can find the best realization of this topology (matching
the location of the terminals) in time nOWh),

possibilities).

42

- n°VR) time

)

The proof is by reduction from GRID TILING and complicated

algorithm on planar directed graphs (assuming ETH).
construction of gadgets.

Theorem [Chitnis, Hajiaghayi, M.]
STRONGLY CONNECTED SUBGRAPH has no f(k

Lower bound

43

TSP
TSP

Input: A set T of cities and a distance function d on T
Output: A tour on T with minimum total distance

Theorem [Held and Karp]
TSP with k cities can be solved in time 2 . n0(1),

Dynamic programming:
Let x(v, T') be the minimum length of path from vgiat to v
visiting all the cities T/ C T.
44

SUBSET TSP on planar graphs

Assume that the cities correspond to a subset T of a planar graph
and distance is measured in this planar graph.

45

SUBSET TSP on planar graphs

Assume that the cities correspond to a subset T of a planar graph
and distance is measured in this planar graph.

@ Can be solved in time 20(vV).

@ Can be solved in time 2k . nO(1),

o Question: Can we solve it in time 20(Vk) . O(1)7

45

SUBSET TSP on planar graphs

Assume that the cities correspond to a subset T of a planar graph
and distance is measured in this planar graph.

Theorem [Klein and M.]

SUBSET TSP for k cities in a planar graph can be solved in time
20(Vk) . O(1)

45

TSP and treewidth

@ We wanted to formulate the problem as finding a low
treewidth subgraph.
@ A cycle has treewidth 2, is this of any help?

Problem:
We have to remember the subset of cities visited by the partial tour
(2% possibilities).
46

c-change TSP

@ c-change operation: removing c steps of the tour and
connecting the resulting ¢ paths in some other way.
@ A solution is c-OPT if no c-change can improve it.

o We can find a c-OPT solution in k°(€) . D time, where D is
the maximum distance (if distances are integers).

47

c-change TSP

@ c-change operation: removing c steps of the tour and
connecting the resulting ¢ paths in some other way.
@ A solution is c-OPT if no c-change can improve it.

o We can find a c-OPT solution in k°(€) . D time, where D is
the maximum distance (if distances are integers).

47

c-change TSP

@ c-change operation: removing c steps of the tour and
connecting the resulting ¢ paths in some other way.

@ A solution is c-OPT if no c-change can improve it.

o We can find a c-OPT solution in k°(€) . D time, where D is
the maximum distance (if distances are integers).

47

The treewidth bound

Consider the union of an optimum solution and a 4-OPT solution
as a graph on k vertices:

Lemma

The union of an optimum solution and a 4-OPT solution [+ slight
technical condition] has treewidth O(v/k).

48

The treewidth bound

Lemma

The union of an optimum solution and a 4-OPT solution [+ slight
technical condition] has treewidth O(v/k).

@ The union has separators of size O(V/k).

@ In each component, the set of cities visited by the optimum
solution is nice: it is the same as what O(v/k) segments of the
4-OPT tour visited (kO(VK) possibilities).

49

Summary of Chapter 3

Parameterized problems where bidimensionality does not work.

e Upper bounds:
Algorithms based on finding a bounded-treewidth subgraph.
Treewidth bound is problem-specific:

o k-TERMINAL CUT: dual solution has O(k) branch vertices.

e PLANAR STRONGLY CONNECTED SUBGRAPH: solution

consists of O(k) paths/strips.
e SUBSET TSP on planar graphs: the union of an optimum
solution and a 4-OPT solution has treewidth O(k).

e Lower bounds:
To rule out f(k) - n°(Vk) time algorithms, we have to prove

W/[1]-hardness by reduction from GRID TILING.

50

Conclusions

e Chapter 1: Subexponential algorithms using treewidth.
o Algorithms: standard treewidth algorithms.
o Lower bounds: textbook NP-completeness proofs + ETH.
@ Chapter 2: Grid minors and bidimensionality.
o Algorithms: standard treewidth algorithms + excluded grid
theorem.
o Lower bounds: textbook NP-completeness proofs + ETH.
e Chapter 3: Finding bounded treewidth solutions.
e Algorithms: the solution can be represented by a graph of
treewidth O(V/k).

o Lower bounds: grid-like W[1]-hardness proofs to rule out
f(k) - n°V9) algorithms.

51

Conclusions

@ A robust understanding of why certain problems can be solved
in time 29V" etc. on planar graphs and why the square root
is best possible.

52

Conclusions

@ A robust understanding of why certain problems can be solved
in time 29V" etc. on planar graphs and why the square root
is best possible.

@ Going beyond the basic toolbox requires new problem-specific
algorithmic techniques and hardness proofs with tricky gadget

constructions.

52

Conclusions

@ A robust understanding of why certain problems can be solved
in time 29V" etc. on planar graphs and why the square root

is best possible.

@ Going beyond the basic toolbox requires new problem-specific
algorithmic techniques and hardness proofs with tricky gadget
constructions.

@ The lower bound technology on planar graphs cannot give a
lower bound without a square root factor. Does this mean that
there are matching algorithms for other problems as well?

o 20(VK) . nO(1) time algorithm for STEINER TREE with k

terminals in a planar graph?
o 20VK) . nO() time algorithm for finding a cycle of length

exactly k in a planar graph?

52

