
Every graph is easy or hard:
dichotomy theorems for graph problems

Dániel Marx1

1Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary

Dagstuhl Seminar 14451
Schloss Dagstuhl, Germany

November 7, 2014

1



Dichotomy theorems

What is better than proving one nice result?
Proving an infinite set of nice results.

We survey results where we can precisely tell which graphs make
the problem easy and which graphs make the problem hard.

Easy

Hard

Focus will be on
how to formulate questions that lead to such results and
what results of this type are known,

but less on how to prove such results.
2



Factor problems
Perfect Matching
Input: graph G .
Task: find |V (G )|/2 vertex-disjoint edges.

Polynomial-time solvable [Edmonds 1961].

Triangle Factor
Input: graph G .
Task: find |V (G )|/3 vertex-disjoint triangles.

NP-complete [Karp 1975]

3



Factor problems

H-factor
Input: graph G .
Task: find |V (G )|/|V (H)| vertex-disjoint copies of H in G .

Polynomial-time solvable for H = K2 and NP-hard for H = K3.

Which graphs H make H-factor easy and which graphs make it
hard?

Theorem [Kirkpatrick and Hell 1978]

H-factor is NP-hard for every connected graph H with at least 3
vertices.

4



Factor problems

H-factor
Input: graph G .
Task: find |V (G )|/|V (H)| vertex-disjoint copies of H in G .

Polynomial-time solvable for H = K2 and NP-hard for H = K3.

Which graphs H make H-factor easy and which graphs make it
hard?

Theorem [Kirkpatrick and Hell 1978]

H-factor is NP-hard for every connected graph H with at least 3
vertices.

4



Factor problems

Instead of publishing

Kirkpatrick and Hell: NP-completeness of packing cycles. 1978.
Kirkpatrick and Hell: NP-completeness of packing trees. 1979.
Kirkpatrick and Hell: NP-completeness of packing stars. 1980.
Kirkpatrick and Hell: NP-completeness of packing wheels. 1981.
Kirkpatrick and Hell: NP-completeness of packing Petersen graphs. 1982.
Kirkpatrick and Hell: NP-completeness of packing Starfish graphs. 1983.
Kirkpatrick and Hell: NP-completeness of packing Jaws. 1984.

...

they only published

Kirkpatrick and Hell: On the Completeness of a Generalized
Matching Problem. 1978

5



Edge-disjoint version

H-decomposition
Input: graph G .
Task: find |E (G )|/|E (H)| edge-disjoint copies of H in G .

Trivial for H = K2.
Can be solved by matching for P3 (path on 3 vertices).

Theorem [Holyer 1981]

H-decomposition is NP-complete if H is the clique Kr or the
cycle Cr for some r ≥ 3.

6



Edge-disjoint version

H-decomposition
Input: graph G .
Task: find |E (G )|/|E (H)| edge-disjoint copies of H in G .

Trivial for H = K2.
Can be solved by matching for P3 (path on 3 vertices).

Theorem (Holyer’s Conjecture) [Dor and Tarsi 1992]

H-decomposition is NP-complete for every connected graph H
with at least 3 edges.

6



H-coloring
A homomorphism from G to H is a mapping f : V (G )→ V (H)
such that if ab is an edge of G , then f (a)f (b) is an edge of H.

1 2

43 5

4 5 4

342

4 2 1

4

1

4

G H

H-coloring
Input: graph G .
Task: Find a homomorphism from G to H.

If H = Kr , then equivalent to r-coloring.
If H is bipartite, then the problem is equivalent to G being
bipartite.

7



H-coloring
A homomorphism from G to H is a mapping f : V (G )→ V (H)
such that if ab is an edge of G , then f (a)f (b) is an edge of H.

1 2

43 5

4 5 4

342

4 2 1

4

1

4

G H

H-coloring
Input: graph G .
Task: Find a homomorphism from G to H.

If H = Kr , then equivalent to r-coloring.
If H is bipartite, then the problem is equivalent to G being
bipartite.

7



H-coloring
A homomorphism from G to H is a mapping f : V (G )→ V (H)
such that if ab is an edge of G , then f (a)f (b) is an edge of H.

1 2

43 5

4 5 4

342

4 2 1

4

1

4

G H

H-coloring
Input: graph G .
Task: Find a homomorphism from G to H.

Theorem [Hell and Nešetřil 1990]

For every simple graph H, H-coloring is polynomial-time
solvable if H is bipartite and NP-complete if H is not bipartite.

7



Dichotomy theorems

Dichotomy theorem: classifying every member of a family of
problems as easy or hard.

Why are such theorems surprising?

1 The characterization of easy/hard is a simple combinatorial
property.

So far, we have seen:
at least 3 vertices,
nonbipartite.

8



Dichotomy theorems
2 Every problem is either in P or NP-complete, there are no

NP-intermediate problems in the family.

Theorem [Ladner 1973]

If P 6= NP, then there is language L ∈ NP \ P that is not
NP-complete.

P=NP

P

P

NP NP

NP-complete
NP-complete

NP-intermediate

9



Dichotomy theorems

Dichotomy theorems give goods research programs: easy to
formulate, but can be hard to complete.
The search for dichotomy theorems may uncover algorithmic
results that no one has thought of.
Proving dichotomy theorems may require good command of
both algorithmic and hardness proof techniques.

So far:
Each problem in the family was defined by fixing a graph H.

Next:
Each problem is defined by fixing a class of graph H.

10



Dichotomy theorems

Dichotomy theorems give goods research programs: easy to
formulate, but can be hard to complete.
The search for dichotomy theorems may uncover algorithmic
results that no one has thought of.
Proving dichotomy theorems may require good command of
both algorithmic and hardness proof techniques.

So far:
Each problem in the family was defined by fixing a graph H.

Next:
Each problem is defined by fixing a class of graph H.

10



Homomorphisms seen from the other side
Recall: H-coloring (finding a homomorphism to H) is
polynomial-time solvable if H is bipartite and NP-complete
otherwise.

G H

Theorem (trivial)
For every fixed H, the problem Hom(H,−) (find a homomorphism
from H to the given graph G ) is polynomial-time solvable.

. . . because we can try all |V (G )||V (H)| possible mappings
f : V (H)→ V (G ).

11



Homomorphisms seen from the other side
Recall: H-coloring (finding a homomorphism to H) is
polynomial-time solvable if H is bipartite and NP-complete
otherwise.

GH

What about finding a homomorphism from H?

Theorem (trivial)
For every fixed H, the problem Hom(H,−) (find a homomorphism
from H to the given graph G ) is polynomial-time solvable.

. . . because we can try all |V (G )||V (H)| possible mappings
f : V (H)→ V (G ).

11



Homomorphisms seen from the other side
Recall: H-coloring (finding a homomorphism to H) is
polynomial-time solvable if H is bipartite and NP-complete
otherwise.

GH

What about finding a homomorphism from H?

Theorem (trivial)
For every fixed H, the problem Hom(H,−) (find a homomorphism
from H to the given graph G ) is polynomial-time solvable.

. . . because we can try all |V (G )||V (H)| possible mappings
f : V (H)→ V (G ).

11



Homomorphisms seen from the other side

Better question:

Hom(H,−)
Input: a graph H ∈ H and an arbitrary graph G .
Task: decide if there is a homomorphism from H to G .

Goal: characterize the classes H for which Hom(H,−) is
polynomial-time solvable.

For example, if H contains only bipartite graphs, then Hom(H,−)
is polynomial-time solvable.

We have reasons to believe that there is no P vs. NP-complete
dichotomy for Hom(H,−). Instead of NP-completeness, we will
use parameterized complexity for giving negative evidence.

12



Homomorphisms seen from the other side

Better question:

Hom(H,−)
Input: a graph H ∈ H and an arbitrary graph G .
Task: decide if there is a homomorphism from H to G .

Goal: characterize the classes H for which Hom(H,−) is
polynomial-time solvable.

For example, if H contains only bipartite graphs, then Hom(H,−)
is polynomial-time solvable.

We have reasons to believe that there is no P vs. NP-complete
dichotomy for Hom(H,−). Instead of NP-completeness, we will
use parameterized complexity for giving negative evidence.

12



Counting homomorphisms

#Hom(H,−)
Input: a graph H ∈ H and an arbitrary graph G .
Task: count the number of homomorphisms from H → G .

We parameterize by k = |V (H)|, i.e., our goal is an
f (|V (H)|) · nO(1) time algorithm.

13



Counting homomorphisms

#Hom(H,−)
Input: a graph H ∈ H and an arbitrary graph G .
Task: count the number of homomorphisms from H → G .

We parameterize by k = |V (H)|, i.e., our goal is an
f (|V (H)|) · nO(1) time algorithm.

Theorem [Dalmau and Jonsson 2004]

Assuming FPT 6= W[1], for every recursively enumerable class H of
graphs, the following are equivalent:

1 #Hom(H,−) is polynomial-time solvable.
2 #Hom(H,−) is FPT parameterized by |V (H)|.
3 H has bounded treewidth.

13



Counting homomorphisms

#Hom(H,−)
Input: a graph H ∈ H and an arbitrary graph G .
Task: count the number of homomorphisms from H → G .

We parameterize by k = |V (H)|, i.e., our goal is an
f (|V (H)|) · nO(1) time algorithm.

Theorem [Dalmau and Jonsson 2004]

Assuming FPT 6= W[1], for every recursively enumerable class H of
graphs, the following are equivalent:

1 #Hom(H,−) is polynomial-time solvable.
2 #Hom(H,−) is FPT parameterized by |V (H)|.
3 H has bounded treewidth.

Excluded Grid Theorem [Robertson and Seymour]

There is a function f such that every graph with treewidth f (k)
contains a k × k grid minor. 13



Counting homomorphisms

#Hom(H,−)
Input: a graph H ∈ H and an arbitrary graph G .
Task: count the number of homomorphisms from H → G .

We parameterize by k = |V (H)|, i.e., our goal is an
f (|V (H)|) · nO(1) time algorithm.

Theorem [Dalmau and Jonsson 2004]

Assuming FPT 6= W[1], for every recursively enumerable class H of
graphs, the following are equivalent:

1 #Hom(H,−) is polynomial-time solvable.
2 #Hom(H,−) is FPT parameterized by |V (H)|.
3 H has bounded treewidth.

Steps of the proof:
Show that the problem is polynomial-time solvable for
bounded treewidth.
Show that the problem is W[1]-hard if H is the class of grids.
Use the Excluded Grid Theorem to show that this implies
W[1]-hardness for every class with unbounded treewidth.

13



Decision version
Hom(H,−)
Input: a graph H ∈ H and an arbitrary graph G .
Task: decide if there is a homomorphism from H to G .

Core of H: smallest subgraph H∗ of H such that there is a
homomorphism H → H∗ (known to be unique up to isomorphism).

1

2 3

14



Decision version
Hom(H,−)
Input: a graph H ∈ H and an arbitrary graph G .
Task: decide if there is a homomorphism from H to G .

Core of H: smallest subgraph H∗ of H such that there is a
homomorphism H → H∗ (known to be unique up to isomorphism).

1

2 3

2 1

2

2

1

3 2

14



Decision version
Hom(H,−)
Input: a graph H ∈ H and an arbitrary graph G .
Task: decide if there is a homomorphism from H to G .

Core of H: smallest subgraph H∗ of H such that there is a
homomorphism H → H∗ (known to be unique up to isomorphism).

1

2 3

2 1

2

2

1

3 2

Observation
If H∗ is the core of H, then there is a homomorphism H∗ → G if
and only if there is a homomorphism H → G .

14



Decision version
Hom(H,−)
Input: a graph H ∈ H and an arbitrary graph G .
Task: decide if there is a homomorphism from H to G .

Core of H: smallest subgraph H∗ of H such that there is a
homomorphism H → H∗ (known to be unique up to isomorphism).

Theorem [Grohe 2003]

Assuming FPT 6= W[1], for every recursively enumerable class H of
graphs, the following are equivalent:

1 Hom(H,−) is polynomial-time solvable.
2 Hom(H,−) is FPT parameterized by |V (H)|.
3 there is a constant c ≥ 1 such that the core of every graph in
H has treewidth at most c .

14



Counting subgraphs
#Sub(H)
Input: a graph H ∈ H and an arbitrary graph G .
Task: calculate the number of copies of H in G .

If H is the class of all stars, then #Sub(H) is easy: for each place-
ment of the center of the star, calculate the number of possible
different assignments of the leaves.

H G

15



Counting subgraphs
#Sub(H)
Input: a graph H ∈ H and an arbitrary graph G .
Task: calculate the number of copies of H in G .

Theorem
If every graph in H has vertex cover number at most c , then
#Sub(H) is polynomial-time solvable.

2 31

H G

Running time is n2O(c)
, better algorithms known [Vassilevska Williams

and Williams], [Kowaluk, Lingas, and Lundell]. 15



Counting subgraphs
#Sub(H)
Input: a graph H ∈ H and an arbitrary graph G .
Task: calculate the number of copies of H in G .

Theorem
If every graph in H has vertex cover number at most c , then
#Sub(H) is polynomial-time solvable.

2 31

H G

2 31

Running time is n2O(c)
, better algorithms known [Vassilevska Williams

and Williams], [Kowaluk, Lingas, and Lundell]. 15



Counting subgraphs
Who are the bad guys now?

Theorem [Flum and Grohe 2002]

If H is the set of all paths, then #Sub(H) is #W[1]-hard.

Theorem [Curticapean 2013]

If H is the set of all matchings, then #Sub(H) is #W[1]-hard.

Dichotomy theorem:

Theorem [Curticapean and M. 2014]

Let H be a recursively enumerable class of graphs. If H has
unbounded vertex cover number, then #Sub(H) is #W[1]-hard.

(ν(G) ≤ τ(G) ≤ 2ν(G), hence “unbounded vertex cover number” and
“unbounded matching number” are the same.)

There is a simple proof if H is hereditary, but the general case is
more difficult.

16



Counting subgraphs
Who are the bad guys now?

Theorem [Flum and Grohe 2002]

If H is the set of all paths, then #Sub(H) is #W[1]-hard.

Theorem [Curticapean 2013]

If H is the set of all matchings, then #Sub(H) is #W[1]-hard.

Dichotomy theorem:

Theorem [Curticapean and M. 2014]

Let H be a recursively enumerable class of graphs. If H has
unbounded vertex cover number, then #Sub(H) is #W[1]-hard.

(ν(G) ≤ τ(G) ≤ 2ν(G), hence “unbounded vertex cover number” and
“unbounded matching number” are the same.)

There is a simple proof if H is hereditary, but the general case is
more difficult.

16



Counting subgraphs
Who are the bad guys now?

Theorem [Flum and Grohe 2002]

If H is the set of all paths, then #Sub(H) is #W[1]-hard.

Theorem [Curticapean 2013]

If H is the set of all matchings, then #Sub(H) is #W[1]-hard.

Dichotomy theorem:

Theorem [Curticapean and M. 2014]

Let H be a recursively enumerable class of graphs. If H has
unbounded vertex cover number, then #Sub(H) is #W[1]-hard.

(ν(G) ≤ τ(G) ≤ 2ν(G), hence “unbounded vertex cover number” and
“unbounded matching number” are the same.)

There is a simple proof if H is hereditary, but the general case is
more difficult.

16



Counting subgraphs
Observation
At least one of the following holds for every hereditary class H with
unbounded vertex cover number:

H contains every matching.
H contains every clique.
H contains every biclique.

Ramsey’s Theorem: There is a monochromatic r -clique in every
c-coloring of the edges of a clique with at least ccr vertices.

For every i < j , there are 24 possibilities
for the 4 edges between {ai , bi} and {aj , bj}.
If there is a large matching, then there is a large
matching that is homogeneous with respect to
these 16 possibilities.
In each of the 16 cases, we find a matching,
clique, or biclique as induced subgraph.

17



Counting subgraphs
Observation
At least one of the following holds for every hereditary class H with
unbounded vertex cover number:

H contains every matching. ⇒ #W[1]-hard

H contains every clique. ⇒ #W[1]-hard

H contains every biclique. ⇒ #W[1]-hard

Ramsey’s Theorem: There is a monochromatic r -clique in every
c-coloring of the edges of a clique with at least ccr vertices.

For every i < j , there are 24 possibilities
for the 4 edges between {ai , bi} and {aj , bj}.
If there is a large matching, then there is a large
matching that is homogeneous with respect to
these 16 possibilities.
In each of the 16 cases, we find a matching,
clique, or biclique as induced subgraph.

17



Counting subgraphs
Observation
At least one of the following holds for every hereditary class H with
unbounded vertex cover number:

H contains every matching. ⇒ #W[1]-hard

H contains every clique. ⇒ #W[1]-hard

H contains every biclique. ⇒ #W[1]-hard

Ramsey’s Theorem: There is a monochromatic r -clique in every
c-coloring of the edges of a clique with at least ccr vertices.

For every i < j , there are 24 possibilities
for the 4 edges between {ai , bi} and {aj , bj}.
If there is a large matching, then there is a large
matching that is homogeneous with respect to
these 16 possibilities.
In each of the 16 cases, we find a matching,
clique, or biclique as induced subgraph.

17



Counting subgraphs
Observation
At least one of the following holds for every hereditary class H with
unbounded vertex cover number:

H contains every matching. ⇒ #W[1]-hard

H contains every clique. ⇒ #W[1]-hard

H contains every biclique. ⇒ #W[1]-hard

Ramsey’s Theorem: There is a monochromatic r -clique in every
c-coloring of the edges of a clique with at least ccr vertices.

For every i < j , there are 24 possibilities
for the 4 edges between {ai , bi} and {aj , bj}.
If there is a large matching, then there is a large
matching that is homogeneous with respect to
these 16 possibilities.

In each of the 16 cases, we find a matching,
clique, or biclique as induced subgraph.

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

a6 b6
17



Counting subgraphs
Observation
At least one of the following holds for every hereditary class H with
unbounded vertex cover number:

H contains every matching. ⇒ #W[1]-hard

H contains every clique. ⇒ #W[1]-hard

H contains every biclique. ⇒ #W[1]-hard

Ramsey’s Theorem: There is a monochromatic r -clique in every
c-coloring of the edges of a clique with at least ccr vertices.

For every i < j , there are 24 possibilities
for the 4 edges between {ai , bi} and {aj , bj}.
If there is a large matching, then there is a large
matching that is homogeneous with respect to
these 16 possibilities.
In each of the 16 cases, we find a matching,
clique, or biclique as induced subgraph.

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

a6 b6
17



Counting subgraphs
Observation
At least one of the following holds for every hereditary class H with
unbounded vertex cover number:

H contains every matching. ⇒ #W[1]-hard

H contains every clique. ⇒ #W[1]-hard

H contains every biclique. ⇒ #W[1]-hard

Ramsey’s Theorem: There is a monochromatic r -clique in every
c-coloring of the edges of a clique with at least ccr vertices.

For every i < j , there are 24 possibilities
for the 4 edges between {ai , bi} and {aj , bj}.
If there is a large matching, then there is a large
matching that is homogeneous with respect to
these 16 possibilities.
In each of the 16 cases, we find a matching,
clique, or biclique as induced subgraph.

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

a6 b6
17



Counting subgraphs
Observation
At least one of the following holds for every hereditary class H with
unbounded vertex cover number:

H contains every matching. ⇒ #W[1]-hard

H contains every clique. ⇒ #W[1]-hard

H contains every biclique. ⇒ #W[1]-hard

Ramsey’s Theorem: There is a monochromatic r -clique in every
c-coloring of the edges of a clique with at least ccr vertices.

For every i < j , there are 24 possibilities
for the 4 edges between {ai , bi} and {aj , bj}.
If there is a large matching, then there is a large
matching that is homogeneous with respect to
these 16 possibilities.
In each of the 16 cases, we find a matching,
clique, or biclique as induced subgraph.

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

a6 b6
17



Counting subgraphs
Observation
At least one of the following holds for every hereditary class H with
unbounded vertex cover number:

H contains every matching. ⇒ #W[1]-hard

H contains every clique. ⇒ #W[1]-hard

H contains every biclique. ⇒ #W[1]-hard

Ramsey’s Theorem: There is a monochromatic r -clique in every
c-coloring of the edges of a clique with at least ccr vertices.

For every i < j , there are 24 possibilities
for the 4 edges between {ai , bi} and {aj , bj}.
If there is a large matching, then there is a large
matching that is homogeneous with respect to
these 16 possibilities.
In each of the 16 cases, we find a matching,
clique, or biclique as induced subgraph.

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

a6 b6
17



Counting subgraphs
Observation
At least one of the following holds for every hereditary class H with
unbounded vertex cover number:

H contains every matching. ⇒ #W[1]-hard

H contains every clique. ⇒ #W[1]-hard

H contains every biclique. ⇒ #W[1]-hard

Ramsey’s Theorem: There is a monochromatic r -clique in every
c-coloring of the edges of a clique with at least ccr vertices.

For every i < j , there are 24 possibilities
for the 4 edges between {ai , bi} and {aj , bj}.
If there is a large matching, then there is a large
matching that is homogeneous with respect to
these 16 possibilities.
In each of the 16 cases, we find a matching,
clique, or biclique as induced subgraph.

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

a6 b6a6 b6
17



H-packing

H-Packing
Input: an arbitrary graph G and an integer k .
Task: decide if there are k vertex-disjoint copies of H in G .

Question: For which fixed graphs H the problem H-Packing has
a polynomial kernel?

For every fixed H, there is a kernel of size O(k |V (H)|).
Interpret the problem as packing of |V (H)|-sets, then
kernelization using the Sunflower Lemma.

Better question: H is part of the input, but restricted to a class H.

18



H-packing

H-Packing
Input: an arbitrary graph G and an integer k .
Task: decide if there are k vertex-disjoint copies of H in G .

Question: For which fixed graphs H the problem H-Packing has
a polynomial kernel?

For every fixed H, there is a kernel of size O(k |V (H)|).
Interpret the problem as packing of |V (H)|-sets, then
kernelization using the Sunflower Lemma.

Better question: H is part of the input, but restricted to a class H.

18



H-packing

H-Packing
Input: an arbitrary graph G and an integer k .
Task: decide if there are k vertex-disjoint copies of H in G .

Question: For which fixed graphs H the problem H-Packing has
a polynomial kernel?

For every fixed H, there is a kernel of size O(k |V (H)|).
Interpret the problem as packing of |V (H)|-sets, then
kernelization using the Sunflower Lemma.

Better question: H is part of the input, but restricted to a class H.

18



H-packing
H-Packing
Input: a graph H ∈ H, an arbitrary graph G , and an integer k .
Task: decide if there are k vertex-disjoint copies of H in G .

Natural parameter: k · |V (H)|, the size of the output.

Question: Which classes H admit a polynomial kernel?

19



H-packing
H-Packing
Input: a graph H ∈ H, an arbitrary graph G , and an integer k .
Task: decide if there are k vertex-disjoint copies of H in G .

Natural parameter: k · |V (H)|, the size of the output.

Question: Which classes H admit a polynomial kernel?
If every component of every H ∈ H has size at most a, then
there is a polynomial kernel.
For every fixed b, packing Kb,t ’s admits a polynomial kernel.
If every component of every H ∈ H is a bipartite graph with at
most b vertices on the smaller side, then there is a polynomial
kernel.

19



H-packing
H-Packing
Input: a graph H ∈ H, an arbitrary graph G , and an integer k .
Task: decide if there are k vertex-disjoint copies of H in G .

Natural parameter: k · |V (H)|, the size of the output.

H is small/thin if every component of every H ∈ H is either of size
≤ a or a bipartite graph with ≤ b vertices on the smaller side.

Theorem [Jansen and M. 2015]

Let H be a hereditary graph class.
If H is small/thin, then H-Packing admits a polynomial
kernel.
Otherwise, H-Packing admits no polynomial kernel, unless
NP ⊆ coNP/poly.

19



H-packing
H-Packing
Input: a graph H ∈ H, an arbitrary graph G , and an integer k .
Task: decide if there are k vertex-disjoint copies of H in G .

Natural parameter: k · |V (H)|, the size of the output.

H is small/thin if every component of every H ∈ H is either of size
≤ a or a bipartite graph with ≤ b vertices on the smaller side.

Theorem [Jansen and M. 2015]

Let H be a hereditary graph class.
If H is small/thin, then H-Packing admits a polynomial
kernel.
Otherwise, H-Packing admits no polynomial kernel, unless
NP ⊆ coNP/poly and the problem is WK[1]-hard or Long
Path-hard.

Conclusion: Turing kernels do not give us more power for any of
the H-Packing problems. 19



Finding subgraphs

Sub(H)
Input: a graph H ∈ H and an arbitrary graph G .
Task: decide if H is a subgraph of G .

Some classes for which Sub(H) is polynomial-time solvable:
H is the class of all matchings
H is the class of all stars
H is the class of all stars, each edge subdivided once
H is the class of all windmills

matching star subdivided star windmill

20



Finding subgraphs
Definition
Class H is matching splittable if there is a constant c such that
every H ∈ H has a set S of at most c vertices such that every
component of H − S has size at most 2.

1

2

3

S

Theorem [Jansen and M. 2014]

Let H be a hereditary class of graphs. If H is matching splittable,
then Sub(H) is randomized polynomial-time solvable and NP-hard
otherwise.

21



Finding subgraphs (algorithm)

Theorem [Jansen and M. 2014]

If hereditary class H is matching splittable, then Sub(H) is
randomized polynomial-time solvable.

Guess the image S ′ of S in G .
Classify the edges of H − S
according to their neighborhoods in
S (at most 22c colors).
Classify the edges of G − S ′

according to which edge of H − S
can be mapped into it (use parallel
edges if needed).
Task is to find a matching in
G − S ′ with a certain number of
edges of each color.

H

G

1
2
3

S

22



Finding subgraphs (algorithm)

Theorem [Jansen and M. 2014]

If hereditary class H is matching splittable, then Sub(H) is
randomized polynomial-time solvable.

Guess the image S ′ of S in G .

Classify the edges of H − S
according to their neighborhoods in
S (at most 22c colors).
Classify the edges of G − S ′

according to which edge of H − S
can be mapped into it (use parallel
edges if needed).
Task is to find a matching in
G − S ′ with a certain number of
edges of each color.

H

G

1
2
3

S

1
2
3

S ′

22



Finding subgraphs (algorithm)

Theorem [Jansen and M. 2014]

If hereditary class H is matching splittable, then Sub(H) is
randomized polynomial-time solvable.

Guess the image S ′ of S in G .
Classify the edges of H − S
according to their neighborhoods in
S (at most 22c colors).

Classify the edges of G − S ′

according to which edge of H − S
can be mapped into it (use parallel
edges if needed).
Task is to find a matching in
G − S ′ with a certain number of
edges of each color.

H

G

1
2
3

S

1
2
3

S ′

22



Finding subgraphs (algorithm)

Theorem [Jansen and M. 2014]

If hereditary class H is matching splittable, then Sub(H) is
randomized polynomial-time solvable.

Guess the image S ′ of S in G .
Classify the edges of H − S
according to their neighborhoods in
S (at most 22c colors).
Classify the edges of G − S ′

according to which edge of H − S
can be mapped into it (use parallel
edges if needed).
Task is to find a matching in
G − S ′ with a certain number of
edges of each color.

H

G

1
2
3

S

1
2
3

S ′

22



Finding subgraphs (algorithm)

Theorem [Mulmuley, Vazirani, Vazirani 1987]

There is a randomized polynomial-time algorithm that, given a
graph G with red and blue edges and integer k , decides if there is a
perfect matching with exactly k red edges.

More generally:

Theorem
Given a graph G with edges colored with c colors and c integers k1,
. . . , kc , we can decide in randomized time nO(c) if there is a
matching with exactly ki edges of color i .

This is precisely what we need to complete the algorithm for
Sub(H) for matching splittable H.

23



Finding subgraphs (hardness proof)

Lemma
Let H be a hereditary class of graphs that is not matching
splittable. Then at least one of the following is true.

H contains every clique.
H contains every biclique.
For every n ≥ 1, H contains n · K3.
For every n ≥ 1, H contains n · P3 (where P3 is the path on 3
vertices).

In each case, Sub(H) is NP-hard (recall that P3-factor and
K3-factor are NP-hard).

24



Finding subgraphs (hardness proof)

Recall: Class H is matching splittable if there is a constant c
such that every H ∈ H has a set S of at most c vertices such that
every component of H − S has size at most 2.

Equivalently: in every H ∈ H, we can cover every 3-vertex
connected set (i.e., every K3 and P3) by c vertices.

Observation: either
there are r vertex disjoint K3, or
there are r vertex disjoint P3, or
we can cover every K3 and every P3 by 6r vertices.

25



Finding subgraphs (hardness proof)
Lemma
Let H be a hereditary class of graphs that is not matching
splittable. Then at least one of the following is true.

H contains every clique.
H contains every biclique.
For every n ≥ 1, H contains n · K3.
For every n ≥ 1, H contains n · P3.

Consider many vertex-disjoint P3’s.
For every i < j , there are 29 possibilities
between {ai , bi , ci} and {aj , bj , cj}.
There is a homogeneous set of many P3’s
with respect to these 29 possibilities.
In each of the 29 cases, we find many disjoint
P3’s, a clique, or a biclique.

a1

a2

a3

a4

a5

b1

a6

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6

26



Finding subgraphs (hardness proof)
Lemma
Let H be a hereditary class of graphs that is not matching
splittable. Then at least one of the following is true.

H contains every clique.
H contains every biclique.
For every n ≥ 1, H contains n · K3.
For every n ≥ 1, H contains n · P3.

Consider many vertex-disjoint P3’s.
For every i < j , there are 29 possibilities
between {ai , bi , ci} and {aj , bj , cj}.
There is a homogeneous set of many P3’s
with respect to these 29 possibilities.
In each of the 29 cases, we find many disjoint
P3’s, a clique, or a biclique.

a1

a2

a3

a4

a5

b1

a6

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6

26



Finding subgraphs (hardness proof)
Lemma
Let H be a hereditary class of graphs that is not matching
splittable. Then at least one of the following is true.

H contains every clique.
H contains every biclique.
For every n ≥ 1, H contains n · K3.
For every n ≥ 1, H contains n · P3.

Consider many vertex-disjoint P3’s.
For every i < j , there are 29 possibilities
between {ai , bi , ci} and {aj , bj , cj}.
There is a homogeneous set of many P3’s
with respect to these 29 possibilities.
In each of the 29 cases, we find many disjoint
P3’s, a clique, or a biclique.

a1

a2

a3

a4

a5

b1

a6

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6

26



Finding subgraphs (hardness proof)
Lemma
Let H be a hereditary class of graphs that is not matching
splittable. Then at least one of the following is true.

H contains every clique.
H contains every biclique.
For every n ≥ 1, H contains n · K3.
For every n ≥ 1, H contains n · P3.

Consider many vertex-disjoint P3’s.
For every i < j , there are 29 possibilities
between {ai , bi , ci} and {aj , bj , cj}.
There is a homogeneous set of many P3’s
with respect to these 29 possibilities.
In each of the 29 cases, we find many disjoint
P3’s, a clique, or a biclique.

a1

a2

a3

a4

a5

b1

a6

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6

26



Disjoint paths

k-Disjoint Paths
Input: graph G and pairs of vertices (s1, t1), . . . , (sk , tk).
Task: find pairwise vertex-disjoint paths P1, . . . , Pk such that
Pi connects si and ti .

s1 s2 s3 s4

t1 t2 t3 t4

NP-hard, but FPT parameterized by k :

Theorem [Robertson and Seymour]

The k-Disjoint Paths problem can be solved in time f (k)n3.

We consider now a maximization version of the problem.

27



Disjoint paths

k-Disjoint Paths
Input: graph G and pairs of vertices (s1, t1), . . . , (sk , tk).
Task: find pairwise vertex-disjoint paths P1, . . . , Pk such that
Pi connects si and ti .

s1 s2 s3 s4

t1 t2 t3 t4

NP-hard, but FPT parameterized by k :

Theorem [Robertson and Seymour]

The k-Disjoint Paths problem can be solved in time f (k)n3.

We consider now a maximization version of the problem.

27



Disjoint paths

Maximum Disjoint Paths
Input: supply graph G , set T ⊆ V (G ) of terminals and a demand
graph H on T .
Task: find k pairwise vertex-disjoint paths such that the two
endpoints of each path are adjacent in H.

T

Can be solved in time nO(k), but W[1]-hard in general.
Maximum Disjoint H-Paths: special case when H restricted to
be a member of H.

28



Disjoint paths

Maximum Disjoint Paths
Input: supply graph G , set T ⊆ V (G ) of terminals and a demand
graph H on T .
Task: find k pairwise vertex-disjoint paths such that the two
endpoints of each path are adjacent in H.

T

Can be solved in time nO(k), but W[1]-hard in general.
Maximum Disjoint H-Paths: special case when H restricted to
be a member of H.

28



Maximum Disjoint H-Paths

s1 s2 s3 s4 s5

t1 t2 t3 t4 t5

bicliques: cliques: complete multipartite graphs:

two disjoint bicliques: matchings: skew bicliques:

in P in P in P

FPT W[1]-hard W[1]-hard

29



Maximum Disjoint H-Paths
Questions:

Algorithmic: FPT vs. W[1]-hard.
Combinatorial (Erdős-Pósa): is there a function f such that
there is either a set of k vertex-disjoint good paths of a set of
f (k) vertices covering every good path?

30



Maximum Disjoint H-Paths
Questions:

Algorithmic: FPT vs. W[1]-hard.
Combinatorial (Erdős-Pósa): is there a function f such that
there is either a set of k vertex-disjoint good paths of a set of
f (k) vertices covering every good path?

Theorem [M. and Wollan]

Let H be a hereditary class of graphs.
1 If H does not contain every matching and every skew biclique,

then Maximum Disjoint H-Paths is FPT and has the
Erdős-Pósa Property.

2 If H does not contain every matching, but contains every skew
biclique, then Maximum Disjoint H-Paths is W[1]-hard,
but has the Erdős-Pósa Property.

3 If H contains every matching, then Maximum Disjoint
H-Paths is W[1]-hard, and does not have the Erdős-Pósa
Property.

30



Maximum Disjoint H-Paths
Questions:

Algorithmic: FPT vs. W[1]-hard.
Combinatorial (Erdős-Pósa): is there a function f such that
there is either a set of k vertex-disjoint good paths of a set of
f (k) vertices covering every good path?

FPT and Erdős-Pósa

W[1]-hard and Erdős-Pósa

W[1]-hard and not Erdős-Pósa

30



Summary

Dichotomy results:
P vs. NP-hard or FPT vs. W[1]-hard.
For a fixed graph H or (hereditary) class H.

Considered problems:

H-factor

H-decomposition

H-coloring

H-packing

Hom(H,−)
#Hom(H,−)
#Sub(H)
Sub(H)

31



Conclusions

For numerous problems, we can prove that every fixed graph
(or graph class) is either easy or hard.
Good research programs: easy to formulate, hard to solve, but
not completely impossible.
Possible outcomes:

Everything is hard, except some trivial cases.
Everything is hard, except the famous known nontrivial
positive cases.
Some unexpected easy cases are found.

Requires attacking the problem both from the algorithmic and
the complexity side.

32


