
Subexponential parameterized algorithms on
planar graphs via low-treewidth pattern covering

Dániel Marx

(joint work with Fedor Fomin,
Daniel Lokshtanov, Marcin Pilipczuk,
Michał Pilipczuk, and Saket Saurabh)

Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary

Dagstuhl Seminar 17041
Schloss Dagstuhl, Germany

January 26, 2017

1

Square root phenomenon

Most NP-hard problems (e.g., 3-Coloring, Independent Set,
Hamiltonian Cycle, Steiner Tree, etc.) remain NP-hard on
planar graphs,1 but often get easier on planar graphs in the sense
that the running time is still exponential, but significantly smaller:

2O(n) ⇒ 2O(
√
n)

nO(k) ⇒ nO(
√
k)

2O(k) · nO(1) ⇒ 2O(
√
k) · nO(1)

This talk: a new technique for such algorithms.

1Notable exception: Max Cut is in P for planar graphs.
2

Subgraph Isomorphism

Subgraph Isomorphism
Input: Graphs H and G

Decide: Does G has a subgraph isomorphic to H?

Standard dynamic programming:

Fact
If connected graph H has k vertices and maximum degree ∆, G
has treewidth w , then Subgraph Isomorphism can be solved

in time 2O(k) · kO(w) · n or
in time kO(∆w) · n.

Remark: Robust algorithm, can be easily generalized to colored,
directed, weighted etc. versions.

3

k-outerplanar graphs
Given a planar embedding, we can define layers by iteratively
removing the vertices on the infinite face.

Definition
A planar graph is k-outerplanar if it has a planar embedding
having at most k layers.

1 1 1

1
2

2

1

2

3

3

2

3

3

3

3

2

2

2

32

2

2

1

Fact
Every k-outerplanar graph has treewidth at most 3k + 1.

4

k-outerplanar graphs
Given a planar embedding, we can define layers by iteratively
removing the vertices on the infinite face.

Definition
A planar graph is k-outerplanar if it has a planar embedding
having at most k layers.

1 1 1

1
2

2

1

2

3

3

2

3

3

3

3

2

2

2

32

2

2

1

Fact
Every k-outerplanar graph has treewidth at most 3k + 1.

4

k-outerplanar graphs
Given a planar embedding, we can define layers by iteratively
removing the vertices on the infinite face.

Definition
A planar graph is k-outerplanar if it has a planar embedding
having at most k layers.

2

2

2 3

2

2

2

3

3

3

3

2

3

3

2

2

2

Fact
Every k-outerplanar graph has treewidth at most 3k + 1.

4

k-outerplanar graphs
Given a planar embedding, we can define layers by iteratively
removing the vertices on the infinite face.

Definition
A planar graph is k-outerplanar if it has a planar embedding
having at most k layers.

2

2

2

3

3

2

3

3

3

3

2

2

2

32

2

2

Fact
Every k-outerplanar graph has treewidth at most 3k + 1.

4

k-outerplanar graphs
Given a planar embedding, we can define layers by iteratively
removing the vertices on the infinite face.

Definition
A planar graph is k-outerplanar if it has a planar embedding
having at most k layers.

3

33

3

3

3

3

Fact
Every k-outerplanar graph has treewidth at most 3k + 1.

4

Baker’s shifting strategy

Next: Improved algorithm for the special case k-Path via
bidimensionality.

5

Baker’s shifting strategy

For a fixed 0 ≤ s < k + 1, delete every layer Li with i = s
(mod k + 1)

The resulting graph is k-outerplanar, hence it has treewidth at
most w := 3k + 1.
Using the 2O(k) · kO(w) · n time algorithm for Subgraph
Isomorphism, the problem can be solved in time
kO(k) · n = 2O(k log k) · n.

Next: Improved algorithm for the special case k-Path via
bidimensionality.

5

Baker’s shifting strategy

For a fixed 0 ≤ s < k + 1, delete every layer Li with i = s
(mod k + 1)

The resulting graph is k-outerplanar, hence it has treewidth at
most w := 3k + 1.
Using the 2O(k) · kO(w) · n time algorithm for Subgraph
Isomorphism, the problem can be solved in time
kO(k) · n = 2O(k log k) · n.

Next: Improved algorithm for the special case k-Path via
bidimensionality.

5

Baker’s shifting strategy

For a fixed 0 ≤ s < k + 1, delete every layer Li with i = s
(mod k + 1)

The resulting graph is k-outerplanar, hence it has treewidth at
most w := 3k + 1.
Using the 2O(k) · kO(w) · n time algorithm for Subgraph
Isomorphism, the problem can be solved in time
kO(k) · n = 2O(k log k) · n.

Next: Improved algorithm for the special case k-Path via
bidimensionality.

5

Baker’s shifting strategy

For a fixed 0 ≤ s < k + 1, delete every layer Li with i = s
(mod k + 1)

The resulting graph is k-outerplanar, hence it has treewidth at
most w := 3k + 1.
Using the 2O(k) · kO(w) · n time algorithm for Subgraph
Isomorphism, the problem can be solved in time
kO(k) · n = 2O(k log k) · n.

Next: Improved algorithm for the special case k-Path via
bidimensionality.

5

Baker’s shifting strategy

For a fixed 0 ≤ s < k + 1, delete every layer Li with i = s
(mod k + 1)

The resulting graph is k-outerplanar, hence it has treewidth at
most w := 3k + 1.
Using the 2O(k) · kO(w) · n time algorithm for Subgraph
Isomorphism, the problem can be solved in time
kO(k) · n = 2O(k log k) · n.

Next: Improved algorithm for the special case k-Path via
bidimensionality.

5

Baker’s shifting strategy

We do this for every 0 ≤ s < k + 1:
for at least one value of s, we do not delete

any of the k vertices of the solution

⇓

We find a copy of H in G if there is one.

Next: Improved algorithm for the special case k-Path via
bidimensionality.

5

Baker’s shifting strategy

We do this for every 0 ≤ s < k + 1:
for at least one value of s, we do not delete

any of the k vertices of the solution

⇓

We find a copy of H in G if there is one.

Next: Improved algorithm for the special case k-Path via
bidimensionality.

5

Baker’s shifting strategy

We do this for every 0 ≤ s < k + 1:
for at least one value of s, we do not delete

any of the k vertices of the solution

⇓

We find a copy of H in G if there is one.

Next: Improved algorithm for the special case k-Path via
bidimensionality.

5

Baker’s shifting strategy

We do this for every 0 ≤ s < k + 1:
for at least one value of s, we do not delete

any of the k vertices of the solution

⇓

We find a copy of H in G if there is one.

Next: Improved algorithm for the special case k-Path via
bidimensionality.

5

Baker’s shifting strategy

Theorem
Subgraph Isomorphism for planar graphs can be solved in time
2O(k log k) · n for k := |V (H)|.

Next: Improved algorithm for the special case k-Path via
bidimensionality.

5

Baker’s shifting strategy

Theorem
Subgraph Isomorphism for planar graphs can be solved in time
2O(k log k) · n for k := |V (H)|.

Next: Improved algorithm for the special case k-Path via
bidimensionality.

5

Planar Excluded Grid Theorem

Theorem [Robertson, Seymour, Thomas 1994]

Every planar graph with treewidth at least 5k has a k × k grid
minor.

Note: for general graphs, treewidth at least k19 or so guarantees a
k × k grid minor!

6

Planar Excluded Grid Theorem

Theorem [Robertson, Seymour, Thomas 1994]

Every planar graph with treewidth at least 5k has a k × k grid
minor.

Consequence: every n-vertex planar graph has treewidth O(
√
n).

6

Subexponential algorithm for k-Path
Observation: If the treewidth of a planar graph G is at least 5

√
k

⇒ It has a
√
k ×
√
k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a path of length at least k .
⇒ G has a path of length at least k .

We use this observation to find a path of length at least k on
planar graphs:

7

Subexponential algorithm for k-Path
Observation: If the treewidth of a planar graph G is at least 5

√
k

⇒ It has a
√
k ×
√
k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a path of length at least k .
⇒ G has a path of length at least k .

We use this observation to find a path of length at least k on
planar graphs:

Set w := 5
√
k .

Find an O(1)-approximate tree
decomposition.

If treewidth is at least w : we answer
“there is a path of length at least k .”
If we get a tree decomposition of
width O(w), then we can solve the
problem in time
kO(∆w) · nO(1) = 2O(

√
k log k) · nO(1).

7

Lower bounds based on ETH
Lower bound technology introduced by Impagliazzo, Paturi, and
Zane:

Exponential-Time Hypothesis

There is no 2o(n)-time algorithm for n-variable 3SAT.

Textbook reduction from 3SAT to Planar Hamiltonian Path:

3SAT formula φ
n variables
m clauses

⇒
Planar graph G ′

O((n + m)2) vertices
O((n + m)2) edges

8

Lower bounds based on ETH
Lower bound technology introduced by Impagliazzo, Paturi, and
Zane:

Exponential-Time Hypothesis + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

Textbook reduction from 3SAT to Planar Hamiltonian Path:

3SAT formula φ
n variables
m clauses

⇒
Planar graph G ′

O((n + m)2) vertices
O((n + m)2) edges

8

Lower bounds based on ETH
Lower bound technology introduced by Impagliazzo, Paturi, and
Zane:

Exponential-Time Hypothesis + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

Textbook reduction from 3SAT to Planar Hamiltonian Path:

3SAT formula φ
n variables
m clauses

⇒
Planar graph G ′

O((n + m)2) vertices
O((n + m)2) edges

8

Lower bounds based on ETH
Lower bound technology introduced by Impagliazzo, Paturi, and
Zane:

Exponential-Time Hypothesis + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

Textbook reduction from 3SAT to Planar Hamiltonian Path:

3SAT formula φ
n variables
m clauses

⇒
Planar graph G ′

O((n + m)2) vertices
O((n + m)2) edges

Corollary

Assuming ETH, there is no 2o(
√
n) algorithm for Planar

Hamiltonian Path on an n-vertex planar graph G .

8

Lower bounds based on ETH
Lower bound technology introduced by Impagliazzo, Paturi, and
Zane:

Exponential-Time Hypothesis + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

Textbook reduction from 3SAT to Planar Hamiltonian Path:

3SAT formula φ
n variables
m clauses

⇒
Planar graph G ′

O((n + m)2) vertices
O((n + m)2) edges

Corollary

Assuming ETH, there is no 2o(
√
k) · nO(1) algorithm for k-Path on

an n-vertex planar graph G .

Our 2O(
√
k log k) · nO(1) algorithm is essentially best possible.

8

Other problems:

Good news:
Same algorithm works for finding a cycle of length at least k .

Bad news:
Does not work for finding a cycle of length exactly k .
Does not work for finding an s − t path of length at
least/exactly k .
Does not work for finding a minimum weight k-path.
Does not work for finding a directed k-path.
. . .

9

Other problems:

Good news:
Same algorithm works for finding a cycle of length at least k .

Bad news:
Does not work for finding a cycle of length exactly k .
Does not work for finding an s − t path of length at
least/exactly k .
Does not work for finding a minimum weight k-path.
Does not work for finding a directed k-path.
. . .

9

Main combinatorial result
Theorem
There is a randomized polynomial-time algorithm that, given a
planar graph G and an integer k , computes an induced subgraph
G ′ such that

1 G ′ has treewidth O(
√
k · polylog(k)) and

2 for any connected subgraph H ⊆ G with at most k vertices,
we have H ⊆ G ′ with probability at least
(2O(

√
k·polylog(k)) · nO(1))−1.

10

Main combinatorial result
Theorem
There is a randomized polynomial-time algorithm that, given a
planar graph G and an integer k , computes an induced subgraph
G ′ such that

1 G ′ has treewidth O(
√
k · polylog(k)) and

2 for any connected subgraph H ⊆ G with at most k vertices,
we have H ⊆ G ′ with probability at least
(2O(

√
k·polylog(k)) · nO(1))−1.

Thus the Subgraph Isomorphism problem for connected H can
be solved by restriction to G ′.

Theorem
Subgraph Isomorphism for planar graphs can be solved in time
2O(∆

√
k·polylog(k)) · nO(1) if H is connected with maximum degree ∆.

Remark: Robust algorithm, can be easily generalized to colored,
directed, weighted etc. versions. 10

Main combinatorial result
Theorem
There is a randomized polynomial-time algorithm that, given a
planar graph G and an integer k , computes an induced subgraph
G ′ such that

1 G ′ has treewidth O(
√
k · polylog(k)) and

2 for any connected subgraph H ⊆ G with at most k vertices,
we have H ⊆ G ′ with probability at least
(2O(

√
k·polylog(k)) · nO(1))−1.

Theorem [Bodlaender, Nederlof, van der Zanden 2016]

Assuming ETH, there is no 2o(k/ log k) · nO(1) time algorithm for
planar Subgraph Isomorphism, even when

H is a forest of maximum degree 3, or
H is a tree with only one vertex having degree larger than 3.

10

Example: grids

1 Guess an index 0 ≤ i <
√
k such that rows i mod

√
k contain

a total of
√
k vertices of H.

2 Guess the at most
√
k columns where H appears in these rows.

3 Graph falls apart into
√
k-tall grids connected by

√
k vertices.

11

Example: grids

1 Guess an index 0 ≤ i <
√
k such that rows i mod

√
k contain

a total of
√
k vertices of H.

2 Guess the at most
√
k columns where H appears in these rows.

3 Graph falls apart into
√
k-tall grids connected by

√
k vertices.

11

Example: grids

1 Guess an index 0 ≤ i <
√
k such that rows i mod

√
k contain

a total of
√
k vertices of H.

2 Guess the at most
√
k columns where H appears in these rows.

3 Graph falls apart into
√
k-tall grids connected by

√
k vertices.

11

Example: grids

1 Guess an index 0 ≤ i <
√
k such that rows i mod

√
k contain

a total of
√
k vertices of H.

2 Guess the at most
√
k columns where H appears in these rows.

3 Graph falls apart into
√
k-tall grids connected by

√
k vertices. 11

Example: grids

1 Guess an index 0 ≤ i <
√
k such that rows i mod

√
k contain

a total of
√
k vertices of H.

2 Guess the at most
√
k columns where H appears in these rows.

3 Graph falls apart into
√
k-tall grids connected by

√
k vertices. 11

Example: complete binary tree

Ball-growing argument: there is an index
√
k ≤ i ≤ O(

√
k log k)

such that the first i rows in total contain
√
k times more vertices of

the solution than row i .

12

Example: complete binary tree

Ball-growing argument: there is an index
√
k ≤ i ≤ O(

√
k log k)

such that the first i rows in total contain
√
k times more vertices of

the solution than row i .

12

Duality result

Theorem
Given a graph G and two sets of vertices S and T there is either

a family P1, . . . , PC of “almost-disjoint”
S − T paths such that ∃Ai ⊆ Pi with

∑
|Ai | ≤ `C and

Pi \ Ai ’s are pairwise disjoint or
a family S1, . . . , S` of disjoint “small” S − T separators with
|Si | ≤ C .

S

T

We will use the duality with C = 2(k + 1) and ` =
√
k .

13

Duality result

Theorem
Given a graph G and two sets of vertices S and T there is either

a family P1, . . . , PC/2C/2C/2 of “almost-disjoint”
S − T paths such that ∃Ai ⊆ Pi with |Ai | ≤ `|Ai | ≤ `|Ai | ≤ ` and
Pi \ Ai ’s are pairwise disjoint or
a family S1, . . . , S` of disjoint “small” S − T separators with
|Si | ≤ C .

S

T

We will use the duality with C = 2(k + 1) and ` =
√
k .

13

Duality result

Theorem
Given a graph G and two sets of vertices S and T there is either

a family P1, . . . , PC/2C/2C/2 of “almost-disjoint”
S − T paths such that ∃Ai ⊆ Pi with |Ai | ≤ `|Ai | ≤ `|Ai | ≤ ` and
Pi \ Ai ’s are pairwise disjoint or
a family S1, . . . , S` of disjoint “small” S − T separators with
|Si | ≤ C .

S

T

We will use the duality with C = 2(k + 1) and ` =
√
k . 13

Duality result

Theorem
Given a graph G and two sets of vertices S and T there is either

a family P1, . . . , Pk+1 of “almost-disjoint”
S − T paths such that ∃Ai ⊆ Pi with |Ai | ≤

√
k and

Pi \ Ai ’s are pairwise disjoint or
a family S1, . . . ,S√k of disjoint “small” S −T seps. with |Si | ≤
2k + 2.

S

T

We will use the duality with C = 2(k + 1) and ` =
√
k . 13

Using duality

The correct viewpoint:
Using the duality between the outside and the inside.

But where is this “inside”?

14

Conclusions

Subexponential parameterized algorithms for finding
bounded-degree connected subgraphs.
Connectedness of the pattern H seems essential (but easy to
generalize to bounded number of connected components).
Can be generalized to bounded local treewidth, H-minor-free
in progress.
Other classes of graphs: polynomial growth property.

15

