
Survey of connections between
approximation algorithms and parameterized

complexity

Dániel Marx

Humboldt-Universität zu Berlin, Germany

Dagstuhl Seminar 11091:

Packing and Scheduling Algorithms for Information and Communication Services

February 28, 2011

Survey of connections between approximation algorithms and parameterized complexity – p. 1/32

Parameterized complexity

Main idea: Instead of expressing the running time as a function T (n) of n, we

express it as a function T (n, k) of the input size n and some parameter k of the
input.

We do not want to be efficient on all inputs of size n, only for those where k is

small.

What can be the parameter k?

The size k of the solution we are looking for.

The maximum degree of the input graph.

The diameter of the input graph.

The length of clauses in the input Boolean formula.

...

Survey of connections between approximation algorithms and parameterized complexity – p. 2/32

Fixed-parameter tractability

Definition: A parameterization of a decision problem is a function that

assigns an integer parameter k to each input instance x .

The parameter can be

explicit in the input (for example, if the parameter is the integer k appearing

in the input (G , k) of VERTEX COVER), or

implicit in the input (for example, if the parameter is the diameter d of the
input graph G).

Main definition:

A parameterized problem is fixed-parameter tractable (FPT) if there is

an f (k)nc time algorithm for some constant c .

Example: VERTEX COVER is FPT: can be solved in time O(1.2832kk + k|V |)
[Niedermeier, Rossmanith, 2003]

Survey of connections between approximation algorithms and parameterized complexity – p. 3/32

FPT problems

Examples of NP-hard problems that are FPT:

Finding a vertex cover of size k .

Finding a path of length k .

Finding k disjoint triangles.

Drawing the graph in the plane with at most k edge crossings.

Finding disjoint paths that connect k given pairs of points.

...

Survey of connections between approximation algorithms and parameterized complexity – p. 4/32

W[1]-hardness

Negative evidence similar to NP-completeness. If a problem is W[1]-hard,
then the problem is not FPT unless FPT=W[1].

Some W[1]-hard problems:

Finding a clique/independent set of size k .

Finding a dominating set of size k .

Finding k pairwise disjoint sets.

...

Survey of connections between approximation algorithms and parameterized complexity – p. 5/32

Standard parameterization

Given an optimization problem we can turn it into a decision problem: the

input is a pair (x , k) and we have to decide if there is a solution for x with cost
at least/at most k .

The standard parameterization of an optimization problem is the associated
decision problem, with the value k appearing in the input being the parameter.

Example:

VERTEX COVER

Input: (G , k)

Parameter: k

Question: Is there a vertex cover of size at most k?

If the standard parameterization of an optimization problem is FPT, then
(intuitively) it means that we can solve it efficiently if the optimum is small.

Survey of connections between approximation algorithms and parameterized complexity – p. 6/32

Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:

e1 = x1y1

Survey of connections between approximation algorithms and parameterized complexity – p. 7/32

Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:

e1 = x1y1

x1 y1

Survey of connections between approximation algorithms and parameterized complexity – p. 7/32

Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:

e1 = x1y1

x1 y1

e2 = x2y2

Survey of connections between approximation algorithms and parameterized complexity – p. 7/32

Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:

e1 = x1y1

x1 y1

e2 = x2y2

x2 y2

Survey of connections between approximation algorithms and parameterized complexity – p. 7/32

Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:

e1 = x1y1

x1 y1

e2 = x2y2

x2 y2 height: ≤ k

Height of the search tree is ≤ k ⇒ number of leaves is ≤ 2k ⇒ complete

search requires 2k · poly steps.

Survey of connections between approximation algorithms and parameterized complexity – p. 7/32

FPT algorithmic techniques

Significant advances in the past 20 years or so (especially in recent years).

Powerful toolbox for designing FPT algorithms:

Iterative compressionTreewidth

Bounded Search Tree

Graph Minors Theorem
Color coding

Kernelization

Survey of connections between approximation algorithms and parameterized complexity – p. 8/32

Overview

Approximation schemes and parameterized complexity.

Approximation algorithms parameterized by “something.”

Approximation algorithms parameterized by the cost.

Survey of connections between approximation algorithms and parameterized complexity – p. 9/32

Approximation schemes

Polynomial-time approximation scheme (PTAS):

Input: Instance x , ǫ > 0

Output: (1 + ǫ)-approximate solution

Running time: polynomial in |x | for every fixed ǫ

PTAS: running time is |x |f (1/ǫ)

EPTAS: running time is f (1/ǫ) · |x |O(1)

FPTAS: running time is (1/ǫ)O(1) · |x |O(1)

Connections with parameterized complexity:

Methodological similarities between EPTAS and FPT design.

Lower bounds on the efficiency of approximation schemes.

Survey of connections between approximation algorithms and parameterized complexity – p. 10/32

Baker’s shifting strategy for EPTAS

Theorem: There is a 2O(1/ǫ) · n time EPTAS for INDEPENDENT SET.

A planar graph can be decomposed into a series of “layers.”

Survey of connections between approximation algorithms and parameterized complexity – p. 11/32

Baker’s shifting strategy for EPTAS

Theorem: There is a 2O(1/ǫ) · n time EPTAS for INDEPENDENT SET.

A planar graph can be decomposed into a series of “layers.”

Let D := 1/ǫ. For a fixed 0 ≤ s < D, delete layers Ls , Ls+D , Ls+2D , ...

Survey of connections between approximation algorithms and parameterized complexity – p. 11/32

Baker’s shifting strategy for EPTAS

Theorem: There is a 2O(1/ǫ) · n time EPTAS for INDEPENDENT SET.

A planar graph can be decomposed into a series of “layers.”

Let D := 1/ǫ. For a fixed 0 ≤ s < D, delete layers Ls , Ls+D , Ls+2D , ...

Lemma: [Bodlaender] The treewidth of a k-layer graph is at most 3k + 1.

Thus after the deletion, we can solve the problem in time O(23D+1 · n) using

treewidth techniques.

We do this for every 0 ≤ s < D: for at least one value of s, only ǫ-fraction of the

optimum solution is deleted ⇒ we get a (1 + ǫ)-approximation.

Survey of connections between approximation algorithms and parameterized complexity – p. 11/32

Baker’s shifting strategy for FPT

Theorem: SUBGRAPH ISOMORPHISM for planar graphs (given planar graphs H

and G , is H a subgraph of G?) is FPT parameterized by k := |V (H)|.

Let D := k + 1. For a fixed 0 ≤ s < D, delete layers Ls , Ls+D , Ls+2D , ... ⇒ the
resulting graph has treewidth 3k + 1 ⇒ SUBGRAPH ISOMORPHISM can be

solved in time kO(k) · n using treewidth techniques.

We do this for every 0 ≤ s < D: for at least one value of s, we do not delete
any of the k vertices of the solution ⇒ we find a copy of H in G if there is one.

Survey of connections between approximation algorithms and parameterized complexity – p. 12/32

Lower bounds

Observation: [Bazgan 1995] [Cesati, Trevisan 1997] If the standard

parameterization of an optimization problem is W[1]-hard, then it does not
have an EPTAS, unless FPT = W[1].

Proof: Suppose an f (1/ǫ) · nO(1) time EPTAS exists. Running this EPTAS with
ǫ := 1/(k + 1) decides if the optimum is at most k .

Survey of connections between approximation algorithms and parameterized complexity – p. 13/32

Lower bounds

Observation: [Bazgan 1995] [Cesati, Trevisan 1997] If the standard

parameterization of an optimization problem is W[1]-hard, then it does not
have an EPTAS, unless FPT = W[1].

Proof: Suppose an f (1/ǫ) · nO(1) time EPTAS exists. Running this EPTAS with
ǫ := 1/(k + 1) decides if the optimum is at most k .

Thus W[1]-hardness results immediately show that (assuming W[1] 6= FPT)

No EPTAS for INDEPENDENT SET for unit disks/squares [M. 2005]

No EPTAS for DOMINATING SET for unit disks/squares [M. 2005]

No EPTAS for planar TMIN, TMAX, MPSAT [Cai et al. 2007]

Note: All these problems have nO(1/ǫ) time approximation schemes.

Survey of connections between approximation algorithms and parameterized complexity – p. 13/32

Tighter bounds

We have seen that there are no EPTAS for some problems (unless

FPT = W [1]). But is there a PTAS with running time say nO(log log(1/ǫ))?

Survey of connections between approximation algorithms and parameterized complexity – p. 14/32

Tighter bounds

We have seen that there are no EPTAS for some problems (unless

FPT = W [1]). But is there a PTAS with running time say nO(log log(1/ǫ))?

The following hypothesis can be used to obtain lower bounds on the exponent:

Exponential-time hypothesis (ETH): n-variable 3SAT cannot be solved in

time 2o(n).

Theorem: Assuming ETH, there is no f (1/ǫ)no(
√

1/ǫ) time PTAS for

INDEPENDENT SET for unit disks/squares

DOMINATING SET for unit disks/squares

planar TMIN, TMAX, MPSAT

Survey of connections between approximation algorithms and parameterized complexity – p. 14/32

Tighter bounds

We have seen that there are no EPTAS for some problems (unless

FPT = W [1]). But is there a PTAS with running time say nO(log log(1/ǫ))?

The following hypothesis can be used to obtain lower bounds on the exponent:

Exponential-time hypothesis (ETH): n-variable 3SAT cannot be solved in

time 2o(n).

Theorem: Assuming ETH, there is no f (1/ǫ)no(
√

1/ǫ) time PTAS for

INDEPENDENT SET for unit disks/squares

DOMINATING SET for unit disks/squares

planar TMIN, TMAX, MPSAT

Theorem: [M. 2007] Assuming ETH, there is no PTAS with running time

2(1/ǫ)O(1) · nO((1/ǫ)(1−δ)) for any δ > 0 for these problems.

Survey of connections between approximation algorithms and parameterized complexity – p. 14/32

FPT & PTAS – Summary

Methodological similarities on planar graphs

Baker’s shifting strategy, reduction to bounded treewidth

Framework of bidimensionalty

Lower bounds on the quality of approximation schemes: it is possible to
prove (almost) tight results.

Survey of connections between approximation algorithms and parameterized complexity – p. 15/32

Approximation parameterized by
“something”

Idea: Instead of finding an approximation algorithm with running time nO(1), we

try to find an approximation algorithm with running time f (k) · nO(1), where k is
some parameter of the optimization problem instance.

Survey of connections between approximation algorithms and parameterized complexity – p. 16/32

Approximation parameterized by
“something”

Idea: Instead of finding an approximation algorithm with running time nO(1), we

try to find an approximation algorithm with running time f (k) · nO(1), where k is
some parameter of the optimization problem instance.

Example: [Böckenhauer et al. 2007] METRIC TSP WITH DEADLINE is the

standard metric TSP problem, extended with a set D of deadline nodes. The
salesperson must reach v ∈ D within time at most d(v).

Let |D| be the parameter.

Survey of connections between approximation algorithms and parameterized complexity – p. 16/32

Approximation parameterized by
“something”

Idea: Instead of finding an approximation algorithm with running time nO(1), we

try to find an approximation algorithm with running time f (k) · nO(1), where k is
some parameter of the optimization problem instance.

Example: [Böckenhauer et al. 2007] METRIC TSP WITH DEADLINE is the

standard metric TSP problem, extended with a set D of deadline nodes. The
salesperson must reach v ∈ D within time at most d(v).

Let |D| be the parameter.

Approximation: The problem has no constant factor approximation (unless

P = NP).

Parameterization: The problem is NP-hard even for |D| = 1, thus it is not
FPT (unless P = NP).

Approximation + parameterization: A 2.5-approximation can be found in

time O(n3 + |D|! · |D|)
Survey of connections between approximation algorithms and parameterized complexity – p. 16/32

Partial Vertex Cover

PARTIAL VERTEX COVER: Select k vertices, maximizing the number of edges

covered.

Approximation: The problem has a constant factor approximation, but has
no PTAS (unless P = NP).

Parameterization: The problem is W[1]-hard, thus it is not FPT (unless

FPT = W[1]).

Approximation + parameterization: A (1 + ǫ)-approximation can be found in
time f (k, ǫ) · nO(1).

Survey of connections between approximation algorithms and parameterized complexity – p. 17/32

Genus

Genus: A graph has genus at most k if it can be drawn on the sphere with k

handles attached to it.

g = 0 ⇔ graph is planar.

VERTEX COLORING and INDEPENDENT SET are NP-hard on planar graphs,
thus these problems are not FPT parameterized by genus (unless P = NP).

A 2-approximation of VERTEX COLORING can be found in time f (g) · nO(1)

[Demaine et al. 2005].

A (1 + ǫ)-approximation for INDEPENDENT SET can be found in time

f (g , ǫ) · nO(1) [Demaine and Hajiaghayi 2004], [Grohe 2003].

Survey of connections between approximation algorithms and parameterized complexity – p. 18/32

k -CENTER and k -MEDIAN

k -CENTER

Input: Set R
2 of points, integer k

Find: Subset C ⊆ S of size k

Goal: Minimize maxs∈S minc∈C d(s, c).

k -MEDIAN

Input: Set R
2 of points, integer k

Find: Subset C ⊆ S of size k

Goal: Minimize
P

s∈S
minc∈C d(s, c).

Theorem: [Har-Peled, Mazumdar 2004] A (1 + ǫ)-approximation for k -MEDIAN

can be found in time f (ǫ) · nO(1).

Theorem: [Gonzalez 1985] There is a polynomial 2-approximation for

k -CENTER, but there is no PTAS, unless P = NP.

Theorem: [Agarwal, Procopiuc 2002] A (1 + ǫ)-approximation for k -CENTER

can be found in time f (k, ǫ) · nO(1).

Survey of connections between approximation algorithms and parameterized complexity – p. 19/32

Approximation parameterized by
“something” – summary

A straightforward combination of approximation and FPT.

f (k) · nO(1) or f (k, ǫ) · nO(1) time approximation algorithms, where k is some
parameter of the optimization problem.

Can give constant factor approximation or PTAS for problems where

polynomial-time algorithms cannot.

Some relevant parameters: dimension, number of centers, maximum
degree, ...

Survey of connections between approximation algorithms and parameterized complexity – p. 20/32

Approximation parameterized by the
cost

Idea: Approximation algorithms that are efficient if the optimum is small.

Intuitively, we would like to parameterize by the optimum value, but that is
problematic since usually we expect that the parameter is known.

More or less equivalent definitions by [Chen, Grohe, Grüber 2006], [Downey,

Fellows, McCartin 2006], and [Cai, Huang 2006].

Survey of connections between approximation algorithms and parameterized complexity – p. 21/32

Approximation parameterized by the
cost

Definition: An fpt-approximation algorithm with ratio ̺ for a minimization

problem is an algorithm that, given an input (x , k) with opt(x) ≤ k , outputs in
time f (k) · nO(1) a solution with cost ≤ k · ̺(k).

We require that k · ̺(k) is nondecreasing.

Definition: An fpt-approximation algorithm with ratio ̺ for a maximization
problem is an algorithm that, given an input (x , k) with opt(x) ≥ k , outputs in

time f (k) · nO(1) a solution with cost ≥ k/̺(k).

We require that k/̺(k) is unbounded and nondecreasing.

Survey of connections between approximation algorithms and parameterized complexity – p. 22/32

Approximation parameterized by the
cost

Definition: An fpt-approximation algorithm with ratio ̺ for a minimization

problem is an algorithm that, given an input (x , k) with opt(x) ≤ k , outputs in
time f (k) · nO(1) a solution with cost ≤ k · ̺(k).

We require that k · ̺(k) is nondecreasing.

Definition: An fpt-approximation algorithm with ratio ̺ for a maximization
problem is an algorithm that, given an input (x , k) with opt(x) ≥ k , outputs in

time f (k) · nO(1) a solution with cost ≥ k/̺(k).

We require that k/̺(k) is unbounded and nondecreasing.

Two differences from polynomial-time approximation:

f (k) · nO(1) time instead of nO(1)

ratio ̺(k) depends on k (≈ optimum) and not on the input size.

Survey of connections between approximation algorithms and parameterized complexity – p. 22/32

Edge multicut

EDGE MULTICUT: Given pairs of vertices (s1, t1), ... , (sℓ, tℓ), delete at most k

edges such that there is no si − ti path for any i .

Theorem: [M. 2004] EDGE MULTICUT can be solved in time f (k, ℓ)nO(1).

Theorem: [M., Razgon 2009] EDGE MULTICUT has an FPT 2-approximation in

time f (k)nO(1).

Theorem: [M., Razgon 2011] [Bousquet, Daligault, Thomassé 2011] EDGE

MULTICUT can be solved in time f (k)nO(1).

Survey of connections between approximation algorithms and parameterized complexity – p. 23/32

Topological bandwidth

Definitions:

Linear layout of a graph G(V , E) is a bijection between V and {1, ... , |V |}.

Bandwidth of a layout: the maximum “length” of an edge.

Cutwidth of a layout: the maximum no. of edges crossing some (i , i + 1).

Bandwidth bw(G) and cutwidth cw(G) of a graph is the minimum possible
bandwidth/cutwidth of a linear layout.

Topological bandwidth tbw(G) is the minimum bandwidth of a subdivision

of G .

Fact: Cutwidth is FPT [Thilikos et al. 2000], but (topological) bandwidth is

W[1]-hard [Bodlaender et al. 1994].

Survey of connections between approximation algorithms and parameterized complexity – p. 24/32

Topological bandwidth

FPT approximation for topological bandwidth based on the following

observation:

Observation: [Fellows] tbw(G) ≤ cw(G) + 1 ≤ tbw(G)2

If tbw(G) ≤ k , then cw(G) ≤ k2 − 1 and we can find such a layout in FPT time.

The first inequality is algorithmic: a layout with cutwidth at most k2 − 1 can be

used to obtain a subdivision of G and a layout for it having bandwidth ≤ k2.

⇒ FPT-approximation for topological bandwidth with ratio k .

Survey of connections between approximation algorithms and parameterized complexity – p. 25/32

Disjoint directed cycles

DISJOINT DIRECTED CYCLES: Find a maximum number of disjoint cycles in a

directed graph.

Theorem: [Slivkins 2003] DISJOINT DIRECTED CYCLES is W[1]-hard.

Theorem: [Grohe, Grüber 2007] DISJOINT DIRECTED CYCLES has an FPT

̺-approximation for some function ̺.

Survey of connections between approximation algorithms and parameterized complexity – p. 26/32

Disjoint directed cycles

DISJOINT DIRECTED CYCLES: Find a maximum number of disjoint cycles in a

directed graph.

Theorem: [Slivkins 2003] DISJOINT DIRECTED CYCLES is W[1]-hard.

Theorem: [Grohe, Grüber 2007] DISJOINT DIRECTED CYCLES has an FPT

̺-approximation for some function ̺.

It turns out that something stronger is true:

Theorem: [Grohe, Grüber 2007] There is a polynomial-time algorithm that

finds a solution of DISJOINT DIRECTED CYCLES with OPT/̺(OPT) cycles for
some nontrivial function ̺.

Survey of connections between approximation algorithms and parameterized complexity – p. 26/32

Disjoint directed cycles

DISJOINT DIRECTED CYCLES: Find a maximum number of disjoint cycles in a

directed graph.

Theorem: [Slivkins 2003] DISJOINT DIRECTED CYCLES is W[1]-hard.

Theorem: [Grohe, Grüber 2007] DISJOINT DIRECTED CYCLES has an FPT

̺-approximation for some function ̺.

It turns out that something stronger is true:

Theorem: [Grohe, Grüber 2007] There is a polynomial-time algorithm that

finds a solution of DISJOINT DIRECTED CYCLES with OPT/̺(OPT) cycles for
some nontrivial function ̺.

Surprisingly, it is true for every optimization problem (where a trivial solution is

easy to find) that an FPT ̺-approximation implies a polynomial-time ̺′

approximation for some other function ̺′.

Survey of connections between approximation algorithms and parameterized complexity – p. 26/32

From FPT time to polynomial time

Theorem: Suppose that a minimization problem has an FPT time

̺-approximation algorithm A and a trivial solution can be found in polynomial
time. Then there is a polynomial-time algorithm that finds a solution with cost

OPT · ̺′(OPT) for some nontrivial function ̺′.

Survey of connections between approximation algorithms and parameterized complexity – p. 27/32

From FPT time to polynomial time

Theorem: Suppose that a minimization problem has an FPT time

̺-approximation algorithm A and a trivial solution can be found in polynomial
time. Then there is a polynomial-time algorithm that finds a solution with cost

OPT · ̺′(OPT) for some nontrivial function ̺′.

Proof: Suppose that the running time of A is f (k)|x |c .

We do the following on instance x :

Find a trivial solution.

For i = 1, 2, ... , |x |, simulate A on (x , i) for |x |c+1 steps.

Output: the best of these at most |x | + 1 solutions.

Survey of connections between approximation algorithms and parameterized complexity – p. 27/32

From FPT time to polynomial time

Theorem: Suppose that a minimization problem has an FPT time

̺-approximation algorithm A and a trivial solution can be found in polynomial
time. Then there is a polynomial-time algorithm that finds a solution with cost

OPT · ̺′(OPT) for some nontrivial function ̺′.

Proof: Suppose that the running time of A is f (k)|x |c .

We do the following on instance x :

Find a trivial solution.

For i = 1, 2, ... , |x |, simulate A on (x , i) for |x |c+1 steps.

Output: the best of these at most |x | + 1 solutions.

Approximation ratio: Let k := opt(x).

If |x | ≥ max{k, f (k)}, then the simulation of A on (x , k) terminates in
f (k) · |x |c ≤ |x |c+1 steps and we get a solution with ratio at most ̺(k).

Survey of connections between approximation algorithms and parameterized complexity – p. 27/32

From FPT time to polynomial time

Theorem: Suppose that a minimization problem has an FPT time

̺-approximation algorithm A and a trivial solution can be found in polynomial
time. Then there is a polynomial-time algorithm that finds a solution with cost

OPT · ̺′(OPT) for some nontrivial function ̺′.

Proof: Suppose that the running time of A is f (k)|x |c .

We do the following on instance x :

Find a trivial solution.

For i = 1, 2, ... , |x |, simulate A on (x , i) for |x |c+1 steps.

Output: the best of these at most |x | + 1 solutions.

Approximation ratio: Let k := opt(x).

The number of instances with |x | < max{k, f (k)} is bounded by a function of
k , thus the ratio of the trivial solution is at most τ(k) for such instances.

Survey of connections between approximation algorithms and parameterized complexity – p. 27/32

From FPT time to polynomial time

Theorem: Suppose that a minimization problem has an FPT time

̺-approximation algorithm A and a trivial solution can be found in polynomial
time. Then there is a polynomial-time algorithm that finds a solution with cost

OPT · ̺′(OPT) for some nontrivial function ̺′.

Proof: Suppose that the running time of A is f (k)|x |c .

We do the following on instance x :

Find a trivial solution.

For i = 1, 2, ... , |x |, simulate A on (x , i) for |x |c+1 steps.

Output: the best of these at most |x | + 1 solutions.

Approximation ratio is at most max(̺(opt(x)), τ(opt(x)).

Survey of connections between approximation algorithms and parameterized complexity – p. 27/32

Open questions

Can we do anything nontrivial for CLIQUE or for HITTING SET?

Is there an FPT ̺-approximation for CLIQUE with any ratio function ̺?

Is there a polynomial-time algorithm for CLIQUE that finds a clique of size,
say, O(log log log OPT)?

Because of the previous result, these two questions are equivalent!

In case of a negative answer, very deep techniques are required: the only
known way to show (assuming P 6= NP) that CLIQUE and HITTING SET have

no constant-factor polynomial time approximation is by using the PCP theorem.

Survey of connections between approximation algorithms and parameterized complexity – p. 28/32

Inapproximability

An optimization problem is not FPT-approximable if it has no

FPT-approximation algorithm for any function ̺.

Theorem: [Downey et al. 2008] INDEPENDENT DOMINATING SET is not

FPT-approximable, unless FPT = W [1].

Theorem: [Chen, Grohe, Grüber 2006] WEIGHTED CIRCUIT SATISFIABILITY is
not FPT-approximable, unless FPT = W [P].

WEIGHTED CIRCUIT SATISFIABILITY: Given a Boolean circuit, find a satisfying

assignment with minimum number of 1’s.

These two problems are not monotone, so the results are not very surprising.

Survey of connections between approximation algorithms and parameterized complexity – p. 29/32

Monotone inapproximability results

MONOTONE WEIGHTED CIRCUIT SATISFIABILITY

Input: Boolean cirucuit C without negations

Find: A satisfying assignment a of C

Goal: Minimize the number of 1’s in a

Theorem: [Alekhnovich, Razborov 2001] There is no FPT 2-approximation for
MONOTONE WEIGHTED CIRCUIT SATISFIABILITY, unless

Randomized FPT = W [P].

Theorem: [Eickmeyer, Grohe, Grüber 2008] There is no FPT ̺-approximation
for MONOTONE WEIGHTED CIRCUIT SATISFIABILITY with polylogarithmic ̺,

unless FPT = W [P].

Theorem: [M. 2010] MONOTONE WEIGHTED CIRCUIT SATISFIABILITY is not

FPT-approximable, unless FPT = W [P].

Survey of connections between approximation algorithms and parameterized complexity – p. 30/32

Parameterization by cost – summary

Idea: efficient approximation when the solution is small.

Not too many convincing examples so far.

Inapproximation results could be very deep and challenging.

Survey of connections between approximation algorithms and parameterized complexity – p. 31/32

Conclusions

Several possible connections to look at between approximation and

fixed-parameter tractability.

There are lots of possibilities for finding new algorithmic results.

Inapproximability results probably require new approaches.

Survey of connections between approximation algorithms and parameterized complexity – p. 32/32

	Parameterized complexity
	Fixed-parameter tractability
	FPT problems
	W[1]-hardness
	Standard parameterization
	Bounded search tree method
	Bounded search tree method
	Bounded search tree method
	Bounded search tree method
	Bounded search tree method

	FPT algorithmic techniques
	Overview
	Approximation schemes
	Baker's shifting strategy for EPTAS
	Baker's shifting strategy for EPTAS
	Baker's shifting strategy for EPTAS

	Baker's shifting strategy for FPT
	Lower bounds
	Lower bounds

	Tighter bounds
	Tighter bounds
	Tighter bounds

	FPT & PTAS -- Summary
	Approximation parameterized by ``something''
	Approximation parameterized by ``something''
	Approximation parameterized by ``something''

	Partial Vertex Cover
	Genus
		extsc {k-Center} and 	extsc {k-Median}
	Approximation parameterized by ``something'' -- summary
	Approximation parameterized by the cost
	Approximation parameterized by the cost
	Approximation parameterized by the cost

	Edge multicut
	Topological bandwidth
	Topological bandwidth
	Disjoint directed cycles
	Disjoint directed cycles
	Disjoint directed cycles

	From FPT time to polynomial time
	From FPT time to polynomial time
	From FPT time to polynomial time
	From FPT time to polynomial time
	From FPT time to polynomial time

	Open questions
	Inapproximability
	Monotone inapproximability results
	Parameterization by cost -- summary
	Conclusions

