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Overview

An nO(1/ǫ2) approximation scheme is grossly inefficient for small ǫ.

Parameterized complexity might help determine if this inefficiency is
unavoidable or can be improved.

Concrete examples for some geometric problems:

MAXIMUM INDEPENDENT SET for unit disk graphs

MINIMUM VERTEX COVER for unit disk graphs

COVERING POINTS WITH SQUARES
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Approximation schemes

Polynomial-Time Approximation Scheme (PTAS): algorithm that produces

an ǫ-approximate solution in time nf(ǫ).
Example: nO(1/ǫ) time PTAS for INDEPENDENT SET in unit disk graphs.

Efficient Approximation Schemes for Geometric Problems? – p.3/15



Approximation schemes

Polynomial-Time Approximation Scheme (PTAS): algorithm that produces

an ǫ-approximate solution in time nf(ǫ).
Example: nO(1/ǫ) time PTAS for INDEPENDENT SET in unit disk graphs.

Efficient Polynomial-Time Approximation Scheme (EPTAS): algorithm that

produces an ǫ-approximate solution in time f(ǫ) · nc .
Example: 2O(1/ǫ) · n time PTAS for INDEPENDENT SET in planar graphs.
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Approximation schemes

Polynomial-Time Approximation Scheme (PTAS): algorithm that produces

an ǫ-approximate solution in time nf(ǫ).
Example: nO(1/ǫ) time PTAS for INDEPENDENT SET in unit disk graphs.

Efficient Polynomial-Time Approximation Scheme (EPTAS): algorithm that

produces an ǫ-approximate solution in time f(ǫ) · nc .
Example: 2O(1/ǫ) · n time PTAS for INDEPENDENT SET in planar graphs.

Fully Polynomial-Time Approximation Scheme (FPTAS): algorithm that

produces an ǫ-approximate solution in time (1/ǫ)c · nc .
Example: O(1/ǫ · n3) time PTAS for KNAPSACK.
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The PTAS scandal situation

Running time of some approximation schemes for 20% error:

(reproduced from [Downey ’03])

MULTIPLE KNAPSACK

[Checkuri and Khanna ’00] O(n9,375,000)

MAXIMUM SUBFOREST

[Shamir and Tsur ’98] O(n958,267,391)

GENERAL MULTIPROCESSOR JOB SCHEDULING > O(n1060

)
[Chen and Miranda ’99] (4 processors)

MAXIMUM INDEPENDENT SET for disk graphs
[Erlebach et al. ’01] O(n523,804)
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PTAS vs. EPTAS

Do people care whether their PTAS is an EPTAS?

Arora’s first algorithm for Euclidean TSP [FOCS ’96] has running time

nO(1/ǫ) ⇒ it is not an EPTAS.
The algorithm in the journal version [J. ACM ’98] is improved to

n · logO(1/ǫ) n = 2O(1/ǫ2) · n2 time ⇒ it is an EPTAS.
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n · logO(1/ǫ) n = 2O(1/ǫ2) · n2 time ⇒ it is an EPTAS.

Hunt et al. [J. Alg. ’98] presented an nO(1/ǫ) time PTAS for INDEPEDENT

SET in unit disk graphs, and an 2O(1/(ǫλ)2) · n time EPTAS for the special
case of λ-precision unit disk graphs.
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Hunt et al. [J. Alg. ’98] presented an nO(1/ǫ) time PTAS for INDEPEDENT

SET in unit disk graphs, and an 2O(1/(ǫλ)2) · n time EPTAS for the special
case of λ-precision unit disk graphs.

Arora et al. [STOC ’98] gave an nO(1/ǫ) time PTAS for the Euclidean

k-median problem.
Kolliopoulos and Rao [ESA ’99] gave a 2O(1/ǫ·log 1/ǫ) · n log6 n time

EPTAS for the problem.
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Do people care whether their PTAS is an EPTAS?

Arora’s first algorithm for Euclidean TSP [FOCS ’96] has running time

nO(1/ǫ) ⇒ it is not an EPTAS.
The algorithm in the journal version [J. ACM ’98] is improved to

n · logO(1/ǫ) n = 2O(1/ǫ2) · n2 time ⇒ it is an EPTAS.

Hunt et al. [J. Alg. ’98] presented an nO(1/ǫ) time PTAS for INDEPEDENT

SET in unit disk graphs, and an 2O(1/(ǫλ)2) · n time EPTAS for the special
case of λ-precision unit disk graphs.

Arora et al. [STOC ’98] gave an nO(1/ǫ) time PTAS for the Euclidean

k-median problem.
Kolliopoulos and Rao [ESA ’99] gave a 2O(1/ǫ·log 1/ǫ) · n log6 n time

EPTAS for the problem.

? When is such an improvement possible? Can we prove negative results?
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Parameterized complexity

Goal: restrict the exponential growth of the running time to one parameter of

the input.

Example: Finding a vertex cover of size k can be done in O(1.3k · n2) time.

Example: Finding a path of length k can be done in O(2k · n2) time.
Example: No algorithm with running time no(k) is known for finding a k-clique.
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Parameterized complexity

Goal: restrict the exponential growth of the running time to one parameter of

the input.

Example: Finding a vertex cover of size k can be done in O(1.3k · n2) time.

Example: Finding a path of length k can be done in O(2k · n2) time.
Example: No algorithm with running time no(k) is known for finding a k-clique.

In a parameterized problem , every instance has a special part k called the

parameter.

Definition: A parameterized problem is fixed-parameter tractable (FPT) with

parameter k if there is an algorithm with running time f(k) · nc where c is a

fixed constant not depending on k.
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Parameterized intractability

We expect that MAXIMUM INDEPENDENT SET is not fixed-parameter tractable,

no no(k) algorithm is known.

W[1]-complete ≈ “as hard as MAXIMUM INDEPENDENT SET”
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Parameterized intractability

We expect that MAXIMUM INDEPENDENT SET is not fixed-parameter tractable,

no no(k) algorithm is known.

W[1]-complete ≈ “as hard as MAXIMUM INDEPENDENT SET”

Parameterized reductions: L1 is reducible to L2, if there is a function f that
transforms (x, k) to (x′, k′) such that

(x, k) ∈ L1 if and only if (x′, k′) ∈ L2,

f can be computed in f(k)|x|c time,

k′ depends only on k

If L1 is reducible to L2, and L2 is in FPT, then L1 is in FPT as well.

Most NP-completeness proofs are not good for parameterized reductions.
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Relation to approximability

Optimization problem ⇒
Parameterized decision problem:
“Is there a solution with value k?”

Observation: [Bazgan ’95; Cesati and Trevisan ’97] If there is an EPTAS for
the optimization problem, then the decision problem is FPT.
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Optimization problem ⇒
Parameterized decision problem:
“Is there a solution with value k?”

Observation: [Bazgan ’95; Cesati and Trevisan ’97] If there is an EPTAS for
the optimization problem, then the decision problem is FPT.

Proof: Given an f(ǫ) · nc time EPTAS, set ǫ = 1
2k

, now the approximation

algorithm can decide in f( 1
2k

) · nc time whether the optimum is k or k + 1.
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for the optimization problem, unless W[1]=FPT.
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Relation to approximability

Optimization problem ⇒
Parameterized decision problem:
“Is there a solution with value k?”

Observation: [Bazgan ’95; Cesati and Trevisan ’97] If there is an EPTAS for
the optimization problem, then the decision problem is FPT.

Proof: Given an f(ǫ) · nc time EPTAS, set ǫ = 1
2k

, now the approximation

algorithm can decide in f( 1
2k

) · nc time whether the optimum is k or k + 1.

Consequence: If the decision problem is W[1]-hard, then there is no EPTAS
for the optimization problem, unless W[1]=FPT.

Remark: Does not work the other way. Problem is FPT does not imply that

there is an EPTAS. For example, MINIMUM VERTEX COVER can be solved in
1.3k · n2 time, but there is no PTAS.
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Geometric problems

Geometric problems: problems involving geometric objects (usually in 2D or

3D). Often motivated by practical applications.

Geometric graphs: Intersection graphs of geometric objects. Vertices are the

objects, two vertices are connected if the objects intersect.
Examples: disk graphs, unit disk graphs, coin graphs (=planar graphs).

A

B C

D

D

CB

A

Classical problems such as INDEPENDENT SET, DOMINATING SET, VERTEX

COVER, VERTEX COLORING were investigated on different types of geometric

graphs.
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INDEPENDENT SET for unit disk graphs

Unit disk graphs:

INDEPENDENT SET is NP-hard for unit disk graphs [Clark et al. ’90].

Admits an nO(1/ǫ) time PTAS [Hunt et al. ’98] and an nO(1/ǫ2·log 1/ǫ) time

PTAS [Nieberg et al. ’04].

Parameterized problem can be solved in n
√

k time [Alber and Fiala ’03].
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INDEPENDENT SET for unit disk graphs

Unit disk graphs:

INDEPENDENT SET is NP-hard for unit disk graphs [Clark et al. ’90].

Admits an nO(1/ǫ) time PTAS [Hunt et al. ’98] and an nO(1/ǫ2·log 1/ǫ) time

PTAS [Nieberg et al. ’04].

Parameterized problem can be solved in n
√

k time [Alber and Fiala ’03].

New result: parameterized version is W[1]-hard
⇒ no EPTAS (unless W[1]=FPT).
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PTAS for INDEPENDENT SET

Sketch of the algorithm [Hunt et al. ’98]:
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PTAS for INDEPENDENT SET

Sketch of the algorithm [Hunt et al. ’98]:

Draw parallel horizontal and
vertical lines.

1/ǫ

1
ǫ
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PTAS for INDEPENDENT SET

Sketch of the algorithm [Hunt et al. ’98]:

Draw parallel horizontal and
vertical lines.

Remove the disks hit by the lines.
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PTAS for INDEPENDENT SET

Sketch of the algorithm [Hunt et al. ’98]:

Draw parallel horizontal and
vertical lines.

Remove the disks hit by the lines.

Remaining problem breaks into
small independent parts. . .

1/ǫ

1
ǫ
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PTAS for INDEPENDENT SET

Sketch of the algorithm [Hunt et al. ’98]:

Draw parallel horizontal and
vertical lines.

Remove the disks hit by the lines.

Remaining problem breaks into
small independent parts. . .

. . .that can be solved by brute

force in nO(1/ǫ2) time.

1/ǫ

1
ǫ
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PTAS for INDEPENDENT SET

Sketch of the algorithm [Hunt et al. ’98]:

Draw parallel horizontal and
vertical lines.

Remove the disks hit by the lines.

Remaining problem breaks into
small independent parts. . .

. . .that can be solved by brute

force in nO(1/ǫ2) time.

Shifting argument: there is at least

one way of drawing the lines such
that deleting the disks does not

change the optimum much.

1/ǫ

1
ǫ
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λ-precision unit disk graphs

λ-precision unit disk graphs (distance of centers is at least λ):

INDEPENDENT SET is NP-hard even for λ = 1.

Admits an EPTAS [Hunt et al. ’98]. (Each small problem contains at most
O(1/(λǫ)2) disks.)

Can be solved in 2
√

k + nc time [Alber and Fiala ’03] ⇒ FPT.
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VERTEX COVER for unit disk graphs

[Hunt et al. ’98] modifies the PTAS for INDEPENDENT SET to obtain an nO(1/ǫ)

time PTAS for VERTEX COVER.

Is there an EPTAS for the problem? VERTEX COVER is FPT, hence we cannot

prove negative results.
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VERTEX COVER for unit disk graphs

[Hunt et al. ’98] modifies the PTAS for INDEPENDENT SET to obtain an nO(1/ǫ)

time PTAS for VERTEX COVER.

Is there an EPTAS for the problem? VERTEX COVER is FPT, hence we cannot

prove negative results.

There is an EPTAS:

Split the problem into 1/ǫ × 1/ǫ rectangles.

If a point is covered by more than 1/ǫ disks, then select all these disks into

the vertex cover (all but one has to be selected anyway).

If every point is covered by at most 1/ǫ disks ⇒ there are at most
O(1/ǫ3) disks ⇒ can be solved by brute force in f(ǫ) time.
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COVERING POINTS WITH SQUARES

Given: n points in the plane

Find: a minimum number of unit squares such that every point is covered by at
least one square.

nO(1/ǫ2) time PTAS by Hochbaum and Maas [J. ACM ’85]. (Usual shifting

strategy: split the problem into small parts and use brute force.)

Parameterized version: “Is it possible to cover the points with k squares?”

New result: the parameterized version of the problem is W[1]-hard

⇒ there is no EPTAS (unless FPT=W[1])
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Conclusions

PTASs are polynomial for fixed ǫ, but often with very high degree.

PTAS vs. EPTAS

Parameterized complexity can give evidence that there is no EPTAS for the

problem.

Works especially well for geometric problems.

Concrete examples: INDEPENDENT SET and VERTEX COVER for unit disk
graphs, COVERING POINTS WITH SQUARES.
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