

Efficient Approximation Schemes for Geometric Problems?

Dániel Marx

Humboldt-Universität zu Berlin

dmarx@informatik.hu-berlin.de

European Symposium on Algorithms

October 4, 2005

- 6 An $n^{O(1/\epsilon^2)}$ approximation scheme is grossly inefficient for small ϵ .
- 9 Parameterized complexity might help determine if this inefficiency is unavoidable or can be improved.
- 6 Concrete examples for some geometric problems:
 - ▲ MAXIMUM INDEPENDENT SET for unit disk graphs
 - MINIMUM VERTEX COVER for unit disk graphs
 - △ COVERING POINTS WITH SQUARES

Approximation schemes

Polynomial-Time Approximation Scheme (PTAS): algorithm that produces an ϵ -approximate solution in time $n^{f(\epsilon)}$. **Example:** $n^{O(1/\epsilon)}$ time PTAS for INDEPENDENT SET in unit disk graphs.

Approximation schemes

Polynomial-Time Approximation Scheme (PTAS): algorithm that produces an ϵ -approximate solution in time $n^{f(\epsilon)}$. **Example:** $n^{O(1/\epsilon)}$ time PTAS for INDEPENDENT SET in unit disk graphs.

Efficient Polynomial-Time Approximation Scheme (EPTAS): algorithm that produces an ϵ -approximate solution in time $f(\epsilon) \cdot n^c$. **Example:** $2^{O(1/\epsilon)} \cdot n$ time PTAS for INDEPENDENT SET in planar graphs.

Approximation schemes

Polynomial-Time Approximation Scheme (PTAS): algorithm that produces an ϵ -approximate solution in time $n^{f(\epsilon)}$. **Example:** $n^{O(1/\epsilon)}$ time PTAS for INDEPENDENT SET in unit disk graphs.

Efficient Polynomial-Time Approximation Scheme (EPTAS): algorithm that produces an ϵ -approximate solution in time $f(\epsilon) \cdot n^c$. Example: $2^{O(1/\epsilon)} \cdot n$ time PTAS for INDEPENDENT SET in planar graphs.

Fully Polynomial-Time Approximation Scheme (FPTAS): algorithm that produces an ϵ -approximate solution in time $(1/\epsilon)^c \cdot n^c$. Example: $O(1/\epsilon \cdot n^3)$ time PTAS for KNAPSACK.

The PTAS scandal situation

Running time of some approximation schemes for 20% error: (reproduced from [Downey '03])

MULTIPLE KNAPSACK [Checkuri and Khanna '00]	$O(n^{9,375,000})$
MAXIMUM SUBFOREST [Shamir and Tsur '98]	$O(n^{958,267,391})$
GENERAL MULTIPROCESSOR JOB SCHEDULING [Chen and Miranda '99]	$> O(n^{10^{60}})$ (4 processors)
MAXIMUM INDEPENDENT SET for disk graphs [Erlebach <i>et al.</i> '01]	$O(n^{523,804})$

Do people care whether their PTAS is an EPTAS?

6 Arora's first algorithm for Euclidean TSP [FOCS '96] has running time $n^{O(1/\epsilon)} \Rightarrow$ it is not an EPTAS.

The algorithm in the journal version [*J. ACM* '98] is improved to $n \cdot \log^{O(1/\epsilon)} n = 2^{O(1/\epsilon^2)} \cdot n^2$ time \Rightarrow it is an EPTAS.

Do people care whether their PTAS is an EPTAS?

6 Arora's first algorithm for Euclidean TSP [FOCS '96] has running time $n^{O(1/\epsilon)} \Rightarrow$ it is not an EPTAS.

The algorithm in the journal version [*J. ACM* '98] is improved to $n \cdot \log^{O(1/\epsilon)} n = 2^{O(1/\epsilon^2)} \cdot n^2$ time \Rightarrow it is an EPTAS.

6 Hunt *et al.* [*J. Alg.* '98] presented an $n^{O(1/\epsilon)}$ time PTAS for INDEPEDENT SET in unit disk graphs, and an $2^{O(1/(\epsilon\lambda)^2)} \cdot n$ time EPTAS for the special case of λ -precision unit disk graphs.

Do people care whether their PTAS is an EPTAS?

6 Arora's first algorithm for Euclidean TSP [FOCS '96] has running time $n^{O(1/\epsilon)} \Rightarrow$ it is not an EPTAS.

The algorithm in the journal version [*J. ACM* '98] is improved to $n \cdot \log^{O(1/\epsilon)} n = 2^{O(1/\epsilon^2)} \cdot n^2$ time \Rightarrow it is an EPTAS.

- 6 Hunt *et al.* [*J. Alg.* '98] presented an $n^{O(1/\epsilon)}$ time PTAS for INDEPEDENT SET in unit disk graphs, and an $2^{O(1/(\epsilon\lambda)^2)} \cdot n$ time EPTAS for the special case of λ -precision unit disk graphs.
- Arora *et al.* [STOC '98] gave an n^{O(1/ε)} time PTAS for the Euclidean k-median problem.
 Kolliopoulos and Rao [ESA '99] gave a 2^{O(1/ε·log 1/ε)} · n log⁶ n time EPTAS for the problem.

Do people care whether their PTAS is an EPTAS?

6 Arora's first algorithm for Euclidean TSP [FOCS '96] has running time $n^{O(1/\epsilon)} \Rightarrow$ it is not an EPTAS.

The algorithm in the journal version [*J. ACM* '98] is improved to $n \cdot \log^{O(1/\epsilon)} n = 2^{O(1/\epsilon^2)} \cdot n^2$ time \Rightarrow it is an EPTAS.

- 6 Hunt *et al.* [*J. Alg.* '98] presented an $n^{O(1/\epsilon)}$ time PTAS for INDEPEDENT SET in unit disk graphs, and an $2^{O(1/(\epsilon\lambda)^2)} \cdot n$ time EPTAS for the special case of λ -precision unit disk graphs.
- Arora *et al.* [STOC '98] gave an n^{O(1/ε)} time PTAS for the Euclidean k-median problem.
 Kolliopoulos and Rao [ESA '99] gave a 2^{O(1/ε·log 1/ε)} n log⁶ n time EPTAS for the problem.
 - **?** When is such an improvement possible? Can we prove negative results?

Parameterized complexity

Goal: restrict the exponential growth of the running time to one parameter of the input.

Example: Finding a vertex cover of size k can be done in $O(1.3^k \cdot n^2)$ time. **Example:** Finding a path of length k can be done in $O(2^k \cdot n^2)$ time. **Example:** No algorithm with running time $n^{o(k)}$ is known for finding a k-clique.

Parameterized complexity

Goal: restrict the exponential growth of the running time to one parameter of the input.

Example: Finding a vertex cover of size k can be done in $O(1.3^k \cdot n^2)$ time. **Example:** Finding a path of length k can be done in $O(2^k \cdot n^2)$ time. **Example:** No algorithm with running time $n^{o(k)}$ is known for finding a k-clique.

In a **parameterized problem**, every instance has a special part *k* called the **parameter**.

Definition: A parameterized problem is **fixed-parameter tractable (FPT)** with parameter k if there is an algorithm with running time $f(k) \cdot n^c$ where c is a fixed constant not depending on k.

Parameterized intractability

We expect that MAXIMUM INDEPENDENT SET is not fixed-parameter tractable, no $n^{o(k)}$ algorithm is known.

W[1]-complete \approx "as hard as MAXIMUM INDEPENDENT SET"

Parameterized intractability

We expect that MAXIMUM INDEPENDENT SET is not fixed-parameter tractable, no $n^{o(k)}$ algorithm is known.

W[1]-complete \approx "as hard as MAXIMUM INDEPENDENT SET"

Parameterized reductions: L_1 is reducible to L_2 , if there is a function f that transforms (x, k) to (x', k') such that

- $(x,k)\in L_1$ if and only if $(x',k')\in L_2$,
- 6 f can be computed in $f(k)|x|^c$ time,
- k' depends only on k

If L_1 is reducible to L_2 , and L_2 is in FPT, then L_1 is in FPT as well. Most NP-completeness proofs are not good for parameterized reductions.

Optimization problem :

Parameterized decision problem: "Is there a solution with value k?"

Observation: [Bazgan '95; Cesati and Trevisan '97] If there is an EPTAS for the optimization problem, then the decision problem is FPT.

Optimization problem :

Parameterized decision problem: "Is there a solution with value k?"

Observation: [Bazgan '95; Cesati and Trevisan '97] If there is an EPTAS for the optimization problem, then the decision problem is FPT.

Proof: Given an $f(\epsilon) \cdot n^c$ time EPTAS, set $\epsilon = \frac{1}{2k}$, now the approximation algorithm can decide in $f(\frac{1}{2k}) \cdot n^c$ time whether the optimum is k or k + 1.

Optimization problem =

Parameterized decision problem: "Is there a solution with value k?"

Observation: [Bazgan '95; Cesati and Trevisan '97] If there is an EPTAS for the optimization problem, then the decision problem is FPT.

Proof: Given an $f(\epsilon) \cdot n^c$ time EPTAS, set $\epsilon = \frac{1}{2k}$, now the approximation algorithm can decide in $f(\frac{1}{2k}) \cdot n^c$ time whether the optimum is k or k + 1.

Consequence: If the decision problem is W[1]-hard, then there is no EPTAS for the optimization problem, unless W[1]=FPT.

Optimization problem =

Parameterized decision problem: "Is there a solution with value k?"

Observation: [Bazgan '95; Cesati and Trevisan '97] If there is an EPTAS for the optimization problem, then the decision problem is FPT.

Proof: Given an $f(\epsilon) \cdot n^c$ time EPTAS, set $\epsilon = \frac{1}{2k}$, now the approximation algorithm can decide in $f(\frac{1}{2k}) \cdot n^c$ time whether the optimum is k or k + 1.

Consequence: If the decision problem is W[1]-hard, then there is no EPTAS for the optimization problem, unless W[1]=FPT.

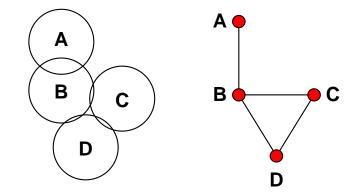
Remark: Does not work the other way. Problem is FPT does not imply that there is an EPTAS. For example, MINIMUM VERTEX COVER can be solved in $1.3^k \cdot n^2$ time, but there is no PTAS.

Geometric problems

Geometric problems: problems involving geometric objects (usually in 2D or 3D). Often motivated by practical applications.

Geometric graphs: Intersection graphs of geometric objects. Vertices are the objects, two vertices are connected if the objects intersect.

Examples: disk graphs, unit disk graphs, coin graphs (=planar graphs).



Classical problems such as INDEPENDENT SET, DOMINATING SET, VERTEX COVER, VERTEX COLORING were investigated on different types of geometric graphs.

INDEPENDENT SET for unit disk graphs

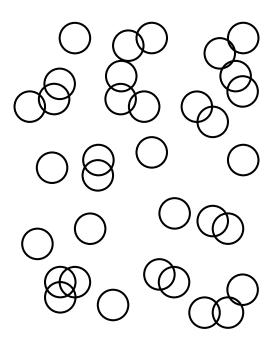
Unit disk graphs:

- 6 INDEPENDENT SET is NP-hard for unit disk graphs [Clark et al. '90].
- 6 Admits an $n^{O(1/\epsilon)}$ time PTAS [Hunt *et al.* '98] and an $n^{O(1/\epsilon^2 \cdot \log 1/\epsilon)}$ time PTAS [Nieberg *et al.* '04].
- 9 Parameterized problem can be solved in $n^{\sqrt{k}}$ time [Alber and Fiala '03].

INDEPENDENT SET for unit disk graphs

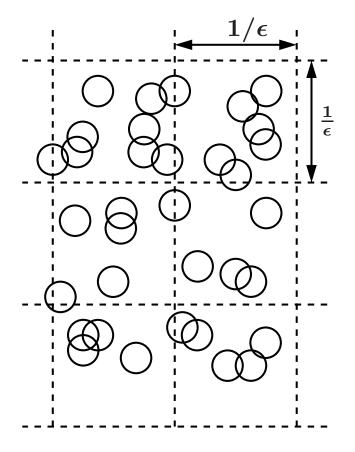
Unit disk graphs:

- 6 INDEPENDENT SET is NP-hard for unit disk graphs [Clark et al. '90].
- 6 Admits an $n^{O(1/\epsilon)}$ time PTAS [Hunt *et al.* '98] and an $n^{O(1/\epsilon^2 \cdot \log 1/\epsilon)}$ time PTAS [Nieberg *et al.* '04].
- 9 Parameterized problem can be solved in $n^{\sqrt{k}}$ time [Alber and Fiala '03].
- Sew result: parameterized version is W[1]-hard
 ⇒ no EPTAS (unless W[1]=FPT).



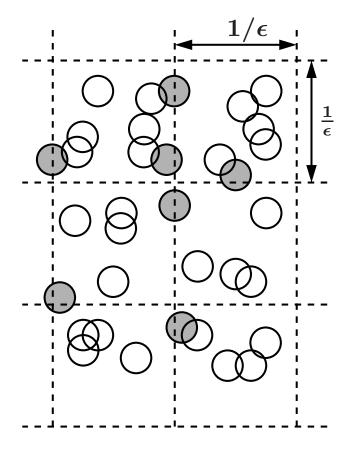
Sketch of the algorithm [Hunt et al. '98]:

Oraw parallel horizontal and vertical lines.

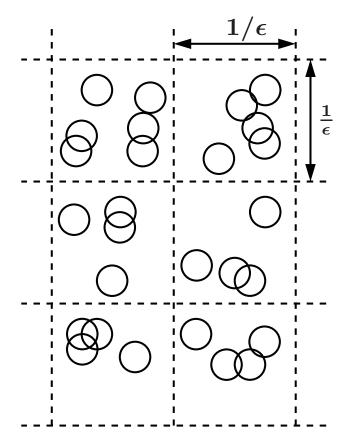


Sketch of the algorithm [Hunt et al. '98]:

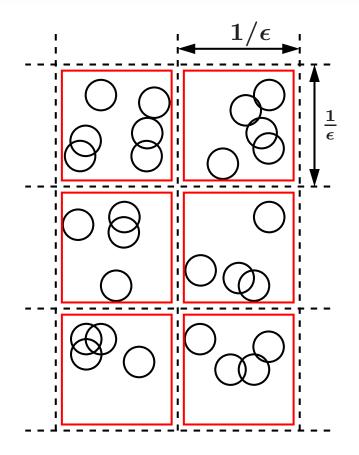
Oraw parallel horizontal and vertical lines.



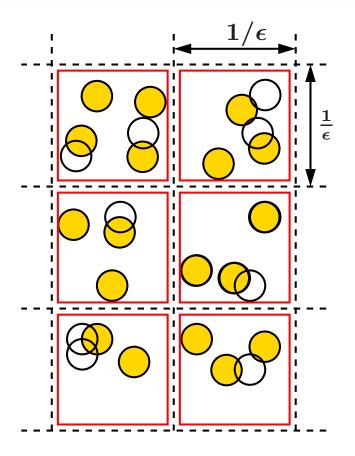
- Oraw parallel horizontal and vertical lines.
- 6 Remove the disks hit by the lines.



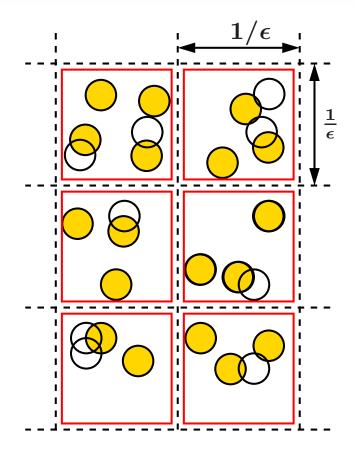
- Oraw parallel horizontal and vertical lines.
- 6 Remove the disks hit by the lines.
- 6 Remaining problem breaks into small independent parts...



- Oraw parallel horizontal and vertical lines.
- 6 Remove the disks hit by the lines.
- 6 Remaining problem breaks into small independent parts...
- 6 ... that can be solved by brute force in $n^{O(1/\epsilon^2)}$ time.



- Oraw parallel horizontal and vertical lines.
- 6 Remove the disks hit by the lines.
- 6 Remaining problem breaks into small independent parts...
- 6 ... that can be solved by brute force in $n^{O(1/\epsilon^2)}$ time.
- Shifting argument: there is at least one way of drawing the lines such that deleting the disks does not change the optimum much.



λ -precision unit disk graphs

 λ -precision unit disk graphs (distance of centers is at least λ):

- 6 INDEPENDENT SET is NP-hard even for $\lambda = 1$.
- 6 Admits an EPTAS [Hunt *et al.* '98]. (Each small problem contains at most $O(1/(\lambda \epsilon)^2)$ disks.)
- 6 Can be solved in $2^{\sqrt{k}} + n^c$ time [Alber and Fiala '03] \Rightarrow FPT.

VERTEX COVER for unit disk graphs

[Hunt *et al.* '98] modifies the PTAS for INDEPENDENT SET to obtain an $n^{O(1/\epsilon)}$ time PTAS for VERTEX COVER.

Is there an EPTAS for the problem? VERTEX COVER is FPT, hence we cannot prove negative results.

VERTEX COVER for unit disk graphs

[Hunt *et al.* '98] modifies the PTAS for INDEPENDENT SET to obtain an $n^{O(1/\epsilon)}$ time PTAS for VERTEX COVER.

Is there an EPTAS for the problem? VERTEX COVER is FPT, hence we cannot prove negative results.

There is an EPTAS:

- Split the problem into $1/\epsilon \times 1/\epsilon$ rectangles.
- If a point is covered by more than $1/\epsilon$ disks, then select all these disks into the vertex cover (all but one has to be selected anyway).
- 6 If every point is covered by at most $1/\epsilon$ disks \Rightarrow there are at most $O(1/\epsilon^3)$ disks \Rightarrow can be solved by brute force in $f(\epsilon)$ time.

COVERING POINTS WITH SQUARES

Given: *n* points in the plane

Find: a minimum number of unit squares such that every point is covered by at least one square.

 $n^{O(1/\epsilon^2)}$ time PTAS by Hochbaum and Maas [*J. ACM* '85]. (Usual shifting strategy: split the problem into small parts and use brute force.)

Parameterized version: "Is it possible to cover the points with k squares?"

New result: the parameterized version of the problem is W[1]-hard \Rightarrow there is no EPTAS (unless FPT=W[1])

Conclusions

- ⁶ PTASs are polynomial for fixed ϵ , but often with very high degree.
- 6 PTAS vs. EPTAS
- 6 Parameterized complexity can give evidence that there is no EPTAS for the problem.
- 6 Works especially well for geometric problems.
- 6 Concrete examples: INDEPENDENT SET and VERTEX COVER for unit disk graphs, COVERING POINTS WITH SQUARES.