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Square root phenomenon

Most NP-hard problems (e.g., 3-Coloring, Independent Set,
Hamiltonian Cycle, Steiner Tree, etc.) remain NP-hard on
planar graphs,1 but often get easier on planar graphs in the sense
that the running time is still exponential, but significantly smaller:

2O(n) ⇒ 2O(
√
n)

nO(k) ⇒ nO(
√
k)

2O(k) · nO(1) ⇒ 2O(
√
k) · nO(1)

This talk: a new technique for such algorithms.

1Notable exception: Max Cut is in P for planar graphs.
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Subgraph Isomorphism

Subgraph Isomorphism
Input: Graphs H and G

Decide: Does G has a subgraph isomorphic to H?

Standard dynamic programming:

Fact
If connected graph H has k vertices and maximum degree ∆, G
has treewidth w , then Subgraph Isomorphism can be solved

in time 2O(k) · kO(w) · n or
in time kO(∆w) · n.

Remark: Robust algorithm, can be easily generalized to colored,
directed, weighted etc. versions.
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k-outerplanar graphs
Given a planar embedding, we can define layers by iteratively
removing the vertices on the infinite face.

Definition
A planar graph is k-outerplanar if it has a planar embedding
having at most k layers.
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Fact
Every k-outerplanar graph has treewidth at most 3k + 1.
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k-outerplanar graphs
Given a planar embedding, we can define layers by iteratively
removing the vertices on the infinite face.

Definition
A planar graph is k-outerplanar if it has a planar embedding
having at most k layers.
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Baker’s shifting strategy

Next: Improved algorithm for the special case k-Path via
bidimensionality.
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Baker’s shifting strategy

For a fixed 0 ≤ s < k + 1, delete every layer Li with i = s
(mod k + 1)

The resulting graph is k-outerplanar, hence it has treewidth at
most w := 3k + 1.
Using the 2O(k) · kO(w) · n time algorithm for Subgraph
Isomorphism, the problem can be solved in time
kO(k) · n = 2O(k log k) · n.

Next: Improved algorithm for the special case k-Path via
bidimensionality.
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Baker’s shifting strategy

We do this for every 0 ≤ s < k + 1:
for at least one value of s, we do not delete

any of the k vertices of the solution

⇓

We find a copy of H in G if there is one.

Next: Improved algorithm for the special case k-Path via
bidimensionality.
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Baker’s shifting strategy

Theorem
Subgraph Isomorphism for planar graphs can be solved in time
2O(k log k) · n for k := |V (H)|.

Next: Improved algorithm for the special case k-Path via
bidimensionality.
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Planar Excluded Grid Theorem

Theorem [Robertson, Seymour, Thomas 1994]

Every planar graph with treewidth at least 5k has a k × k grid
minor.

Note: for general graphs, treewidth at least k19 or so guarantees a
k × k grid minor!
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Planar Excluded Grid Theorem

Theorem [Robertson, Seymour, Thomas 1994]

Every planar graph with treewidth at least 5k has a k × k grid
minor.

Consequence: every n-vertex planar graph has treewidth O(
√
n).
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Subexponential algorithm for k-Path
Observation: If the treewidth of a planar graph G is at least 5

√
k

⇒ It has a
√
k ×
√
k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a path of length at least k .
⇒ G has a path of length at least k .

We use this observation to find a path of length at least k on
planar graphs:
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Subexponential algorithm for k-Path
Observation: If the treewidth of a planar graph G is at least 5

√
k

⇒ It has a
√
k ×
√
k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a path of length at least k .
⇒ G has a path of length at least k .

We use this observation to find a path of length at least k on
planar graphs:

Set w := 5
√
k .

Find an O(1)-approximate tree
decomposition.

If treewidth is at least w : we answer
“there is a path of length at least k .”
If we get a tree decomposition of
width O(w), then we can solve the
problem in time
kO(∆w) · nO(1) = 2O(

√
k log k) · nO(1).
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Lower bounds based on ETH
Lower bound technology introduced by Impagliazzo, Paturi, and
Zane:

Exponential-Time Hypothesis

There is no 2o(n)-time algorithm for n-variable 3SAT.

Textbook reduction from 3SAT to Planar Hamiltonian Path:

3SAT formula φ
n variables
m clauses

⇒
Planar graph G ′

O((n + m)2) vertices
O((n + m)2) edges
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Lower bounds based on ETH
Lower bound technology introduced by Impagliazzo, Paturi, and
Zane:

Exponential-Time Hypothesis + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

Textbook reduction from 3SAT to Planar Hamiltonian Path:

3SAT formula φ
n variables
m clauses

⇒
Planar graph G ′

O((n + m)2) vertices
O((n + m)2) edges

Corollary

Assuming ETH, there is no 2o(
√
n) algorithm for Planar

Hamiltonian Path on an n-vertex planar graph G .
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Lower bounds based on ETH
Lower bound technology introduced by Impagliazzo, Paturi, and
Zane:

Exponential-Time Hypothesis + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

Textbook reduction from 3SAT to Planar Hamiltonian Path:

3SAT formula φ
n variables
m clauses

⇒
Planar graph G ′

O((n + m)2) vertices
O((n + m)2) edges

Corollary

Assuming ETH, there is no 2o(
√
k) · nO(1) algorithm for k-Path on

an n-vertex planar graph G .

Our 2O(
√
k log k) · nO(1) algorithm is essentially best possible.
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Other problems:

Good news:
Same algorithm works for finding a cycle of length at least k .

Bad news:
Does not work for finding a cycle of length exactly k .
Does not work for finding an s − t path of length at
least/exactly k .
Does not work for finding a minimum weight k-path.
Does not work for finding a directed k-path.
. . .
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Main combinatorial result
Theorem
There is a randomized polynomial-time algorithm that, given a
planar graph G and an integer k , computes an induced subgraph
G ′ such that

1 G ′ has treewidth O(
√
k · polylog(k)) and

2 for any connected subgraph H ⊆ G with at most k vertices,
we have H ⊆ G ′ with probability at least
(2O(

√
k·polylog(k)) · nO(1))−1.
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Main combinatorial result
Theorem
There is a randomized polynomial-time algorithm that, given a
planar graph G and an integer k , computes an induced subgraph
G ′ such that

1 G ′ has treewidth O(
√
k · polylog(k)) and

2 for any connected subgraph H ⊆ G with at most k vertices,
we have H ⊆ G ′ with probability at least
(2O(

√
k·polylog(k)) · nO(1))−1.

Thus the Subgraph Isomorphism problem for connected H can
be solved by restriction to G ′.

Theorem
Subgraph Isomorphism for planar graphs can be solved in time
2O(∆

√
k·polylog(k)) · nO(1) if H is connected with maximum degree ∆.

Remark: Robust algorithm, can be easily generalized to colored,
directed, weighted etc. versions. 10



Main combinatorial result
Theorem
There is a randomized polynomial-time algorithm that, given a
planar graph G and an integer k , computes an induced subgraph
G ′ such that

1 G ′ has treewidth O(
√
k · polylog(k)) and

2 for any connected subgraph H ⊆ G with at most k vertices,
we have H ⊆ G ′ with probability at least
(2O(

√
k·polylog(k)) · nO(1))−1.

Theorem [Bodlaender, Nederlof, van der Zanden 2016]

Assuming ETH, there is no 2o(k/ log k) · nO(1) time algorithm for
planar Subgraph Isomorphism, even when

H is a forest of maximum degree 3, or
H is a tree with only one vertex having degree larger than 3.
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Example: grids

1 Guess an index 0 ≤ i <
√
k such that rows i mod

√
k contain

a total of
√
k vertices of H.

2 Guess the at most
√
k columns where H appears in these rows.

3 Graph falls apart into
√
k-tall grids connected by

√
k vertices.
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Example: complete binary tree

Ball-growing argument: there is an index
√
k ≤ i ≤ O(

√
k log k)

such that the first i rows in total contain
√
k times more vertices of

the solution than row i .
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Duality result

Theorem
Given a graph G and two sets of vertices S and T there is either

a family P1, . . . , PC of “almost-disjoint”
S − T paths such that ∃Ai ⊆ Pi with

∑
|Ai | ≤ `C and

Pi \ Ai ’s are pairwise disjoint or
a family S1, . . . , S` of disjoint “small” S − T separators with
|Si | ≤ C .

S

T

We will use the duality with C = 2(k + 1) and ` =
√
k .
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Duality result

Theorem
Given a graph G and two sets of vertices S and T there is either

a family P1, . . . , Pk+1 of “almost-disjoint”
S − T paths such that ∃Ai ⊆ Pi with |Ai | ≤

√
k and

Pi \ Ai ’s are pairwise disjoint or
a family S1, . . . ,S√k of disjoint “small” S −T seps. with |Si | ≤
2k + 2.

S

T

We will use the duality with C = 2(k + 1) and ` =
√
k . 13



Using duality

The correct viewpoint:
Using the duality between the outside and the inside.

But where is this “inside”?
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Conclusions

Subexponential parameterized algorithms for finding
bounded-degree connected subgraphs.
Connectedness of the pattern H seems essential (but easy to
generalize to bounded number of connected components).
Can be generalized to bounded local treewidth, H-minor-free
in progress.
Other classes of graphs: polynomial growth property.
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