
On subexponential parameterized algorithms for Steiner Tree and Directed Subset
TSP on planar graphs

Dániel Marx
Institute for Computer Science and Control

Hungarian Academy of Sciences (MTA SZTAKI)
Budapest, Hungary

Email: dmarx@cs.bme.hu

Marcin Pilipczuk and Michał Pilipczuk
Institute of Informatics
University of Warsaw

Warsaw, Poland
Emails: (marcin|michal).pilipczuk@mimuw.edu.pl

Abstract—There are numerous examples of the so-called
“square root phenomenon” in the field of parameterized
algorithms: many of the most fundamental graph problems,
parameterized by some natural parameter k, become signifi-
cantly simpler when restricted to planar graphs and in partic-
ular the best possible running time is exponential in O(

√
k)

instead ofO(k) (modulo standard complexity assumptions). We
consider two classic optimization problems parameterized by
the number of terminals. The STEINER TREE problem asks for
a minimum-weight tree connecting a given set of terminals T in
an edge-weighted graph. In the SUBSET TRAVELING SALESMAN
problem we are asked to visit all the terminals T by a
minimum-weight closed walk. We investigate the parameterized
complexity of these problems in planar graphs, where the
number k = |T | of terminals is regarded as the parameter.
Our results are the following:

• SUBSET TSP can be solved in time 2O(
√
k log k) ·nO(1) even

on edge-weighted directed planar graphs. This improves
upon the algorithm of Klein and Marx [SODA 2014] with
the same running time that worked only on undirected
planar graphs with polynomially large integer weights.

• Assuming the Exponential-Time Hypothesis, STEINER
TREE on undirected planar graphs cannot be solved in
time 2o(k) · nO(1), even in the unit-weight setting. This
lower bound makes STEINER TREE the first “genuinely
planar” problem (i.e., where the input is only planar graph
with a set of distinguished terminals) for which we can
show that the square root phenomenon does not appear.

• STEINER TREE can be solved in time nO(
√
k) · W on

undirected planar graphs with maximum edge weight W .
Note that this result is incomparable to the fact that the
problem is known to be solvable in time 2k · nO(1) even
in general graphs.

A direct corollary of the combination of our results for
STEINER TREE is that this problem does not admit a parameter-
preserving polynomial kernel on planar graphs unless ETH
fails.

Keywords-Steiner tree; subexponential algorithms; parame-
terized algorithms; planar graphs;

I. INTRODUCTION

It has been observed in the context of different algorithmic
paradigms that planar graphs enjoy important structural
properties that allow more efficient solutions to many of the

classic hard algorithmic problems. The literature on approx-
imation algorithms contains many examples of optimization
problems that are APX-hard on general graphs, but admit
polynomial-time approximation schemes (PTASes) when re-
stricted to planar graphs (see, e.g., [1]–[10]). Moreover, even
though the planar versions of most NP-hard problems remain
NP-hard, a more fine-grained look reveals that significantly
better running times are possible for planar graphs. As a
typical example, consider the 3-COLORING problem: it can
be solved in 2O(n) time in general graphs and, assuming the
Exponential-Time Hypothesis (ETH), this is best possible as
there is no 2o(n)-time algorithm. However, when restricted to
planar graphs, 3-COLORING can be solved in time 2O(

√
n),

which is again best possible assuming ETH: the existence
of a 2o(

√
n)-time algorithm would contradict ETH. There

are many other problems that behave in a similar way and
this can be attributed to the combination of two important
facts: (1) every planar graph on n vertices has treewidth
O(
√
n) and (2) given an n-vertex graph of treewidth t, most

of the natural combinatorial problems can be solved in time
2O(t) ·nO(1) (or perhaps 2O(t·polylog t) ·nO(1)). On the lower
bound side, to rule out 2o(

√
n)-time algorithms, it is sufficient

to observe that most planar NP-hardness proofs increase the
size of the instance at most quadratically (because of the
introduction of crossing gadgets). For example, there is a
reduction that given an instance of 3SAT with n variables
and m clauses produce an instance of 3-COLORING that is
a planar graph with O((n + m)2) vertices. Together with
ETH, such a reduction rules out 2o(

√
n)-time algorithms

for planar 3-COLORING. Thus the existence of this “square
root phenomenon” giving 2O(

√
n) time complexity is well-

understood both from the algorithmic and complexity view-
points.

Our understanding of this phenomenon is much less
complete for parameterized problems. A large fraction of
natural fixed-parameter tractable graph problems can be
solved in time 2O(k) · nO(1) (with notable exceptions [11],
[12]) and a large fraction of W[1]-hard problems can be
solved in time nO(k). There are tight or almost-tight lower
bounds showing the optimality of these running times. By

now, there is a growing list of problems where the running
time improves to 2O(

√
k·polylog k) ·nO(1) or to nO(

√
k·polylog k)

when restricted to planar graphs. For a handful of problems
(e.g., INDEPENDENT SET, DOMINATING SET, FEEDBACK
VERTEX SET, k-PATH) this improvement can be explained
in a compact way by the elegant theory of bidimensionality
[13]. However, there is no generic argument (similar to the
simple argument described above for the existence of 2O(

√
n)

algorithms) why such an improvement should be possible
for most parameterized problems. The fact that every n-
vertex planar graph has treewidth O(

√
n) does not seem to

help in improving the 2O(k) factor to 2O(
√
k) in the running

time. The algorithmic results of this form are thus very
problem-specific, exploiting nontrivial observations on the
structure of the solution or invoking other tools tailored to
the problem’s nature. Recent results include algorithms for
SUBSET TSP [14], MULTIWAY CUT [15], [16], unweighted
STEINER TREE parameterized by the number of edges of
the solution [17], [18], STRONGLY CONNECTED STEINER
SUBGRAPH [19], SUBGRAPH ISOMORPHISM [20], facility
location problems [21], ODD CYCLE TRANSVERSAL [22],
and 3-COLORING parameterized by the number of vertices
with degree > 4 [23].

It is plausible to expect that other natural problems also
have significantly faster parameterized algorithms on planar
graphs. The reason for this optimism is twofold. First, even
though the techniques used to obtain the results listed above
are highly problem-specific, they suggest that planar graphs
have rich structural properties that could be exploited when
solving other problems. Second, it looks almost impossible
to prove lower bounds ruling out subexponential algorithms
for planar problems. To prove that a parameterized algo-
rithm with running time 2o(k) · nO(1) violates ETH, one
needs to give a reduction from 3SAT with m clauses to
a planar instance with parameter k = O(m). In a typical
reduction, we represent each bit of information in the 3SAT
instance (e.g., values of the variables in the solution) by a
small “gadget” in the planar graph. In order to encode the
constraints of the input instance, we need to connect these
gadgets in an appropriate way. However, in a planar graph,
we need to introduce some kind of “crossing gadgets” in
order to realize these connections. To realize the constraints
given by the O(m) clauses, it may be necessary to intro-
duce up to O(m2) crossings. As each crossing typically
increases the parameter, we end up with an instance having
parameter k = O(m2), which is only sufficient to rule
out 2o(

√
k) · nO(1)-time algorithms. Thus the appearance of

many crossing gadgets seems to be an inherent limitation
preventing stronger lower bounds. This may suggest that
running times of the form 2o(k) · nO(1) are achievable for
many problems.

Our contribution: In this paper we address two network
design problems on planar graphs for which the existence of

subexponential parameterized algorithms was open. Given a
graph G with a subset T of vertices distinguished as termi-
nals, the SUBSET TSP problem asks for a shortest closed
walk visiting the terminals in any order. Parameterized by
the number k = |T | of terminals, the problem is fixed-
parameter tractable in arbitrary graphs: it can be solved in
time 2k ·nO(1) by first computing the distance between every
pair of terminals, and then solving the resulting k-terminal
instance using the standard Bellman-Held-Karp dynamic
programming algorithm. Klein and Marx [14] showed that if
G is an undirected planar graph with polynomially bounded
edge weights, then the problem can be solved significantly
faster, in time 2O(

√
k log k) · nO(1). The limitations of poly-

nomial weights and undirected graphs are inherent to this
algorithm: it starts with computing a locally 4-step optimal
solution (which requires polynomial weights to terminate
in polynomial time) and relies on an elaborate subtour-
replacement argument (which breaks down if the tour has
an orientation). The main argument is the unexpected and
somewhat mysterious claim that the union of an optimal and
a locally 4-step optimal tour has treewidth O(

√
k).

Our first result is a more robust and perhaps less mysteri-
ous algorithm that achieves the same running time, but does
not suffer from these limitations.

Theorem I.1. Given an edge-weighted directed planar
graph G with terminals T , SUBSET TSP parameterized by
k = |T | can be solved in time 2O(

√
k log k)nO(1).

The proof of Theorem I.1 has the same high-level idea
as the algorithm of Klein and Marx [14]: a family of
2O(
√
k log k) subsets of terminals is computed, followed by

applying a variant of the Bellman-Held-Karp dynamic pro-
gramming algorithm that considers only subsets of terminals
that appear in this family. However, the way we compute
such a family is very different: the construction of Klein
and Marx [14] crucially relies on how the optimal solution
interacts with the locally 4-step optimal solution (e.g., they
cross each other O(k) times), while our argument here
does not use any such assumption. For directed graphs, we
can extract much fewer properties of the structure of the
solution or how it interacts with some other object. For
example, we cannot require that the optimum solution is
non-self-crossing and the number of self-crossings cannot
be even bounded by a function of k. Thus in order to find
an algorithm working on directed graphs, we need to use
more robust algorithmic ideas that better explain why it is
possible to have subexponential parameterized algorithms
for this problem. In Section II, we highlight these new ideas
in an overview of the algorithm of Theorem I.1.

Given an edge-weighted undirected graph G and a set T
of terminal vertices, STEINER TREE asks for a minimum-
weight tree connecting all the terminals. This problem is
well known to be NP-hard, even in planar graphs [24].
Dreyfus and Wagner [25] gave a dynamic programming

algorithm that solves STEINER TREE in time 3k · nO(1) in
arbitrary graphs. The running time of this algorithm was
improved to 2k · nO(1) for small weights using fast subset
convolution [26]. It is known that, assuming ETH, there is
no 2o(k) · nO(1) time algorithm for the problem in general
graphs and in fact it is conjectured that the 2k factor cannot
be improved to (2− ε)k for any ε > 0 [27].

In light of the long list of other subexponential param-
eterized problems on planar graphs, it is natural to expect
that STEINER TREE can be solved in 2O(

√
k log k) · nO(1)

time on planar graphs. In fact, this question has been
posed as a natural open problem in various places [17],
[18], [28]–[31]. As partial progress toward this goal, in the
unweighted case, a subexponential algorithm parameterized
by the number of edges of the solution was found [17], [18].
However, the number of edges can be of course much larger
than the number of terminals, hence an algorithm that is
subexponential in the number of edges is not necessarily
subexponential in the number of terminals. We show here
that there was a reason why, despite significant efforts, no
such algorithm was found so far: assuming ETH, there is no
subexponential parameterized algorithm for STEINER TREE
on planar graphs.

Theorem I.2. Unless the ETH fails, there is no 2o(k) ·nO(1)

time algorithm for STEINER TREE on an unweighted and
undirected planar graph with k = |T | terminals.

Thus unlike many other problems, STEINER TREE pa-
rameterized by the number of terminals does not become
dramatically simpler with the restriction of planarity. This
is highly unexpected: STEINER TREE seems to be the first
“genuinely planar” problem where there is no significant
speedup when restricted to planar graphs, and the 2O(k)

factor for arbitrary graphs cannot be improved. The informal
expression “genuinely planar” emphasizes the fact that input
of STEINER TREE is planar graph with a distinguished
subset of vertices and there is no other extra, nonplanar
information encoded in the input. For example, it was
known before that DIRECTED STEINER NETWORK (given
a directed graph G and requests (s1, t1), . . . , (sk, tk), find
a subgraph of minimum weight that contains an si → ti
path for every i) can be solved in time nO(k) on general
graphs, and there is no f(k)no(k) time algorithm even on
planar graphs [19]. However, this problem is not genuinely
planar, as the pairs (si, ti) can encode arbitrary interactions
that do not respect planarity.

Theorem I.2 makes the previous subexponential algo-
rithms (including Theorem I.1 for SUBSET TSP on directed
graphs) even more surprising: apparently there is no gen-
eral rule why these problems should have subexponential
parameterized algorithms on planar graphs, and it could have
turned out for other problems as well that planarity does
not allow any dramatic speedup. This negative result also
changes our expectations for future work in this direction:

we cannot take it for granted that most reasonable problems
have subexponential parameterized algorithms on planar
graphs and now it seems to be a very real possibility that
other natural problems behave similarly to STEINER TREE.

We need some explanation how it was possible to prove
Theorem I.2: earlier we have argued that such lower bounds
seem very unlikely, because one would need O(n2) cross-
ings when reducing from a 3SAT instance with O(n)
variables and O(n) clauses. In the proof of Theorem I.2, we
are doing something unusual: in the created planar instance,
we are not only introducing O(n) gadgets, each represent-
ing one bit of the 3SAT instance (as it is usually done
in reductions), but we introduce also gadgets representing
larger groups of bits. The crucial trick is that we can create
crossings where an information flow of one bit crosses the
information flow of many bits, and this crossing increases
the parameter only by O(1). With such crossings, the total
number of crossing gadgets can be limited and we can make
sure that the parameter becomes O(n). The catch is that the
reduction is no longer polynomial: the representation of large
groups of bits require a planar graph that is exponentially
large. However, we can argue that a subexponential param-
eterized algorithm on this exponentially large graph would
result in a 2o(n) algorithm for 3SAT, violating ETH.

The reduction in the proof of Theorem I.2 is a “hybrid”
reduction in the sense that it combines different proof
strategies. In typical NP-hardness proofs, one constructs
small gadgets that represent one bit or information or have
a constant number of different states. In typical W[1]-hard
proofs, the challenge is to construct large gadgets that can
have many different states (corresponding to, say, the choice
of a vertex in a clique). The proof of Theorem I.2 combines
these two ideas: we need both small gadgets representing
single bits and large gadgets having many different states.
Additionally, we use the idea of splitting the variables into
groups and allowing a blowup of the size of the instance by
a factor that is exponential in the size of the groups (as it
is done in, e.g., [12], [32]). Thus our reduction combines in
a novel way many of the insights that we have learned in
the past decades about proving lower bounds on the exact
complexity of hard algorithmic problems.

Our final result shows that there is still some way in
which subexponentiality appears for planar STEINER TREE.
On a high level, the proof of this theorem follows the same
approach as a corresponding result for rectilinear Steiner
tree [33].

Theorem I.3. Given an edge-weighted planar undirected
graph G with n vertices and a set T ⊆ V (G) of terminals,
one can find a minimum-cost Steiner tree for T in time
nO(
√
k) ·W , where W is the maximum weight of an edge

and k = |T |.

Note that this running time is incomparable to the 2k ·nO(1)

time, available for general graphs.

It is known that unweighted STEINER TREE in planar
graphs admits a polynomial kernel when parameterized by
the number of edges in the solution [17] and the number
of nonterminal vertices in the solution [34]. A natural
question is whether this can be improved to a polynomial
kernel parameterized by the number of terminals. While we
cannot answer this question here, a simple combination of
Theorems I.2 and I.3 excludes, under ETH, a kernelization
algorithm that produces a polynomial kernel which does not
increase the number of terminals more than by a constant
factor.

Corollary I.4. Suppose there is a polynomial-time algorithm
that, given an unweighted planar STEINER TREE instance
(G,T) and an integer p, computes another unweighted
planar STEINER TREE instance (G′, T ′) and an integer p′,
such that |T ′| = O(|T |), |G′| bounded polynomially in |T |,
and (G,T) admits a Steiner tree of size at most p if and only
if (G′, T ′) admits a Steiner tree of size at most p′. Then the
ETH fails.

In this extended abstract we give only an overview of
the approach leading to the subexponential parameterized
algorithm for DIRECTED SUBSET TSP, that is, the proof
of Theorem I.1. Complete proofs of all the abovementioned
results (Theorems I.1, I.2, and I.3) can be found in the full
version of this work, which is available on arXiv [35].

II. DIRECTED TRAVELING SALESMAN: OVERVIEW

We first describe the high-level strategy of restricting
the standard dynamic programming algorithm to a smaller
family of candidate states. Then we explain the main idea
of how such a family of candidate states can be obtained;
however, we introduce multiple simplifying assumptions and
hide most of the technical problems. Finally, we briefly
review the issues encountered when making the approach
work in full generality, and explain how we cope with them.
We strongly encourage the reader to read this section before
proceeding to the formal description, as in the formal layer
many of the key ideas become somehow obfuscated by the
technical details surrounding them.

A. Restricted dynamic programming

Restricting dynamic programming to a small family of
candidates states is by now a commonly used technique in
parameterized complexity. The idea is as follows. Suppose
that we search for a minimum-cost solution to a com-
binatorial problem, and this search can be expressed as
solving a number of subproblems in a dynamic programming
fashion, where each subproblem corresponds to a state from
a finite state space S. Usually, subproblems correspond to
partial solutions, and transitions between states correspond
to extending one partial solution to a larger partial solution
at some cost, or combining two or more partial solutions
to a larger one. For simplicity, assume for now that we

only extend single partial solutions to larger ones, rather
than combine multiple partial solutions. Then the process
of assembling the final solution from partial solutions may
be described as a nondeterministic algorithm that guesses
consecutive extensions, leading from a solution to the most
basic subproblem to the final solution for the whole instance.
The sequence of these extensions is a path (called also
a computation path) in a directed graph on S where the
transitions between the states are the arcs. Then the goal is
to find a minimum-weight path from the initial state to any
final state, which can be done in time linear in the size of
this state graph, provided it is acyclic.

In order to improve the running time of such an algorithm
one may try the following strategy. Compute a subset of
states S ′ ⊆ S with the following guarantee: there is a
computation path leading to the discovery of a minimum-
weight solution that uses only states from S ′. Then we may
restrict the search only to states from S ′. So the goal is to
find a subset of states S ′ that is rich enough to “capture”
some optimum solution, while at the same time being as
small as possible so that the algorithm is efficent.

Let us apply this principle to DIRECTED SUBSET TSP.
Consider first the most standard dynamic programming al-
gorithm for this problem, working on general graphs in time
2k · nO(1), where we denote k = |T | by convention. Each
subproblem is described by a subset of terminals S ⊆ T
and two terminals s1, s2 ∈ S. The goal in the subproblem
is to find the shortest tour that starts in s1, ends in s2, and
visits all terminals of S along the way. The transitions are
modelled by a possibility of extending a solution for the state
(S, s1, s2) to a solution for the state (S∪{s′}, s1, s′) for any
s′ /∈ S at the cost of adding the shortest path from s2 to
s′. The minimum-weight tour can be obtained by taking the
best among solutions obtained as follows: for any s1, s2 ∈ T ,
take the solution for the subproblem (T, s1, s2) and augment
it by adding the shortest path from s2 to s1.

This is not the dynamic programming algorithm we will
be improving upon. The reason is that restricting ourselves
to constructing one interval on the tour at a time makes it
difficult to enumerate a small subfamily of states capturing
an optimum solution.

Instead, we consider a more involved variant of the above
dynamic programming routine, which intuitively keeps track
of O(

√
k) intervals on the tour at a time. More precisely,

each subproblem is described by a state defined as a
pair (S,M), where S ⊆ T is a subset of terminals to
be visited, and M (also called connectivity pattern) is a
set of pairwise disjoint pairs of terminals from S, where
|M| 6 C

√
k for some universal constant C. The goal in

the subproblem is to compute a family of paths P(S,M) of
minimum possible weight having the following properties:
for each (s1, s2) ∈ M there is a path in P(S,M) that leads
from s1 to s2, and each terminal from S lies on some
path in P(S,M). Note, however, that we do not specify, for

each terminal from S, on which of the paths it has to lie.
Solutions to such subproblems may be extended by single
terminals as in the standard dynamic programming, but they
can be also combined in pairs. Precisely, given solutions
P1 and P2 respectively for (S1,M1) and (S2,M2), where
S1 ∩ S2 = ∅, we may merge these solutions into a solution
for (S1∪S2,M) by connecting paths from P1 and P2 using
shortest paths between respective start and end vertices, so
that the connectivity patternM is obtained at the end. Since
we assume that |M1|, |M2|, |M| 6 C

√
k, there are only

kO(
√
k) ways to perform such a merge. While this dynamic

programming formally does not conform to the “linear view”
described in the paragraphs above, as it may merge partial
solutions for two simpler states into a larger partial solution,
it straightforward to translate the concept of restricting the
state space to preserve the existence of a computation path
(here, rather a computation tree) leading to a minimum-cost
solution.

Observe that since in a state (S,M) we stipulate the size
of M to be O(

√
k), the total number of states with a fixed

subset S ⊆ T is kO(
√
k). Thus, from the discussion above

we may infer the following lemma, stated here informally.

Lemma II.1 (informal statement). Let (G,T) be an instance
of DIRECTED SUBSET TSP. Suppose we are also given a
family B of subsets of T with the following guarantee: there
is a computation path of the above dynamic programming
leading to an optimum solution that uses only states of the
form (S,M) where S ∈ B. Then we can find an optimum so-
lution for the instance (G,T) in time kO(

√
k) ·(|B|·|G|)O(1).

Concluding, we are left with constructing a family B of
subsets of T that satisfies the prerequisites of Lemma II.1
and has size kO(

√
k), provided the underlying graph G is

planar. For this, we will crucially use topological properties
of G given by its planar embedding.

B. Enumerating candidate states

Suppose (G,T) is the input instance of DIRECTED SUB-
SET TSP where G is planar. Without loss of generality we
may assume that G is strongly connected. Fix some optimum
solution W , which is a closed walk in the input graph G
that visits every terminal.

Simplifying assumptions: We now introduce a number
of simplifying assumptions. These assumptions are made
with loss of generality, and we introduce them in order to
present our main ideas in a setting that is less obfuscated by
technical details.

(A1) Walk W is in fact a simple directed cycle, without
any self-intersections. In particular, the embedding
of W in the plane is a closed curve without self-
crossings; denote this curve by δ.

(A2) The walk W visits every terminal exactly once,
so that we may speak about the (cyclic) order of
visiting terminals on W .

Note that Assumption A2 follows from A1, but we prefer
to state them separatedly as we first obtain Assumption A2
and then discuss Assumption A1.

We will also assume that shortest paths are unique in G,
but this can be easily achieved by perturbing the weights of
edges of G slightly.

Suppose now that we have another closed curve γ in the
plane, without self-crossings, that crosses δ in p = O(

√
k)

points, none of which is a terminal. Curve γ divides the
plane into two regions—say R1, R2—and thus δ is divided
into p intervals which are alternately contained in R1 and
R2. Let S be the set of terminals visited on the intervals
contained in R1. Then it is easy to see that S is a good
candidate for a subset of terminals that we are looking:
S forms at most O(

√
k) contiguous intervals in the order

of visiting terminals by W , and hence for the connectivity
pattern M consisting of the first and last terminals on these
intervals, the state (S,M) would describe a subproblem
useful for discovering W .

However, we are not really interested in capturing one
potentially useful state, but in enumerating a family of
candidate states that contains a complete computation path
leading to the discovery of an optimum solution. Hence, we
rather need to capture a hierarchical decomposition of T
using curves γ as above, so that terminal subsets S induce
the sought computation path. For this, we will use the notion
of sphere-cut decompositions of planar graphs, and the well-
known fact that every k-vertex planar graph admits a sphere-
cut decomposition of width O(

√
k).

Sphere-cut decompositions: A branch decomposition of
a graph G is a tree T with every internal node of degree 3,
together with a bijection η from the edges of G to leaves
of T . For every edge e of T , the removal of e from T
splits T into two subtrees, say T 1

e and T 2
e . This naturally

induces a partition {F 1
e , F

2
e } of the edge set of G as follows:

F 1
e comprises edges mapped by η to leaves residing in
T 1
e , and symmetrically for F 2

e and T 2
e . The width of the

edge e is the number of vertices of G incident to both
an edge of F 1

e and to an edge of F 2
e , and the width of a

branch decomposition (T , η) is the maximum width among
its edges. The branchwidth of a graph G is the minimum
possible width of a branch decomposition of G. It is well-
known that a planar graph on k vertices has branchwidth
O(
√
k) (see e.g. [36]).

After rooting a branch decomposition (T , η) in any node,
it can be viewed as a hierarchical decomposition of the edge
set of G using vertex cuts of size bounded by the width of
the decomposition. Seymour and Thomas [37] proved that in
plane graphs we can always find an optimum-width branch
decomposition that somehow respects the topology of the
plane embedding of a graph. Precisely, having fixed a plane
embedding of a connected graph G, call a closed curve γ in
the plane a noose if γ has no self-crossings and it crosses
the embedding of G only at vertices; in particular it does

not intersect any edge of G1. Such a curve γ divides the
plane into two regions, which naturally induces a partition
of the edge set of G into edges that are embedded in the first,
respectively the second region. A sphere-cut decomposition
of G is a branch decomposition (T , η) where in addition
every edge e of T is assigned its noose γ(e) that induces
exactly the partition {F 1

e , F
2
e } of the edge set of G in the

sense above. Then the result of Seymour and Thomas [37]
may be stated as follows: every connected planar graph has a
sphere-cut decomposition of width equal to its branchwidth2.
Together with the square-root behavior of the branchwidth
of a planar graph, this implies the following.

Theorem II.2 (see e.g. [36]). Every connected plane graph
on k vertices has a sphere-cut decomposition of width at
most α

√
k, for some constant α.

Turning back to our DIRECTED SUBSET TSP instance
(G,T) and its optimum solution W , our goal is to enumerate
a possibly small family of subsets of T that contains some
complete computation path leading to the discovery of W .
The remainder of the construction is depicted in Figure 1
and we encourage the reader to analyze it while reading
the description. The description is divided into “concepts”,
which are not steps of the algorithm, but of the analysis
leading to its formulation.

Concept 1: adding a tree: Take any minimal tree
H0 in the underlying undirected graph of G spanning all
terminals of T . We may assume that H0 contains at most
k leaves that are all terminals, at most k − 2 vertices
of degree at least 3, and otherwise it consists of at most
2k− 3 simple paths connecting these leaves and vertices of
degree at least 3 (further called special vertices of H0). To
avoid technical issues and simplify the picture, we introduce
another assumption.

(A2) Walk W and tree H0 do not share any edges.

Let H be the graph formed by the union of W and
H0. Even though both W and H consists of at most 2k
simple paths in G, the graph H may have many vertices of
degree more than 3. This is because a subpath Q between
two consecutive terminals on W and a path P in H0 that
connects two special vertices of H0 may cross many times.
The intuition is, however, that the planar structure of H
roughly resembles a structure of a planar graph on O(k)
vertices, and a sphere-cut decomposition of this planar graph
of width O(

√
k) should give rise to the sought hierarchical

partition of terminals leading to the discovery of W by the
dynamic programming algorithm.

1In standard literature, e.g. [37], a noose is moreover required to visit
every face of G at most once; in this paper we do not impose this restriction.

2In [37] it is also assumed that the graph is bridgeless, which corresponds
to the requirement that every face is visited by a noose at most once. It is
easy to see that in the absence of this requirement it suffices to assume the
connectivity of the graph.

Let us remark that, of course, the definition of the graph H
relies on the (unknown to the algorithm) solution W , though
the tree H0 can be fixed and used by the algorithm. At the
end we will argue that having fixed H0, we may enumerate
a family of kO(

√
k) candidates for nooses in a sphere-cut

decomposition of H . Roughly, for each such noose γ we
consider the bi-partition of terminals according to the regions
of the plane minus γ in which they lie, and we put all
terminal subsets constructed in this manner into a family
B, which is of size kO(

√
k). Then restricting the dynamic

programming algorithm to B as in Lemma II.1 gives us the
required time complexity.

Concept 2: Contracting subpaths of W : Hence, the
goal is to simplify the structure of H so that it admits a
sphere-cut decomposition of width O(

√
k). Consider any

pair of terminals t1, t2 visited consecutively on W , and let
P be the subpath of W from t1 to t2. Consider contracting
all internal vertices on P into a single vertex, thus turning P
into a path P ′ on 2 edges and 3 vertices. Let H ′ be the graph
obtained from H by contracting each path between two
consecutive terminals on W in the manner described above.
Observe that thus, H ′ has less than 3k vertices of degree at
least 3: there are at most 2k vertices on the contracted W
in total, and there can be at most k−2 vertices of degree at
least 3 on H0 that do not lie on W . If we now take H ′ and
contract every maximal path with internal vertices of degree
2 to a single edge, we turn H ′ into a planar graph H ′′ on at
most 3k vertices. Then H ′′ has a sphere-cut decomposition
of width 6 α

√
3k, say (T , η, γ(·)).

Consider the family D of subsets of terminals constructed
as follows. For each noose γ(e) for e ∈ T , that is, appear-
ing in the sphere-cut decomposition (T , η, γ(·)), and each
partition (X,Y) of terminals traversed by γ(e) (there are at
most α

√
3k such terminals, so 2O(

√
k) such partitions), add

to D the following two terminal subsets: the set of terminals
enclosed by γ(e) plus X , and the set of terminals excluded
by γ(e) plus Y . It can be now easily seen that D contains
a complete computation path that we are looking for, as
each terminal subset included in D forms at most O(

√
k)

contiguous intervals in the cyclic order of terminals on
W , and the decomposition tree T shows how our dynamic
programming should assemble subsets appearing in D in
pairs up to the whole terminal set. In other words, if we
manage to construct a family B of size kO(

√
k) with a

guarantee that it contains the whole D, then we will be done
by Lemma II.1.

Concept 3: Enumeration by partial guessing: Obvi-
ously, the graph H ′′ is not known to the algorithm, as
its definition depends on the fixed optimum solution W .
Nevertheless, we may enumerate a reasonably small family
of candidates for nooses used in its sphere-cut decomposi-
tion (T , η, γ(·)). The main idea is that even though the full
structure of H ′′ cannot be guessed at one shot within kO(

√
k)

(a) Graph H .
(b) Graph H ′′.

(c) Graph H ′′ with noose γ. (d) Graph HR and γ as a noose in it.

Figure 1: Construction of Section II-B. In panel 1a, we see graph H consisting of the union of solution W (in blue) and
tree H0 (in red). Terminals are depicted as yellow squares. In panel 1b, we see graph H ′′, obtained from H by contracting
the interior of every subpath of W between two consecutive terminals to one vertex (in violet). Also, paths of vertices of
degree 2 in H0 are replaced by single edges, though this is not visible. Panel 1c depcicts noose γ in the graph H ′′. Then
γ partitions the plane into two regions: R1 (grayed) and R2 (non-grayed), which induces a partition of the terminals into
those contained in R1, those contained in R2, and those traversed by γ. Note that γ traverses two terminals, five vertices
obtained from contracting subpaths of W to single vertices, and two vertices of H0 of degree 3. Finally, in panel 1d we see
the graph HR used to enumerate γ. Here, R consists of those pairs of terminals that are consecutive on W and moreover
γ traverses the vertex of H ′′ obtained from contracting the shortest path between them (which is a subpath of W). These
constracted shortest paths are not a part of HR, so they are depicted with reduced opacity.

possibilities, each noose we are interested in traverses only
at most α

√
3k vertices of H ′′, and hence it is sufficient to

guess only this small portion of H ′′.
More precisely, let Q be the subset of those vertices of

H ′′ that are obtained from contracting the subpaths of W
between consecutive terminals. Fix a noose γ appearing in
the sphere-cut decomposition of H ′′, that is, γ = γ(e) for
some e ∈ T . Then γ traverses at most α

√
3k vertices of Q;

say that R ⊆ Q is the set of these vertices. We can now
enumerate a set of kO(

√
k) candidates for γ by performing

the following steps (by guessing we mean iterating through
all options):

1) Guess a set R of at most α
√
3k pairs of distinct

terminals.
2) For each (s, t) ∈ R, take the shortest path P(s,t) from

s to t and consider contracting it to a single vertex
p(s,t).

3) Take the fixed tree H0 that spans terminals in G, apply
the above contractions in G, and let HR be the graph
to which H0 is transformed under these contractions.

4) Enumerate all nooses γ that meet HR only at terminals
and vertices of degree at least 3, and traverse at most
α
√
3k such vertices.

In Step 1 we have at most kO(
√
k) options for such a set R,

and the contractions in Steps 2 and 3 turn H0 into a planar
graph HR with O(k) vertices. It is not hard to convince
oneself that in such a graph, there are only kO(

√
k) nooses

satisfying the property expressed in the Step 4, so all in
all we enumerate at most kO(

√
k) curves in the plane, each

traversing at most α
√
3k terminals. Now, to conclude the

construction of B we do as follows. For each enumerated
curve γ, and each partition (X,Y) of terminals traversed
by γ, we include into B two terminal subsets: the set of
terminals enclosed by γ plus X , and the set of terminals
excluded by γ plus Y . Thus |B| = kO(

√
k).

It remains to argue that B contains the whole family D
that was given by the sphere-cut decomposition (T , η, γ(·))
of H ′′, so that Lemma II.1 may be applied. It should be quite
clear that it is sufficient to show that every noose γ appearing
in (T , η, γ(·)) is enumerated in Step 4 of the procedure from
the previous paragraph. However, nooses with respect to HR
are formally not necessarily nooses with respect to H ′′, as
we wanted. Nevertheless, if a noose γ appears in the sphere-
cut decomposition (T , η, γ(·)) of H ′′, and we take R to be
the set of pairs of consecutive terminals on W such that
γ passes through the contracted vertices p(s,t) exactly for
(s, t) ∈ R, then after dropping parts of H ′′ not appearing
in HR, γ becomes a noose enumerated for HR. Therefore,
the terminal partitions raised by γ are still included in B as
we wanted, and we are done.

C. Traps, issues, and caveats

The plan sketched in the previous section essentially leads
to an algorithm with the promised time complexity, modulo
Assumptions A1, A2, A3, and a number of technical details
of minor relevance. Assumptions A2 and A3 are actually
quite simple to achieve without loss of generality. It is
Assumption A1 that was a major conceptual obstacle.

For Assumption A2, we may at the very beginning per-
form the following reduction. For every original terminal
t, introduce a new terminal t′ and edges (t, t′) and (t′, t)

of weight 0 to the graph; t′ and these edges are embedded
in any face incident to t. The new terminal set consists of
terminals t′ for all original terminals t. In this way, any
closed walk visiting any new terminal t′ has to make a detour
of weight 0 using arcs (t, t′) and (t′, t), and we may assume
that an optimal solution makes only one such detour for each
new terminal t′. Thus we achieve Assumption A2. Actually,
the fact that we may assume that every terminal is incident
to one non-trivial face and one trivial face between (t, t′)
and (t′, t) also helps in solving technical issues later on.

For Assumption A3, observe that in the reasoning we
relied only on the fact that H0 is a tree spanning all terminals
that has at most k leaves and at most k−2 vertices of degree
at least 3. In particular, we did not use any metric properties
of H0. In fact, the reader may think of H0 as a combinatorial
object used to control the homotopy group of the plane with
terminals pierced out: for any non-self-crossing curve γ on
the plane, we may infer how terminals are partitioned into
those enclosed by γ, excluded by γ, and lying on γ just
by examining the consecutive intersections of γ with H0.
Therefore, instead of choosing H0 arbitrarily, we may add
it to the graph artificially at the very beginning, say using
edges of weight +∞. In this way we make sure that the
optimum solution W does not use any edge of H0.

Finally, let us examine Assumption A1: the optimum solu-
tion W is a simple directed cycle without self-intersections.
Unfortunately, this assumption may not hold in general.
Consider the example depicted in Figure 2, where we have
a directed planar graph with two terminals s, t, and the only
closed walk visiting both s and t consists of two paths, one
from s to t and the second from t to s, that intersect each
other an unbounded number of times. Therefore, in general
the optimum solution W may have an unbounded number
of self-crossings. Nevertheless, we may still develop some
kind of a combinatorial understanding of the topology of
W .

It will be convenient to assume that no edge of the graph is
traversed by W more than once; this can be easily achieved
by copying each edge |T | times, and using a different copy
for each traversal. Consider two visits of the same vertex u
by W ; let e1, e2 be the edges incident to u used by W just
before and just after the first visit, and define f1, f2 in the
same way for the second visit. Examine how e1, e2, f1, f2
are arranged in the cyclic order of edges around vertex u.
If they appear in the interlacing order, i.e., (e1, f1, e2, f2)
or (e1, f2, e2, f1), then we say that these two visits form a
self-crossing of W . Intuitively, if the order is not interlacing,
then we may slightly pull the two parts of the embedding
of W near u corresponding to the visits so that they do not
intersect. So topologically we do not consider such a self-
intersection as a self-crossing. For two walks W1,W2 in G
that do not share any common edges we define their crossing
in a similar manner, as a common visit of a vertex u such that
the cyclic order of edges used by W1 and W2 immediately

s t

Figure 2: A planar DIRECTED SUBSET TSP instance with two terminals. The only solution consists of the union of the red
path from s to t and the blue path from t to s. These two paths cross each other many times, which gives many self-crossings
of the solution.

before and immediately after these visits is interlacing.
We now prove the following structural statement about

self-crossings of W : we may always choose an optimal
solution W so that the following holds. Consider any self-
crossing of W at some vertex u (recall it consists of two
visits of u) and say it divides W into two closed subwalks
W1 and W2: W1 is from the first visit of u to the second,
and W2 is from the second visit of u to the first. Then the
subwalks W1 and W2 do not cross at all. This statement can
be proved by iteratively “uncrossing” an optimum solution
W as long as the structure of its self-crossings is too
complicated. However, one needs to be careful in order not
to split W into two closed curves when uncrossing.

It is not hard to observe that the statement given in
the previous paragraph actually shows that the topology
of W roughly resembles a cactus where each 2-connected
component is a cycle (here, we assume that self-intersections
that are not self-crossings are pulled slightly apart so that W
does not touch itself there). See Figure 3 for reference. Then
we show that W can be decomposed into O(k) subpaths
P = {B1, . . . , B`} such that:

• each path Bi has no terminal as an internal vertex and
is the shortest path between its endpoints; and

• each path Bi may cross with at most one other path
Bj .

To see this, note that the cactus structure of W may be
described as a tree T with at most k leaves and at most
k−2 vertices of degree at least 3. We have a pair of possibly
crossing subpaths in the decomposition P per each maximal
path with internal vertices of degree 2 in T .

The idea now is as follows. In the previous section we
essentially worked with the partition of W into subpaths
between consecutive terminals, as Assumption A1 allowed
us to do so. In the absence of this assumption, we work with
the finer partition P as above. The fact that the paths of P
interact with each other only in pairs, and in a controlled
manner, makes the whole reasoning go through with the
conceptual content essentially unchanged, but with a lot
more technical details.

One nontrivial difference is that in the previous section we

a

b

e

d
c

g

f

h

l

i j

k

m

n

o

p

q

r

s

Figure 3: An exemplary solution.

were contracting shortest paths between pairs of consecutive
terminals, so we had a small set of candidates for the
endpoints of these paths: the terminals themselves. In the
general setting, the decomposition statement above a priori
does not give us any small set of candidates for endpoints of
paths Bi. If we chose those endpoints as arbitrary vertices
of the graph, we would end up with time complexity nO(

√
k)

instead of promised kO(
√
k) · poly(n). Fortunately, the way

we define the decomposition P = {B1, . . . , B`} allows us
to construct alongside also a set of at most k4 important
vertices such that each path Bi is the shortest path from one
important vertex to another important vertex.

Finally, there are more technical problems regarding han-
dling possible self-intersections of W that are not self-
crossings. Recall that in our topological view of W , we
would like not to regard such self-intersections as places

where W touches itself. In particular, when examining
a sphere-cut decomposition of the union of W and H0

after appropriate contractions, the nooses in this sphere-
cut decomposition should not see such self-intersections
as vertices through which they may or should travel. A
resolution to this problem is to consider a “blow-up” of the
original graph where each vertex is replaced by a large well-
connected “cloud” of vertices, and each edge is replaced by
a large matching of parallel edges leading from one cloud
to another. Walks in the original graph naturally map to
walks in the blow-up. Every original self-crossing maps to a
self-crossing, and every original self-intersection that is not
a self-crossing actually is “pulled apart”: there is no self-
intersection at this place anymore. This blow-up has to be
performed at the very beginning of the proof, and hence
we need to work on it throughout the whole reasoning.
This technical layer is somehow conceptually simple, but
contributes to the technical complexity of the argumentation.

ACKNOWLEDGEMENTS

This research is a part of projects that have received
funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation
programme under grant agreements No. 280152, 725978
(Dániel Marx) and 714704 (Marcin Pilipczuk). The research
of Michał Pilipczuk is supported by Polish National Science
Centre grant UMO-2013/11/D/ST6/03073. Michał Pilipczuk
was also supported by the Foundation for Polish Science
(FNP) via the START stipend programme.

REFERENCES

[1] G. Borradaile and P. N. Klein, “The two-edge connectivity
survivable-network design problem in planar graphs,” ACM
Trans. Algorithms, vol. 12, no. 3, pp. 30:1–30:29, 2016.

[2] K. Fox, P. N. Klein, and S. Mozes, “A polynomial-time
bicriteria approximation scheme for planar bisection,” in
STOC 2015. ACM, 2015, pp. 841–850.

[3] P. N. Klein, C. Mathieu, and H. Zhou, “Correlation clustering
and two-edge-connected augmentation for planar graphs,” in
STACS 2015, ser. LIPIcs, vol. 30. Schloss Dagstuhl —
Leibniz-Zentrum für Informatik, 2015, pp. 554–567.

[4] D. Eisenstat, P. N. Klein, and C. Mathieu, “Approximating
k-center in planar graphs,” in SODA 2014. SIAM, 2014, pp.
617–627.

[5] ——, “An efficient polynomial-time approximation scheme
for Steiner forest in planar graphs,” in SODA 2012. SIAM,
2012, pp. 626–638.

[6] M. Bateni, M. Hajiaghayi, P. N. Klein, and C. Mathieu, “A
polynomial-time approximation scheme for planar Multiway
Cut,” in SODA 2012. SIAM, 2012, pp. 639–655.

[7] G. Borradaile, P. N. Klein, and C. Mathieu, “An O(n logn)
approximation scheme for Steiner tree in planar graphs,” ACM
Trans. Algorithms, vol. 5, no. 3, pp. 31:1–31:31, 2009.

[8] P. N. Klein, “A linear-time approximation scheme for TSP
in undirected planar graphs with edge-weights,” SIAM J.
Comput., vol. 37, no. 6, pp. 1926–1952, 2008.

[9] M. Bateni, E. D. Demaine, M. Hajiaghayi, and D. Marx, “A
PTAS for planar Group Steiner Tree via spanner bootstrap-
ping and prize collecting,” in STOC 2016. ACM, 2016, pp.
570–583.

[10] M. Bateni, M. T. Hajiaghayi, and D. Marx, “Approximation
schemes for Steiner Forest on planar graphs and graphs of
bounded treewidth,” J. ACM, vol. 58, no. 5, pp. 21:1–21:37,
2011.

[11] M. Cygan, M. Pilipczuk, and M. Pilipczuk, “Known algo-
rithms for Edge Clique Cover are probably optimal,” SIAM
J. Comput., vol. 45, no. 1, pp. 67–83, 2016.

[12] D. Lokshtanov, D. Marx, and S. Saurabh, “Slightly superex-
ponential parameterized problems,” in SODA 2011. SIAM,
2011, pp. 760–776.

[13] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thi-
likos, “Subexponential parameterized algorithms on bounded-
genus graphs and H-minor-free graphs,” J. ACM, vol. 52,
no. 6, pp. 866–893, 2005.

[14] P. N. Klein and D. Marx, “A subexponential parameterized
algorithm for Subset TSP on planar graphs,” in SODA 2014.
SIAM, 2014, pp. 1812–1830.

[15] ——, “Solving Planar k-Terminal Cut in O(nc
√
k) time,” in

ICALP 2012, ser. LNCS, vol. 7391. Springer, 2012, pp.
569–580.

[16] D. Marx, “A tight lower bound for Planar Multiway Cut with
fixed number of terminals,” in ICALP 2012, ser. LNCS, vol.
7391. Springer, 2012, pp. 677–688.

[17] M. Pilipczuk, M. Pilipczuk, P. Sankowski, and E. J. van
Leeuwen, “Network sparsification for Steiner problems on
planar and bounded-genus graphs,” in FOCS 2014. IEEE
Computer Society, 2014, pp. 276–285.

[18] ——, “Subexponential-time parameterized algorithm for
Steiner tree on planar graphs,” in STACS 2013, ser. LIPIcs,
vol. 20. Schloss Dagstuhl — Leibniz-Zentrum für Infor-
matik, 2013, pp. 353–364.

[19] R. H. Chitnis, M. Hajiaghayi, and D. Marx, “Tight bounds for
Planar Strongly Connected Steiner Subgraph with fixed num-
ber of terminals (and extensions),” in SODA 2014. SIAM,
2014, pp. 1782–1801.

[20] F. V. Fomin, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh, “Subexponential parameterized
algorithms for planar and apex-minor-free graphs via low
treewidth pattern covering,” in FOCS 2016. IEEE Computer
Society, 2016, pp. 515–524.

[21] D. Marx and M. Pilipczuk, “Optimal parameterized algo-
rithms for planar facility location problems using Voronoi
diagrams,” in ESA 2015, ser. LNCS, vol. 9294. Springer,
2015, pp. 865–877.

[22] D. Lokshtanov, S. Saurabh, and M. Wahlström, “Subexponen-
tial parameterized odd cycle transversal on planar graphs,” in
FSTTCS 2012, ser. LIPIcs, vol. 18. Schloss Dagstuhl —
Leibniz-Zentrum für Informatik, 2012, pp. 424–434.

[23] P. Aboulker, N. Brettell, F. Havet, D. Marx, and N. Trotignon,
“Coloring graphs with constraints on connectivity,” Journal
of Graph Theory, vol. 85, no. 4, pp. 814–838, 2017.

[24] M. R. Garey and D. S. Johnson, “The rectilinear Steiner
tree problem in NP complete,” SIAM Journal of Applied
Mathematics, vol. 32, pp. 826–834, 1977.

[25] S. E. Dreyfus and R. A. Wagner, “The Steiner problem in
graphs,” Networks, vol. 1, no. 3, pp. 195–207, 1971.

[26] J. Nederlof, “Fast polynomial-space algorithms using
inclusion-exclusion,” Algorithmica, vol. 65, no. 4, pp. 868–
884, 2013.

[27] M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof,
Y. Okamoto, R. Paturi, S. Saurabh, and M. Wahlström, “On
problems as hard as CNF-SAT,” ACM Trans. Algorithms,
vol. 12, no. 3, pp. 41:1–41:24, 2016.

[28] M. Cygan, F. V. Fomin, B. M. P. Jansen, L. Kowalik,
D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and
S. Saurabh, “Open problems for FPT School 2014,” 2014,
http://fptschool.mimuw.edu.pl/opl.pdf.

[29] G. Borradaile, P. N. Klein, D. Marx, and C. Mathieu, “Algo-
rithms for optimization problems in planar graphs (Dagstuhl
seminar 13421),” Dagstuhl Reports, vol. 3, no. 10, pp. 36–57,
2013.

[30] J. Erickson, P. N. Klein, D. Marx, and C. Mathieu, “Algo-
rithms for optimization problems in planar graphs (Dagstuhl
seminar 16221),” Dagstuhl Reports, vol. 6, no. 5, pp. 94–116,
2016.

[31] D. Marx, “What’s next? future directions in parameterized
complexity,” in The Multivariate Algorithmic Revolution and
Beyond, ser. LNCS, vol. 7370. Springer, 2012, pp. 469–496.

[32] J. Chen, B. Chor, M. Fellows, X. Huang, D. W. Juedes,
I. A. Kanj, and G. Xia, “Tight lower bounds for certain
parameterized NP-hard problems,” Inf. Comput., vol. 201,
no. 2, pp. 216–231, 2005.

[33] F. V. Fomin, S. Kolay, D. Lokshtanov, F. Panolan, and
S. Saurabh, “Subexponential algorithms for rectilinear Steiner
tree and arborescence problems,” in SoCG 2016, ser. LIPIcs,
vol. 51. Schloss Dagstuhl — Leibniz-Zentrum für Infor-
matik, 2016, pp. 39:1–39:15.

[34] O. Suchý, “Extending the kernel for Planar Steiner Tree to
the number of Steiner vertices,” Algorithmica, vol. 79, no. 1,
pp. 189–210, 2017.

[35] D. Marx, M. Pilipczuk, and M. Pilipczuk, “On subexponential
parameterized algorithms for Steiner Tree and Directed
Subset TSP on planar graphs,” CoRR, vol. abs/1707.02190,
2017. [Online]. Available: http://arxiv.org/abs/1707.02190

[36] F. V. Fomin and D. M. Thilikos, “New upper bounds on the
decomposability of planar graphs,” Journal of Graph Theory,
vol. 51, no. 1, pp. 53–81, 2006.

[37] P. D. Seymour and R. Thomas, “Call routing and the rat-
catcher,” Combinatorica, vol. 14, no. 2, pp. 217–241, 1994.

